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INVARIANTS OF REAL SYMPLECTIC
FOUR-MANIFOLDS OUT OF REDUCIBLE AND
CUSPIDAL CURVES

BY JEAN-YVES WELSCHINGER

ABSTRACT. — We construct invariants under deformation of real symplectic four-
manifolds. These invariants are obtained by counting three different kinds of real
rational J-holomorphic curves which realize a given homology class and pass through
a given real configuration of (the appropriate number of) points. These curves are
cuspidal curves, reducible curves and curves with a prescribed tangent line at some real
point of the configuration. They are counted with respect to some sign defined by the
parity of their number of isolated real double points and in the case of reducible curves,
with respect to some mutiplicity. In the case of the complex projective plane equipped
with its standard symplectic form and real structure, these invariants coincide with
the ones previously constructed in [11]. This leads to a relation between the count of
real rational J-holomorphic curves done in [11] and the count of real rational reducible
J-holomorphic curves presented here.
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288 WELSCHINGER (J.-Y.)

RESUME (Courbes réductibles, cuspidales et invariants des variétés symplectiques
réelles de dimension quatre)

Nous construisons des invariants par déformation des variétés symplectiques réelles
de dimension quatre. Ces invariants sont obtenus en comptant trois différents types de
courbes J-holomorphes rationnelles réelles qui réalisent une classe d’homologie donnée
et passent par une configuration réelle donnée d’un nombre (adéquat) de points. Ces
courbes sont des courbes cuspidales, réductibles et des courbes ayant une tangente
prescrite en I’'un des points de la configuration. Elles sont comptées en fonction d’un
signe qui dépend de la parité du nombre de leurs points doubles réels isolés et, dans
le cas des courbes réductibles, en fonction d’une multiplicité. Dans le cas du plan
projectif complexe muni de ses formes symplectiques et structures réelles standards,
ces invariants coincident avec ceux précédemment construits dans [11]. Ceci méne a
une relation entre le comptage de courbes J-holomorphes rationnelles réelles réalisé
dans [11] et le comptage de courbes J-holomorphes rationnelles réductibles réelles
présenté ici.
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Introduction and statement of the results

Let (X,w,cx) be a real symplectic four-manifold, that is a triple made of
a smooth compact four-manifold X, a symplectic form w on X and an invo-
lution c¢x on X such that

Cyw = —w.

The fixed point set of cx is called the real part of X and is denoted by RX.

A large source of examples is provided by smooth projective surfaces defined
by a system of polynomials with real coefficients, the symplectic form is then
the restriction of the Fubini-Study form of the ambiant projective space, and
the real structure is the restriction of its complex conjugation. Note that the
real locus RX is assumed to be non empty here so that it is a smooth lagrangian
surface of (X,w).

With every such real symplectic four-manifold comes some function

X:de Hy(X;Z) r—»xd(T) € Z[Ty,...,Tn],
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INVARIANTS OF REAL SYMPLECTIC FOUR-MANIFOLDS 289

where N denotes the number of connected components of the real locus of
the manifold. This function has been constructed in [11] by exctracting integer
valued invariants — the coefficients of the polynomial x¢(7") - from the following
problem of real enumerative geometry: how many real rational curves do realize
the homology class d and pass through the adequate number of points?

Remember that for this problem to make sense, we introduce an auxiliary
generic almost complex structure J, that is a complex structure on the tangent
bundle T'X, and we count real rational J-holomorphic curves, that is immersed
two-dimensional spheres which are preserved by the involution cx and whose
tangent planes are invariant under J. The adequate number of points is then
the expected dimension of this space of real rational J-holomorphic curves, that
is ¢1(X)d — 1, where ¢1(X) is the first Chern class of the manifold (X, w).

Remember that all of these finitely many curves are images of Z/27Z-
equivariant immersions u : (CP!,conj) — (X, cx) and the above mentionned
invariants are obtained by counting these curves with respect to some sign +1
determined by the parity of the number of pairs of complex conjugated points
in the set =1 (RX).

For example, the cubic planar real rational curve parameterized by t € C —
(2,3 + €t) is counted positively if € < 0 and negatively if € > 0 since u™1(RX)
then contains {+i+/€ }, and the pure imaginary planar conic with affine equation
2?2 4+ 9% = —1 is a real rational curve, but not the image of a Z/2Z-equivariant
immersion u : (CP!, conj) — (X, cx) since its real part is empty.

Remember finally that if we do not obtain a unique invariant as the Gromov-
Witten invariant in the complex case, it is due to the fact the integers we
obtain depend on the number of pairs of complex conjugated points in the
chosen configuration of ¢1(X)d — 1 points as well as on the distribution of the
remaining points in the different connected components of the real part.

The existence of these invariants raises various questions. Are there analog
invariants in higher dimensions? Of which problems of real enumerative geom-
etry is it possible to extract some integer valued invariants? Note that such
invariants then bound from below the number of real solutions of the given
problem, see Corollary 2.2 of [11]. Does some recursive formula similar to the
one obtained by M. Kontsevich for the Gromov-Witten invariants exist?

The works [12] and [10] provide some positive answer to the first question.
The present paper, as well as [9] which can be considered as a continuation
of this work, is devoted to the study of the next two questions. The problem
addressed in [9] is to replace one point condition in the above problem by one
tangency condition with some given curve L in the real part RX, as in the
classical problem of counting real planar conics tangent to five generic real
conics for example. It is proven in [9] that some integer valued invariants can
indeed be extracted from this problem, but this requires to take into account
other kinds of curves which appear in generic 1-parameter families of curves,
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290 WELSCHINGER (J.-Y.)

namely two components reducible curves, cuspidal curves and curves with some
prescribed tangent line at one point of the configuration (or equivalently from
Proposition 3.4 of [11], curves having one double point at some point of the
configuration). The present paper is actually devoted to the case where L
is empty. In this case, only the three terms we have just mentionned occur and
indeed they hide some integer valued invariants, see Theorem 0.1. Moreover,
these new invariants can be compared with the ones of [11], see Proposition 0.3
below, leading to some relation between the count of generic real rational curves
of [11] with the one of real reducible curves done here. However, this relation
does not lead to some recursive formula similar to the one obtained in the
complex case by M. Kontsevich, see Remark 0.4 below. Note that since the
preprint version of this paper and of [9] have appeared, progress has been
made on the questions of computation or finding recursion formulas, see [13]
and Remark 3 therein.

Let us now come to the precise formulation of the main results of this paper.

We label the connected components of the real part by (RX)q,...,( RX)n.

Let £ > 1 be an integer large enough and 7, be the space of almost complex
structures of X which are tamed by w and of class C*. Let R, be the subspace
of J, made of almost complex structures for which the involution cx is J-anti-
holomorphic. These two spaces are separable Banach manifolds which are non
empty and contractible (see §1.1 of [11] for the real case).

Let d € H2(X;Z) be a homology class satisfying ¢; (X )d > 1 and set

v=c1(X)-2.

Let £ = (x1,...,2,) € X¥ be a real configuration of v distinct points of X,
that is an ordered subset of distinct points of X which is globally invariant
under cx. For j € {1,..., N}, we denote by r; the number of points in the
configuration z that are located in the component (RX); and we set

r=(ry,...,Tn),

so that the N-tuple r encodes the equivariant isotopy class of z. We will assume
throughout the paper that r # (0,...,0), see Remark 3.5.

Finally, denote by I the subset of those ¢ € {1,...,v} for which z; is fixed
by the involution cx.

For each ¢ € I, choose a line T; in the tangent plane T, RX.

Then, for a generic choice of J € R, there are only finitely many real ratio-
nal J-holomorphic curves which realize the homology class d, pass through z
and are cuspidal. Moreover, these curves are all irreducible and have only
transversal double points as well as a unique real ordinary cusp as singulari-
ties.

Denote by Cuspd(J,g) this finite set of cuspidal curves.

Likewise, there are only finitely many real rational J-holomorphic curves
which realize the homology class d, pass through x and are reducible. Moreover,
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these curves have only two irreducible components and only transversal double
points as singularities.

Denote by Red®(.J,z) this finite set of reducible curves.

Note that since I # &, both irreducible components of such curves are real.
Indeed, they would otherwise be exchanged by the involution c¢x and would
intersect the real locus at only finitely many points. The condition to pass
through a point of I would then cost two degrees of liberty instead of one so
that generically such curves do not appear. Finally, there are only finitely many
real rational J-holomorphic curves which realize the homology class d, pass
through x and whose tangent line at some point x;, ¢ € I, is T;. Moreover, the
point x; having this property is then unique and these curves are all irreducible
with only transversal double points as singularities.

Denote by Tan(.J,z) this finite set of rational curves.

Note that if C' € Cusp®(J, z) U Red®(J, z) UTan"(J, z), then all the singular-
ities of C' are disjoint from z.

Following [11], we define the mass of C and denote by m(C) its number of
real isolated double points.

Here, a real double point is said to be isolated when it is the local intersection
of two complex conjugated branches, whereas it is said to be non isolated when
it is the local intersection of two real branches.

If C belongs to Redd(J,z) and Cp, Cy denote its irreducible components,
then we define the multiplicity of C, and denote by mult(C), the number of real
intersection points between Cy and Cs, that is the cardinality of RC; N RCs.

We then set

Ié(J,z) = Z (71)m(C) — Z (fl)m(c)mult(C).

CeCusp?(J,z)UTan?(J,z) CcRed?(J,z)
THEOREM 0.1. — Let (X,w,cx) be a real symplectic four-manifold and
d € Hy(X;Z) be such that ¢1(X)d > 1, ¢1(X)d # 4.

The connected components of RX are labeled by (RX)1,...,(RX)y. Letz C X
be a real configuration of ¢i1(X)d — 2 distinct points, r; be the cardinality
of tN(RX); and r = (r1,...,rn). Finally, let J € RJ,, be generic enough
so that the integer T4(J, x) is well defined. Then, this integer T'4(J, x) neither
depends on the choice of J, nor on the choice of x.

(The condition ¢1(X)d # 4 is to avoid appearance of multiple curves, see
Remark 1.10.)

From this theorem, the integer I'*(J,z) can be denoted without ambiguity
by I'?, and when it is not well defined, we set T = 0. We then denote by I'*(T)
the generating function

> TiTT e ZITY, ... T,

reNN
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where T" = T7*---T)\~. This polynomial function is of the same parity
as ¢1(X)d and each of its monomial actually only depends on one indeter-
minate. Indeed, the real part of any real rational curve is connected and thus
it cannot interpolate points in different connected components of RX. This in
fact implies that any symplectic four-manifold having a real structure with dis-
connected real locus must have even genus zero Gromov-Witten invariants as
soon as the number of point conditions is greater than one. It follows from
Theorem 0.1 that the function

I':de Hy(X;Z)— TYT) € Z[T]

only depends of the real symplectic four-manifold (X,w,cx). Moreover, it is
invariant under deformation of this real symplectic four-manifold, that is if w;
is a continuous family of symplectic forms on X for which cjw; = —wy, then
this function is the same for all (X, w;, cx). As an application of this invariant,
we obtain the following lower bounds in real enumerative geometry.

COROLLARY 0.2. — Under the hypothesis of Theorem 0.1, the integer |T'%| pro-
vides a lower bound for the cardinality of the weighted set

Cusp®(J, z) URed(J, z) U Tan’(J, z),
independently of the choice of a generic J € RJ, and z. O

The non triviality of the invariant I'? is guaranteed by the following propo-
sition, see Corollary 1.4 of [9].

PROPOSITION 0.3. — Let (X,w,cx) be the complex projective plane equipped
with its standard symplectic form and real structure, so that Hy(X;Z) is canoni-
cally isomorphic to Z. Let r,d be integers satisfying d > 2 and 1 <r < 3d — 2.
Then T¢ = x4, ;. (|

REMARK 0.4. — Remember that the integer x%,; has been defined in [11] by
counting the number of real rational J-holomorphic curves of degree d which
pass through 3d—1 points with respect to the parity of their mass. Likewise, the
integer I'? has just been defined above by counting three kinds of curves which
appear in codimension 1 in the space of real rational J-holomorphic curves of
degree d. In particular, one of the three kinds is reducible curves. The equality
given by Proposition 0.3 thus provides a relation between the invariant x¢ 41 and
an analogous sum over all real reducible curves passing through 3d — 2 points.
That is precisely what one would need to provide a recursion formula similar
to the one obtained by Kontsevich to compute the rational Gromov-Witten
invariants of CP?, see [4]. However, the reducible curves are counted here with
respect to some real multiplicity which is not under control, and likewise, there
are two other kinds of curves which are counted in the expression of I'¢ which
we do not control.
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The paper is organized as follows. The first paragraph is devoted to the
construction of the moduli space IR./\/lCCluSp of real rational cuspidal pseudo-
holomorphic curves which realize the homology class d. This space is equipped
with a projection 7R : RMCCIHSP — RJ, xR, X". The critical points of 7 as well
as its lack of properness are discussed there. The second paragraph is entirely
devoted to the study of one particular type of critical points of g, namely those
arising from curves having a degenerated cuspidal point. The third paragraph
is devoted to the study of the Gromov compactification Wﬁusp of RMZIUSP.

Finally, the fourth paragraph is devoted to the proof of Theorem 0.1.

Acknowledgements. — This work was initiated during my stay at the
Mathematical Sciences Research Institute in spring 2004. I would like to ac-
knowledge MSRI for the excellent working conditions it provided to me.

1. Moduli space of real rational cuspidal pseudo-
holomorphic curves

Let d € H2(X;7Z) be such that
(cx)sd=—d and c(X)d>1, 1(X)d # 4.
Let 7 be an order 2 permutation of the set {1,..., v}, where v = ¢1(X)d—2, and
cr i (21, 0,20) € XV = (ex(2r1)), -5 ex(2r))) € XV be the associated
real structure of X”. The fixed point set of ¢, is denoted by R, X".

1.1. Moduli space P* of cuspidal pseudo-holomorphic maps

cusp

Let S be an oriented sphere of dimension 2 and Js be the space of complex
structures of class C* of S which are compatible with its orientation. Let
z=1(21,...,2,) € S’ be an ordered set of v distinct points of S. Let V be a
torsion free connection on T'X which is invariant under c¢x. We set

P ={(u, Js, J,z) € L (8, X) x Js x T x X" |
u*[S] =d, U(Z) =z, du+JoduolJg :0}’

where 1 < k < £ is large enough and p > 2. Let P* C P be the space of non
multiple pseudo-holomorphic maps, that is the space of quadruples (u, Js, J, x)
for which u cannot be written v’ o ® where ® : S — S’ is a non trivial ramified
covering and ' : S” — X a pseudo-holomorphic map.

Remember that P* is a separable Banach manifold of class C*~* (see [5],
Proposition 3.2.1) with tangent bundle

T(u,JS,J,g)P* = {(Uvj57j;_i') € T(u,JS,J,g)(Lkﬁp(SvX) X Js X Jo % XU)
|v(z) = &, DerJoduojerjodquS:O}.
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Here, T, L*?(S, X) = {v € L*?(S, E,)} where E, = v*T X and

D:ve L (S E,)
— Vv +JoVvolJs+V,JoduoJs € LF1P(S,A% S ® E,)

is the associated Gromov operator (see [5], Proposition 3.1.1). Let

Prusp = 1((u, Js, J,z),2:) € P* x S| d.u=0},

cusp

,P}TOCuSp = {((ua Js, l')’ ZC) € qusp | vdu|zc = 0}
be the subspace of maps having a higher order cuspidal point at z..

*
cusp

ProrosiTiON 1.1. — The space P
class C*=% with tangent bundle

is a separable Banach manifold of

T((Ua-]sa-]@),zc)qusp = {(’U, jSa jvs_by Zc) S T(u7JS7J,£),P* X TZCS
| Vo, + Vi du= 0}.

The space Pyoeysp @S @ separable Banach submanifold of Pg ., of class CtF
and real codimension four.

Proof. — The proof is analogous to the one of Proposition 2.7 of [11]; we just
recall a sketch of it. Denote by F' the vector bundle over P* x S whose fibre
over ((u,Js,J,z),2) is the vector space T3 S ® Ty, yX. In particular, the
restriction of F' over {(u,Js,J,z)} x S is the bundle T*S ®c v*TX. From
Proposition 3.2.1 of [5], the bundle F is of class C*~* since trivialization maps
depend C*~*-smoothly on u and C*~2-smoothly on z., u being of class C*
from [5], Theorem B.4.1. The section d, u of F is of class C*~% and vanishes
transversely from Lemma 2.6 of [11]. The first part of the proposition follows
and the second part can be proved along the same lines. O

Remember that if o(z.) denotes the vanishing order of du at z., then the jet
of u at the order 20(z.)+1 is a well-defined complex polynomial (see [8], Propo-
sition 3). The subspace Phocusp 18 precisely made of maps u for which o(z.) > 1.
When o(z.) = 1, this complex polynomial can be written

J2(u)(z = 2)* + js(u) (2 — 2c)°

where ja(u), j3(u) € Ty.) X, 2 is a complex coordinate of (S,.Js) in a neigh-
bourhood of z. and ja2(u) # O generates the tangent line of u at the cuspidal
point u(z.). The cuspidal points for which js3(u) is colinear to js(u) are said
to be degenerated. They will be studied in detail in §2.
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1.2. Normal sheaf. — Remember that the C-linear part of the Gromov
operator D is some Cauchy-Riemann-operator denoted by 0. The latter induces
a holomorphic structure on the bundle F,, = u*T X which turns the morphism
du : TS — E, into an injective homomorphism of analytic sheaves (see [3],
Lemma 1.3.1). Likewise, the C-antilinear part of D is some order 0 operator
denoted by R and defined by the formula

Reu,gg,0,2)(v) = Ny(v, du),
where N; is the Nijenhuis tensor of J. Denote by A, the quotient sheaf
Os(FE,)/du(Og(TS)) so that it fits in the following exact sequence of analytic
sheaves
0— Os(TS) — Os(Eu) — N, — 0.

*
cusp?

0— Os(TS)® Os(z.) — Os(E,) — ./V;f‘: — 0,

where N7< is a quotient of the sheaf NV,,. We denote in this case by C,, the
skyscraper subsheaf

As soon as ((u, Js, J, z), z.) belongs to P this exact sequence extends to

du(0s(T'S) ® Os(zc))/du(Os(T'S))
of Ny. Also, in this case, we denote by ES"P the subsheaf
{v € O0s(Ey) | Vyy,, € Im(dezc)}
of E,, and by N,“*P the quotient sheaf
Os(BS™)/du(0s(TS)).
We hence obtain the exact sequence
0 — Og(TS) — Og(ES™P) — NP — 0.

Note that from the inclusion Og(ES"™P) C Og(E,) follows the inclusion
NP Cc N @ C,,.
Finally, denote by Og(T'S_;) (resp. Os(Eu,—;), Os(Eg"%), Nu,—z, Nie__,

NSEPC,,,—;) the subsheaf of sections of Og(T'S) (resp. Og(E,), Os(EL™P),

U,—2z"

N, f\/jc, NP C, ) which vanish at z.

PROPOSITION 1.2. — Let ((u,Js,J,2),2c) € Plusp\Phocusp-  Lhen, we have
the inclusion C,, _, C ./V'ucu,sg if and only if z. € z or z. is a degenerated cuspidal
point of u. In both cases, V induces at z. a derivation V3 of sections of N>

u,—z
such that the image of N0 in Njj°_, under the projection Ny, — Ny°_,

with kernel C, . is the subsheaf {v € Nj°_, | Vv = 0}.

Note that if ((u,Js,J,2),2c) € Peusp \ Phocusp d0es not satisty C., _, C

NP, then the projection N, . — N, with kernel C, . establishes an

u,—z" U, —z

isomorphism between the sheaves NP and N>, .
—2 —2
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Proof. — There exist a complex coordinate z of (5, Jg) in a neighbourhood U
of z. as well as a local chart of X in a neighbourhood of u(z.) such that the
map u writes z € U — ((z — 20)2,a(z — 20)3) + (2 — 2¢)3€e1(2 — 2¢) € C?, where
a € Cand ¢ € L*P(U,C?), €1(2.) = 0 (see [8], Proposition 3). We can assume
that the connection V is the standard connection given by this chart. Then,
the image Im(Vduy, ) is carried by the first coordinate axis of C2. Now, if
zc ¢ z (vesp. z. € z), a local section of C,, _, writes

Uy, = du(z j Zc) = (2,3a(z — zc)) + (2 — 2c)€a(z — zc)

(resp. v, = du(l) = (2(z — 2¢),3a(z — 20)?) + (2 — 20)%€2(2 — 2¢)), where
€ € LF"LP(U,C?), e2(2.) = 0. We deduce that Vv, |,. € Im(Vduy, ) if and
only if @ = 0 or z. € z. The first part of the proposition is proved. In both
cases, the evaluation of V., at the point z. vanishes in ;¢ Thus, for every
local section v of N;fc_z, the evaluation of Vv at the point z. does not depend

on the choice of a lift of v in Og(E,, _;). We denote by

Ve € Tu(zc)X/Im(VdU|zc)
this value. A section v of Og(F,, ) satisfies then Vv|, € Im(Vdu, ) if and
only if the quotient section satisfies V*<v = 0. O

Remember that the operator
D : LFP(S,EJ0) — LF1P(S, A1 S @ ES™P)
induces a quotient operator

D: LFP(S,NUP) :=LPP(S, ES"Y) /du(LMP(S,TS_.) — LF 1P (S, A% S@N,).

U,—z

Here, N, denotes the normal bundle of v and N, _, = N, ® Os(—z). From
the short exact sequence of complexes

0= LFP(S,TS ;) —— INN(S, B10) ——— IPP(SNME) = 0

|25 |p |p
0 — LF1P(sS, T(TS)) Y LP (S, T(ES™P)) — L*1P(S,T(N,)) — 0,
where T(X) = A%'S ® X, we deduce the long exact sequence
0— HO(S,TS_.) — Hp(S, Eg™h) — HY(S,Ng™P)

u,—z u,—z

— H'(S,TS5_;) — HE(S, E;"Y) — HE(S, N ;"™

z

) =0,

where H},, H) (resp. Hp, HJ) denote the kernels (resp. cokernels) of the
operators D, D on the associated sheaves. In particular,

indg (D) = indg(D) — indr(ds) = 2(c1(X)d +1 —2#2) — 2(3 — #2) = 0.
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1.3. Moduli space of real rational cuspidal pseudo-holomorphic
curves

1.3.1. Gauge action of Diff (S, z) on P?

cuspr — Denote by Diff (S, z) the group
of diffeomorphisms of class C**! of S, which either preserve the orientation and
fix z, or reverse the orientation and induce the permutation on z associated to
7. Let Diff 7 (S, z) (vesp. Diff ~(S,2)) be the subgroup of Diff (S, z) made of
orientation preserving diffeomorphisms (resp. its complement in Diff (S, z)).
Let s, be the morphism Diff (S, 2) — Z/2Z having kernel Diff * (S, z). The

group Diff (S, z) acts on the pair (Pyep, Prrocusp) PY

(oo™ (¢71) Js, Jyz),0(2))  if s.(¢) = +1,
¢-((u, Js,J,2),2¢) = ((ex ouo ¢~ (¢~ 1) Js, ex*(J), ex (x)), d(2c))
if s.(¢) = -1,
where
(6~ 1)*Js = su(d)ddpoJsodp™! and é&x*(J) = —dex oJodey.

With the exception of the identity, only the order 2 elements of Diff ~ (S, z) may
have non empty fixed point set in Pg,,. In particular, two such involutions
have disjoint fixed point sets (compare [11], Lemma 1.3). Moreover, the oper-
ators D and D are Diff (S, z) equivariants (compare [11], Lemma 1.5). Now, if
((u, Jg, J, ), z.) is fixed by some order 2 element cg of Diff ~ (S, z), we denote
by

H) (S, By i1, Hp(S,Ef™) s

(resp. H{(S,Ny"0)x1, HEH(S, N, 0)+1) the eigenspaces associated to the
eigenvalue +1 of the action of cs on the kernel and the cokernel of D
(resp. of D).

1.8.2. Moduli spaces M‘iusp, RM’iuSp and the projections m, mr. — Denote by
M((i:usp (resp. Mﬁocusp)

the quotient of Pg., (resp. Ppoeus,) by the action of Diff *(S,z). This
d

cusp 18 the moduli space of rational pseudo-holomorphic curves which

space M
realize the homology class d and are not immersed, whereas Mﬁocusp is the
moduli space of such curves which have a cuspidal point of order greater than
1, that is of the form

z— (2% 2" +0(z%)) with 2<a <b.
The projection
T ((u, Js,J,g),Zc) € Phi — (J,x) € T x XV

cusp

induces on the quotient a projection ./\/lfl:usp — J x XV still denoted by .
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d

cusp 15 @ separable Banach manifold of

PRrROPOSITION 1.3. — The space M
class C*=F and 7 is Fredholm of vanishing index. Moreover, the space Mﬁocusp
is a separable Banach submanifold of class C*~* and complex codimension 2

of M4 Finally, if [(u, Js, J,2), 2] € M‘iusp \ Mﬁocusp, then we have the

cusp*
isomorphisms

ker d7T|((u,Js,J,g),zc) = HOD(S,N;,H_SE),
coker d7T|((u,‘]S,J72),zC) = Hb(SaNuc,u—sg)

Proof. — The proof is analogous to the one of Corollary 2.2.3 of [6]. The action
of Diff *(S,2) on Piusp and Py, is smooth, fixed point free and admits a

closed supplement. From Proposition 1.1 thus follows that M’iusp and Mﬁocusp
are separable Banach manifolds, the latter being of codimension 4 in the former.
Moreover, since Vdu,,_ # 0, we have

ket A7) ((u, 75, 72),20] = { (0, J5,0,0, %) € Tpu s, 5.0)P" % T2, 8
| Vo, + Vi du=0} /Tia Diff 7 (S, 2)
= {(v, Js) € LF?P(S, E{"?) x Ty, Js
| Dv=—Joduo JS} / Tia Diff (S, 2)
={ve LPP(S,E;") | 3¢ € LM 1P(S, A" S e TS),
Dv = du(¢)} /du(L*?(S,TS_.))
— HY (5, M),
from the long exact sequence given at the end of §1.2. Likewise,
Im A7 ((y,5,0,2) 2]
={(J,2) € Ty Jo x Tu X"
| 3(v, Js, %) € LFP(S, By ) x Ty Js x Ts. S,
Dv+ JoduoJg=—JoduoJg, Vo), + Vi du=0,v(z) = gc}
so that
coker dm| ((u.ss sa) 2] = LFTP(S,A%1S @ B,) x T, X X)92/Tm (D x ev),
where
D : (v,Js) € L*P(S, ES™P) x T, Js
— Dv+ JoduoJs € LF1P(S, A% S ® E,),
ev v € LFP(S, ESP) s v(z) € T X1 (X2,
By definition, coker D = H}, (S, ES*P). From the short exact sequence

0— ECSP E;:usp ev Tchl(X)d72 -0,

u,—z
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we deduce the long exact sequence
s HY(S,ES™P) — HO(S, T, X ()42
— HL (S, E"Y) — Hp (S, ES™P) — 0.

Hence, the cokernel of D x ev in LF~12(S, A1 S® E,,) x T, X ©*(X)4=2 ig isomor-
phic to Hj (S, E;"?). From the long exact sequence given at the end of §1.2,
we deduce that the cokernel of D x ev and hence the one of AT [(u,Js,7,2),2] 18
isomorphic to H}, (S, N,/0). O

The manifolds M¢

cusp
Diff (S, 2)) Diff (S, z) = 7./ 27.
We denote by RM?,  and RMﬁocusp the fixed point sets of these actions.

cusp

and Mﬁocusp are equipped with an action of the group

This space RM‘iusp is the moduli space of real rational pseudo-holomorphic
curves which realize the homology class d and have a real cuspidal point,
whereas RMﬁocusp is the moduli space of such real curves which have a real

cuspidal point of order greater than one, that is of the form
z— (2%,2" + 0(z?)) with 2<a <b.

The projection 7 is then Z/2Z-equivariant as soon as J, X Xer(X)d=2 g
equipped with the action ¢x* X ¢, where

cx :Je J,— —dexoJodex € T,

and ¢, has been defined at the beginning of §1. Denote by mr the induced
projection
RM? S RJ, x R, X(X)d=2,

cusp

d
cusp

PROPOSITION 1.4. — The spaces RM

nach manifolds of class C*~*, the latter being of codimension 2 in the former.
Moreover, wg is Fredholm of vanishing index. Finally, if [(u, Js, J,x), z.] be-
longs to RM‘iuSp \ RMﬁocusp, then we have the isomorphisms

ker AR | ((u,/5,2),20) = Hp (S, Ny =0) 11,
coker AT | ((u, /g, J,2),20) = Hp (S, NP, . O

u,—z

and RMﬁocusp are separable Ba-

1.4. Critical points of 7
LEMMA 1.5. — The point [(u, Js, J,z), z.] € RM’({USP \ RMﬁocuSp is critical
for wr if and only if one of the following:

1) the differential du vanishes outside z.;

2) the cuspidal point z. is degenerated;

3) one has z. € z.
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Proof. — From Proposition 1.4, [(u, Jg, J, x), z.] is a critical point of 7g if and
only if

HY (S, N0 11 = HE (S, NS 1 # {0},
We deduce from Proposition 1.2 that 2) and 3) are indeed critical points of 7,
since in these cases C,_ _, C N;"Y and

{0} 7& HO(Sa CZD*E)Jrl - H](_?)(SaN;,]iS§>+1
In the same way, if z. is a real ordinary cusp of u distinct from z, then from
Proposition 1.2, N;;'"0 = N7e__. If du does not vanish outside z., then Nj°_ =
O5(Nu,-z) so that HE(S,N,;"7) 11 = {0}. Otherwise, the sheaf N,;"*} carries

u,—z

some skyscraper part and Hp (S, N; ") 1 # {0}, hence the result. O

A detailed study of critical points of type 2) will be carried out in §2. In
particular, we will prove in Lemma 2.4 that if z is a local coordinate in a
neighbourhood of z. which is adapted to u, that is for which the order 3 jet of u
reads ja(2.)(z — 2¢)% 4+ o(]z — z.|?), then the homogeneous part of order 5 of its
jet is a complex monomial denoted by j5(z.)(z — z.)°. Also, note that if u has
two distinct ordinary cusps, then

Hp (S, Ny E0) 1 =2 Hp (S, NF )

u,~z
is of dimension 1 and from Riemann-Roch duality, it is isomorphic to (see [11],
Lemma 1.7)
H%* (Sa KS ® Ni,cfg)—l-

Finally, remember that a stratum of codimension m € N of a separable Banach
manifold N is by definition the image of a separable Banach manifold M under
a smooth Fredholm map f of Fredholm index —m such that all the limits of
sequences ¢(x,, ), where x,, is a diverging sequence in M, belong to a countable
union of strata of higher codimensions.

LEMMA 1.6. — 1) The set of points [(u, Js, J, x),zc] € RM%HSP for which u
has two distinct real ordinary cusps and ordinary double points as singularities,
all of which being outside z and for which any generator v of

Hp. (S, Ks @ NZo_ )1 = HL(S,NS®P)1,

u,—z

d

CuSp'

2) The set of points [(u, Js, J, x), zc] € RM’iusp for which u has a degenerated
cusp and transversal double points as singularities, all of which being outside x,
and for which js(z.) is not colinear to ja(z.) in an adapted coordinate, is a

stratum of codimension 1 of RM%USP.

3) The set of points [(u, Js, J, ), zc| € RM‘ZHSP for which w has a real ordi-
nary cusp at z. € z and only ordinary double points as other singularities, all

of which being outside x, is a stratum of codimension 1 of R./\/liusp.

does not vanish at the cusps, is a stratum of codimension 1 of RM
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The union of all critical points of mr not listed above belong to a countable

union of strata of codimension at least 2 in RM? cusp*

Proof. — The case 2 follows from Proposition 2.6. All the other cases can be
proved in the same way as Propositions 2.7 and 2.8 of [11]. For the sake of
concision, these proofs are not reproduced here. o

REMARK 1.7. — There are actually only finitely many strata occuring in
Lemma 1.6, since a pseudo-holomorphic curve which realize the given ho-
mology class d may have only finitely many different types of singularities.
Moreover, as soon as k and ¢ are large enough, all these strata are images of
Banach manifolds of class C? at least. We will use only the following fact:
a generic path 7 : [0,1] — R, x R, X (X)4=2 ay0ids the image under 7 of
every stratum of codimension at least 2.

The critical points of mr listed in Lemma 1.6 are said to be generic.
THEOREM 1.8. — The generic critical points of mr are non degenerated.

Proof. — In the case of critical points of type 1 given by Lemmas 1.5 and 1.6,
the proof is readily the same as the one of Lemma 2.13 of [11]; it is not repro-
duced here. Let [(u, Js, J, ), 2] € RM‘iusp be a generic critical point of type
2 or 3 given by Lemma 1.6. We have to prove that the quadratic form

VdWRH(u,Js,J,g),ZC] : ker d7T]R| [(u,Js,J,z),2c] x ker dﬁRl[(ua‘]Sa‘]7z)7ZC]
— coker dmr|((u, /5, 7,2), 2]

is non degenerated. Write mp = (m},72), RM%, () = (r2) 7 (z) and
7T]R [(u Js, ‘T) zC] € IRJ\/tl(i:usp( ) — J eRI,

the restriction of 7§ to R/\/lcéusp(g). The quadratic forms VAmRr|((y,s,7.2),2.]

and Vdny| [(u,Js,J),z.] are of the same nature. Moreover, the kernel and cokernel
of the map dn are the same as the ones of the operator

—Dr: (v,Js,J, %) € T[(u,JS,J),ZC]RMiusp(E>
— JoduoJg € LF"1P(S,A%1S @ N,).
From the relation Dv + Jo duo Jg+ Joduo Jg = 0, we deduce that
Dr(v,Js,J, %) = Dv+Joduo Js.
We then have to prove that
VDsl s,z - HH(S N — (S, N2)
is non degenerated. Let (v1, J§,0, 2}) be a generator of HY (S, N;i™F), 1, then

u,—z

from Proposition 1.2, v; = du(9;) where #; € L¥P(S,TS_,®0Os(z.))+1, that is
01 is a meromorphic vector field on S either having a simple pole at z. if z. ¢ z
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or which does not vanish at z. otherwise. In the same way, let (vs, Jg, 0, zf) S
T[u,.ls,.],zc]RMZusp@)a then
(v(vg,jg,O,Zf)ﬁR>(vla jév 0, 25)
= (Viw. J-gqoyz.g)DR) (v1) + (Viydu) o Js o J& mod (Im(du)).
Moreover, after differentiation of the relation D o du = du o dg, we deduce
(V(U27J§70,22)DR) (du(d1))+Dro(Vy,du) (1) = Vo, duodg(v1) mod (Im(duw)).
Since 0 = Dv; + Joduo Jé = du(9s(91) + JSJg) forces O5(v1) + Jng =0,
we deduce
(V(vz,jg,o,z'g)ﬁw(“l, J§,0,2}) = —=Dg(Vy,du)(51) mod (Im(du)).
We thus have to prove that the projection
Dg (Vg du(th)) € Hp(S; Ny ™0) 1 =R
does not vanish as soon as 97 # 0. Now the operator
Da: (SN, )1 — DF7(8,A%0 @ N, )1y
is an isomorphism, and L¥?(S,N;"0) 11 = {v € L*P(S, Ny _;) 41 | V¥v = 0}
(see Proposition 1.2) is a closed hyperplane of L (S, NV,, _.)+1. We hence have
to prove that v = Vg, du(91) does not satisfy Vv = 0.
The map u can be written in an adapted local chart at z. as
u(z) = a(ze) (= 2 -+ sz (2 — 20 + (] — ).
where (ja(zc), j5(2¢)) does form a basis of R? if z, ¢ z or
u(z) = ja(z) (= — 20 + Ga(2) (2 — 20)° + o]z — =f?).

where (ja(2¢), j3(2¢)) does form a basis of R? if z. € z. We can assume that the
connection V is the standard one given by this chart. Then in the first case,
01 =1/(z — z.) and

% + 2055 (2¢) (2 — z¢) + 0(|z — 2|)

=15j5(2¢)(2 — ze) + 0|z — z¢|) mod (Im(duw)).
And in the second case, 91 = 1 and
v = (Vg du)(tr)
= 2ja(z¢) + 643(2c) (2 — 2¢) + 0(|z — zc|)

In the first case, Vv|, = 15j5(2.)dz while in the second case Vuv|, =
6j3(2.)dz. In both cases, the projection V*uv of V|, in the normal bundle
does not satisfy V*<v = 0, hence the result. O

v = (Vf,l du)(f}l) =
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1.5. Gromov compactification RM¢<%  of RM9

cusp cusp® The projection

TR : RM%HSP — RJ, x R, X"

is not proper in general. The reason for this is that there might exist some
sequence ([un, Jg,J", ", 27 )nen of RM‘iuSp such that (J™,z™) converges to
(J*,z%°) € RT, x R X", but the image u,(S) converges to some reducible
J*-holomorphic curve. From Gromov compactness theorem (see [5], Theo-
rem 5.5.5), this is the only obstruction to the properness of mg. More precisely,
this theorem describes how the sequence of maps (uy, )nen does converge. There
exist smooth disjoint loops ay,...,ax in S and a map u, : S — X which con-
tracts the loops aq, ..., a; and whose image is the reducible curve in the limit.
Moreover, after may be changing the parameterization of w,, this sequence
converges to s in C° norm on the whole S and in norm L*® on every com-
pact subset of S\ (J%*_,;). In particular, we have the following alternative.
Either the limit 22° of (2%),en does not belong to | J¥_,a;, and then the curve
in the limit has a cuspidal point at us(25°). Or the limit 25° of (27),en does
belong to |J i—“:lai, say a1, and then the two irreducible components adjacent
to oy intersect each other with multiplicity at least 2 at uso(25°). The latter
can be obtained from adjunction formula for example, since the total sum of
multiplicies of the singularities of the curve is controled by this formula.

The end of this paragraph is devoted to the proof that over a generic path

yite[0,1]— (J42") e RT, x R XY,

the only reducible curves which satisfy one of these two conditions have two
irreducible components, both real, and only transversal double points as sin-
gularities with the exception of a unique real ordinary cusp or a unique real
ordinary tacnode at some intersection point between the two irreducible com-
ponents. Moreover, all these singularities are outside z?.

Let mi € N, di € Ho(X;Z) and 2" = (21,...,%,,) € S™ be an m;-tuple
of distinct points of S. Denote by

RM ) = f(ul J§ 0" 2') € LFP(8,X) x Js x Jo x X™
| du* + J o dul o JE =0, u(zh) = 2'} / Diff T (S, 21).

Let mg € N, dy € Hy(X;Z) and 2* = (2,...,22,,) € S™ be an ma-tuple of
distinct points of S. We denote by

RM(dm),(d2ima) — (RM(dl’ml) X 7, RM(dQ’WZ)) \ Diag,
where
Diag = {((u', J2, J,2%), (u%, T2 J,2%)) € RMEm) ;. RAq(2m2)
| Ul(S) = U2(S)}-
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We recall the following proposition (see [11], Proposition 2.9 and Corol-
lary 2.10).

ProproSITION 1.9. — The space RAM(dvma),(dzma) e g separable Banach
manifold of class C*=F. Moreover, the projection

ﬂ_ﬂ({d17m1)1(d21m2) . RM(dl,ml),(d2,m2) —RJ, x RTlel > R7-2Xm2

is Fredholm of index v — m1; — mo where d = dy + do. Finally, the cokernel of
wﬂg{dl’ml)’(dz’m” at ((u!, J&, J,zb), (u?, J2, J,2?)) is isomorphic to

H%)(SaNuh—gl)Jrl@Hll?(saNuz,—§2>+1' U

REMARK 1.10. — Over a generic path v: ¢t € [0,1] — (J%, 2%) € RT, x R, X",
no Jt-holomorphic curve which realize d and pass through z! can be multiple
or come from the diagonal Diag. Indeed, the condition for a J-holomorphic
curve which realize the homology class %d to pass through v distinct points is
of codimension %cl (X)d — 1, that is of codimension greater than 1 as soon as
c1(X)d > 4. Moreover, a generic immersed rational J-holomorphic curve which
realize the homology class 3d has 2((£)% — $c1(X)d + 2) transversal double
points. Each of these double points is responsible for four double points of the
doubled curve. The number of double points of the doubled curve would then

be at least 2((£)? —1¢;(X)d+2)—1, which is impossible as soon as ¢1(X)d < 4.

PRrROPOSITION 1.11. — The subspace of RM(drmu)i(dzma) g0 of couples
(ut, J&, Jy2b), (u?, JE, J,2%)) for which u' or u?® has a unique cuspidal point
which is ordinary, or for which u*(S) and u*(S) have a unique point of contact
which is of order 2, all the singularities of u'(S) U u?(S) being outside x' U 2
is a stratum of codimension 1. The subspace of curves having degenerated
cuspidal points or higher order cuspidal points, or points of contact of higher
order is a stratum of codimension at least 2. O

We denote by R M (41:ma):(d2:m2) gy (resp. RMEZ;’WI)’(dQ’mz)) the codimen-
sion 1 stratum of R M (4m)(dz2,mz) given by Proposition 1.11 made of curves

having a real ordinary cusp (resp. an ordinary point of contact between u!(.9)
and u?(S)).

COROLLARY 1.12. — Lety:t € [0,1] — (J', 2') € RT, x R, X" be a generic
path. Assume that a sequence of elements of RM’({USP over y converges to
some reducible curve. Then this reducible Jt-holomorphic curve is given by an

element
([w', I3, T2, [u?, T3, J,2%)) € RM(Bmih(82m2) cusp U R ML ™) (42m2)

tac
such that di +de = d, m1 +mo = v and t € ]0,1[. Moreover, either mq =
c1(X)dy — 1, or mi; = c1(X)d1 — 2 and then the cuspidal point, if it exists,
belongs to ul(9).
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Proof. — From Proposition 1.11 follows that the curve in the limit must belong

to R./\/lfffllsfl)’(dz’m” U RMEZé’ml)’(dZ’WZ) as soon as +y is generic enough. Now,

from Proposition 1.9, the cokernel of dﬂ§d11m1)7(d27m2)|([ul7.]é1J7$1]7[u27.]§7.]1g2])

is isomorphic to H} (S, Ny, —z1)+1 ® HELH(S, Ny, —52)41. Since this cokernel
is of dimension less than 2, we have m; < ¢1(X)d; for 1 < i < 2. More-
over, in case my = ¢1(X)dz, we have dim H},(S, Ny, _,2)+1 > 1 with equal-
ity if and only if the map u? is an immersion (see [2]). Finally, the relation
m1 + mo = v forces each irreducible component in the limit to be simply cov-
ered, unless ¢1(X)d; <1 for some i € {1,2}. Now, when ¢;(X)d; <1 for some
i € {1,2}, it suffices to count the number of double points of these rational
curves as in Remark 1.10 to see that these irreducible components cannot be
multiply covered. O

REMARK 1.13. — If we would not have excluded the case r = (0,...,0), then
a sequence of real rational cuspidal J-holomorphic curves could converge to a
reducible curve having two irreducible components which are complex conju-
gated and transversal to each other except at one point which is of order two,
that is an ordinary tacnode.

2. Study of degenerated order two cuspidal points

2.1. Local study of degenerated order two cuspidal points. — Let
B* be the unit ball of C? and cx be the restriction of the complex conju-
gation to B*. Denote by RB* the fixed point set of cx; it is the unit ball
of R? ¢ C2. Denote by R, the space of almost complex structures .J of B*
which are tamed by the standard symplectic form wg; and for which cx is J-
antiholomorphic. Let B ? be the closed unit ball of C and conj the restriction
of the complex conjugation to B, Tts fixed point set is | — 1,1[ C B

Finally, denote by Jy; the restriction of the complex structure of C? to B*,
so that Jg € RJ,,,. Let n > 0 and

RPyap(n) = { (0. ], 20) € LMP(B", BY) x R, x] = 11|
[ |J — Jstllcr <my, du+ Joduoi=0,
cx ou =uoconj, d; u=0but Vdu), #0

and u(§2) has smooth boundary}.

In particular, u is not multiple. Note that RP¢,,(n) is not connected. Indeed,

two disks which do not have the same number of double points cannot be in
the same connected component. We are in fact interested here in a connected
component for which general elements are disks with one ordinary cusp at z.
and one transversal double point.
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LEMMA 2.1. — As soon as n is small enough, RP¢, (1) is a separable Banach
manifold of class C*~% whose tangent space at (u,J, z.) is

TlasoyRP Lo (m) = {(v, J, 2) € LFP(B®,C2) x TR T, x R

cusp
| Dv4Joduoi=0, v=dex owv o conj,
Vo), + V;, du=0}. O

Let (u,J,2.) € RPgu,(n), then the order 3 jet of u at the point z. is a

complex polynomial which can be written

u(ze) + ja2(ze) (2 — 25)2 + ja(2e)(z — 26)3
with 0 # ja(z.) = %‘32712‘ € R? and j3(2.) = égzu € R? (see [8], Proposition 3).
The cuspidal point z. is degenerated when j3(z.) is colinear to ja(z.). Let

Fdeg : (U J zC) € Rlpéusp( ) — det(jQ(ZC) .73(26)) € R

and decusp( ) Fd_eg

cuspidal point at z.

(0) be the locus of curves (u, J, z.) having a degenerated

LEMMA 2.2. — As soon as 0 is small enough, RPy.. (1) is a separable Ba-

nach submanifold of class C*=% of RP/,.,(n) whose tangent space at (u,J, z)
is

Tu, 7o) RPhensp (1) = { (v, ], 50) € L*?(B”,C?) x TyR,,,, x R
| det (d(v,j,ic)j2(26>aj3 (Zc))
+det(j2(zc),d(v i )33 2 ) - ()}

Proof. — The function Fyeg is of class C*t=* as soon as k > 3 since u is of
class C¢. Tt suffices to prove that d(u,J,2.) Faeg 18 surjective at each point
(u, J, 2¢) of RPyeusp(m). Let (uo, Jo,zc) be such a point. From Lemma 2.5
of [11], there exists a smooth family of Jo-holomorphic maps (@x)xe]—e,e de-
fined in a neighbourhood U of z. by

x(2) = uo(2) + (2 — 2e)° (Mw + wa(2)),

where w can be any vector in R? and w) € L’W’(E2 C?) is real and satisfies
wy = 0, ddA Wrlx=o = 0. This family can be extended to a smooth family
(ux, I, Ze)ag]—e,e[ € R’Pcusp( ) such that Jy = Jo if A = 0 and J, differs from
Jo only in a neighbourhood of u(0U). Indeed, it suffices to glue the map @y |y
to the map uo| 5>\ with the help of an annulus embedded in a neighbourhood
of ug(OU). The obtained map can be made Jy-holomorphic for some J which
equals Jy outside a neighbourhood of ug(0U). We have then %jg(’dk, ze) =0
and %jz}(ﬂ)\,zc) = w. Hence, d(ix,.h,zc)Fdeg = det(j2(z.), w) does not vanish
as soon as w is not chosen colinear to ja(z.). O
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REMARK 2.3
1) The group of real biholomorphisms of (B 2, i) acts on RP,q,(n) by

¢-(U, Ja zC) = (’LL © ¢_1a J7 ¢('ZC))
Since it is transitive on ] — 1, 1], we can always assume that z. = 0.
2) Let (u,J,0) € RPj..,(n) and a € R be such that jz(u,0) = ajz(u,0).

Let z = w — 2aw?, the order 3 jet of u writes

u(2) = ja(u,0) (w - gw2)2 + j3(u,0) (w — gw2)3 + o(|w?)
= jo(u,0)w” + o(|w|?).

LEMMA 2.4. — Let (u,J,0) € RPg,s,(n) and a € R be such that j3(u,0) =
1

ajo(u,0). Let z =w — §aw2, the order 5 germ of u writes
u(z) = o w’ + w4 35wl + 5T @+ s w® + ojul®),

where jo, ji', 33" ¥ s € B2,

Proof. — This is deduced after expanding the relation 0 = Jj,odu—duoi. O

A degenerated cuspidal curve (u, J, z) € RPj.., (1) as in Lemma 2.4 is said
to be generic if the vectors jo and j5 are linearly independant.

PROPOSITION 2.5. — Let (u,J,0) € RPg.,,(n) be a generic cuspidal curve
and v(z) = d.u(). Then (v,0,0) € T, 1,0)RPsp () \ TRP (1) More-

over, if (ux, Jx, 22 )ac)—c,e is a path of RPL, . (n) transversal to RPjensp @t

A =0, then for A <0 (resp. XA > 0) close enough to 0, uy has an isolated (resp.

non isolated) real double point in a neighbourhood of the cusp ux(z)), or vice
versa.
Proof. — With the notations of Lemma 2.4, we make the local change of co-

ordinates z = ¢(w) with ¢(w) = w — Saw?. The order five germ of u writes

|l

uwo p(w) = Jo w? + jPw? + 44 |w|4 + 58wt + s w® + 0(|w|5),

where jg,j}f,jjf',jf,jg; € R2. Equip C? with the complex structure J(0) and
the frame (ug(0), j2, j5). After composition with the local diffeomorphism of C?

tangent to the identity given by

(21, 22) = (21, 22) — G522 — i — T 2,

we can assume that the jet of u writes jow? + jsw® + o(Jw|®). Tt suffices to
prove that

- 1
5= du(@ 00 6)(+) € Tuoss 0/ BPup (1) \ TRP i ().
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Indeed, d,,(uo¢)(£) = d.u(++b(z)) for some holomorphic b, and d.u(b(z)) €
TR’Piicusp(n). Moreover, the composition by ® does not affect the transversal-

ity condition. Now o(w) = 2js + 5jsw?® + o(|w|?). From Lemma 2.1, (%,0,0) €
Tluop,1,0)RP¢usp(n) and from Lemma 2.2, (9,0,0) ¢ T(uop, 1,0)RPeysp (1), since
dj3(9,0,0) = 5j5 and det(j2,5j5) # 0. The first part of the proposition
is proved.

Now, without loss of generality, we can assume that % (ux, Jx, 22) = (v,0,0)

and 2z} = 0. From what precedes, the expansion of u(w — %an) writes

ux(w — Faw?®) fF(A) + (w?, w®) + O(|w|®) + A0, 50%) + O(Alw[*) + O(N?|w]?).

The function f(A\) + (w?, 5 w® + w®) has an isolated real double point at the
parameters w = £iv5A when A > 0. Let us prove that when A > 0 is close
enough to 0, the function ux(w — 22w?) also has an isolated real double point

at parameters close to £iv/5A. Set w = iv/5A + w, we have
ux 0 ¢(iVBHA + @) = f(A) + (=5, 0) + (2iV5 D + @° + N O(|d| + |A]),
BON%w + [N 2 @2 O (|| + |A]) + AO(Jib] + [A])),
as soon as || < V/A. Set @ = |A|3 (cos(6) + isin(0)), we get
Im (uy 0 ¢(ivV5A + @) = (2V5|A| cos(8) + [AZO(|A)),
50[A| % sin(8) + |APO(|A))).

The linking number between the origin of R? and the ellipse parameterized by
0 — (2v/5|A|7 cos(6), 50|\ sin(6)) is equal to 1. The same result holds for
the linking number between the origin of R? and the curve parameterized by
6 — Im (ux o ¢(ivBA+ A% (cos(0) +i sin(f)))) as soon as A > 0 is close enough
to 0. Hence, Im(uy o ¢) vanishes once in the disk centered at iv/5A and whose

radius is [A|7. It follows that uy has an isolated real double point close to its
cuspidal point u(0) as soon as A > 0 is close enough to 0.

In the same way, the function f(\) + (w?,5 \w? + w®) has a non isolated
real double point at the parameters w = ++v/—5X when A < 0. Let us prove

that when A < 0 is close enough to 0, the function uy(w — w?) also has a non

isolated real double point at parameters close to £1/—5\. Set w = v/ —5A+w,
where n = +1, we have

uy 0 p(V—=5X+ @) = f(A) + (—5A,0)
+ (2nV =5 + 0% + [A2O(|w] + [A]),
50020 + [A|2@20(|@| + [A]) + A2O(|@] + [A])),
as soon as [0 < \/JA[. When @ € [—|A|%, |A|7], the segment (21y/—5X @, 50\%0)
joins the two points (—2v/57|A|5, —50|A|'7) and (2v/57|A|%,50[A\|%). When
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n = +£1, these two segments intersect transversely at the origin. The same is
true for the segments uy o ¢(nvV/—bA + [—|A|%, |A|Z]) as soon as A < 0 is close
enough to 0, hence the result. O

2.2. Global study of degenerated order two cuspidal points. — De-
note by RM? the subset of elements [u, Jg, J, z, z.] of RM?  for which u

dcusp cusp
has a degenerated cuspidal point at z..

PROPOSITION 2.6. — The space RM%CUSP is a codimension one submanifold

of RM’({USP of class C*~*. Moreover, the subspace of RM‘ficuSp made of curves
[u, Js, J, z, z.] which have a non generic degenerated cuspidal point at z. is a

substratum of codimension two and class C*~% of RM%USP. O

(This is a particular case of Theorem 3.4.5 of [6], see also Proposition 7
of [1].)

Let v : [0,1] — RJ, x R, X(X)4=2 he a path transversal to 7g. From
Proposition 2.6, if it is chosen generic enough, it avoids the image under mg of
curves having a non generic degenerated cuspidal point. Denote by

RM., =RM? . [0,1]

cusp

and by 7, : RM, — [0, 1] the associated projection.

PROPOSITION 2.7. — Let Cyy = [u, Jg, J?, z', 2] € RM, be a curve hav-
g a degenerated cuspidal point at z.. Then, there exists a neighbourhood W
of [u,Js, J"®, ' z.] in RM., and € > 0 such that for every t € Jto — €,to],
7 H(t) N W is made of two curves C;, Ci such that m(C;) = m(C;y ) +1 and
for every t € Jto, to + €|, ﬂ;l(t) NW = @, or vice versa.

Proof. — From Proposition 2.6, the degenerated cuspidal point of Cy, is
generic. From Theorem 1.8, Cy, is a non-degenerated critical point of ..
Thus, as soon as e and W are small enough, for every t € Jtog — €, tol,
M) NW = {CF} and for every t € Jto, to + €, ;1 (t) N W = @, or vice
versa. The only thing to prove is that m(C;") = m(C; ) + 1. The double
points of Cti are close to the ones of C}, with the exception of one which
is close to the cusp of C%,. We have to prove that the nature of the latter
is not the same for C;" and C; . Note that %“:toct is the generator of
ker dmg = HO(S,N;"0) 11 = HO(S,C., —.)41, see Proposition 1.2. Choose a
neighbourhood V' of u(z.) invariant under cy, diffeomorphic to the 4-ball B*
and small enough in order that ||J* — J% (u(z.))||c1 < n. We deduce a restric-

tion map rest : W C RM, — RP’cusp(n) such that rest(Cy,) € RP.q, (1)

Now d¢,, rest(<k|,_,,Ct) is exactly the vector (v,0,0) given by Proposition 2.5.
The result thus follows from Proposition 2.5. O

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



310 WELSCHINGER (J.-Y.)

3. Study of the compactification RM?

cusp

3.1. Neighbourhood of RMégé’ml)’(dZ’mZ) in RM‘iusp when m; =
Cl(X)di —1

LEMMA 3.1. — Let dy, d2 € H2(X;7Z) be such that
di+da=d and m;=c1(X)d; —1, ie{1,2}.
Then, RME:é’ml)’(d2’m2) has a canonical coorientation in RM(d1m)(dzmz)

A path (Ct)te],“[ i RME@m)y(d2me)  pncversal to RAMG™:(d2; mZ)

tac

at t =0 s positive on this coorientation if for every t € ]| — €,0[ (resp.
€ 10,¢[), C' has two real (resp. complex conjugated) double points in a
neighbourhood of the tacnode of C°. O

(See §1.5 for the definition of the space RMEZé m),(d2;ma) )

3 X >

Ct t<0 Ct t>0

FIGURE 1

Remember that under the conditions of Lemma 3.1, the projection
mldom) (dma) g pq(dim).(daima) R T x Ry, X™ x Ry, X2

is Fredholm with vanishing index. Moreover, R./\/ltgé ) (d2m2) e ade of

regular points of this projection, from Proposition 1.9. Let
vt €0,1]— (J'2') e RT, x Ry, X™ x R, X™2

be a path transversal to wﬂ%dl’ml)’(dz’mz), so that the fibre product R./\/lffd =
RM(drmu)i(dzm2) o 10 1] is a smooth 1-dimensional manifold equipped with
a projection ﬁfyed : R./\/lfyed — [0,1]. As soon as 7 is chosen generic enough, this
submanifold intersects RMEZé’ml)’(dZ’mz) transversely at finitely many points
over distinct parameters of [0,1]. Let C* € R./\/lr6d be such a point, ty € ]0, 1].
The path v is said to intersect ﬂ(dl’ml) (dZ’WZ)( MEZé’ml)’(dZ’mQ)) positively
(resp. megatively) at y(to) if R./\/lffd intersects RMEZ?WI)’(@’WZ) positively
(resp. negatively) at C* once endowed with the local orientation induced
by [0, 1].

TOME 134 — 2006 — N© 2



INVARIANTS OF REAL SYMPLECTIC FOUR-MANIFOLDS 311

Assume that « is transversal to 7 and denote by RM,, = RM’iuSp X~ 10, 1].
Denote by RM., the Gromov compactification of RM., and by 7, : RM, —
[0, 1] the associated projection.

The aim of this subparagraph is to prove the following theorem.

THEOREM 3.2. — Let v : t € [0,1] — (J',2') € RT, x R, X" be a generic
path chosen as above and C* € RM, N RM(Loma)(d2ma) - g gome that

tac
mlzcl(X)dlfl, TI’LQ:Cl(X>d271,

and that v is positive at ty = m,(C*™). Then, there exist a neighbourhood W
of C™ in RM, and € > 0 such that for every t € Jto — e,tol, w31 (t) N W
is made of two curves having the same mass, the one of C*%, and for every

t€lto,to+el, ;) NW = 2.

Note that reversing the orientation of [0, 1] if necessary, we can always assume
that ~ is positive at #.

Let C* be a real rational cuspidal J*-holomorphic curve close to C* which
passes through z?, t € Jto —¢€,to+¢€[\ {to}. Then, from Proposition 2.16 of [11],
C' extends to a 1-parameter family of J¢-holomorphic curves C*(n), n € [0, n:]
such that C*(0) = C*, C*(n) passes through z! for every n € ]0,n,[ and RC*(n)
has a non isolated real double point in the neighbourhood of the cusp of C*
as soon as 1 # 0.

FIGURE 2

LEMMA 3.3. — If € is small enough, the family C*(n) converges to a reducible
Jt-holomorphic curve when 1 — 1.

Note that Lemma 3.3 already implies the second part of Theorem 3.2, since
for t > 0, there are no reducible Ji-holomorphic curve which pass through z?*
and have a real double point in the neighbourhood of the tacnode of Cto.

Proof. — Let U be a compact neighbourhood of C'* in X such that for every
t € Jto—e, to+e€[, the only reducible J*-holomorphic curve which pass through x?
are the ones close to C%. Note that as soon as 7 is close enough to zero,
the real parts RC*(n) form a loop around the cusp of RC* in RX. Moreover,
the intersections between two curves of this family C*(n) are located at z* and
in the neighbourhood of their double points. Thus, as 1 grows, the loops grow in
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order to fill a disk of RX centered at the cusp of RC*. The following alternative
now follows from Gromov’s compactness Theorem. Either C*(n) converges to
a reducible J*-holomorphic curve in U as 1 — n;, or one curve Ct(n) intersects
the boundary of U. Assume that there exists a sequence t,, € |to—e¢, to+€[\ {to},
n € N*, which converges to to when n — oo and 7, > 0 such that C'(n,)
touches the boundary of U. Then, when n — oo, C'(n,,) converges to a Jt-
holomorphic curve C'* which is contained in U, intersects the boundary of U
and passes through z!0. The latter cannot be reducible from the definition of U.
Moreover, for every n € N*, the loop of RC'"(1,,) surounds the cusp of RC*"
in RX. It follows that in the limit, RC* forms a loop which surounds the
tacnode of RC?. Thus, C* intersects C* with multiplicity four at least near
the tacnode of C*, with multiplicity 2 at least near every double point of C%
and with multiplicity 1 at z'. The total intersection index between C* and C*
is then at least d? + 2, which is impossible. O

LEMMA 3.4. — Assume that € is small enough and that t € |tg — €,to[. Then,
the number of cuspidal Jt-holomorphic curves which pass through z* and are
close to C* is at most two.

Proof. — Denote by C!,, the unique reducible real rational J*-holomorphic
curve which passes through 2! and is close to C%. This curve has two non iso-
lated real double points y¢, 44 in a neighbourhood of the tacnode of Ct. Let C*
be a real rational cuspidal J*-holomorphic curve which passes through z! and
is close to C' and Ci(n), n € [0,7n}], the 1-parameter family of J*-holomorphic
curves given by Lemma 3.3. In particular, C{(n}) = C? . For every n € ]0,n}],
denote by yt(n) the real double point of C(n) close to the tacnode of C*. The
latter converges to the cusp of C¥ when 7 — 0 and to one of the points 3,
v, say yi, when n — n!. Assume that there were two families C?(n), C%(8) of
curves having this property. Then, for 7, § close to nt, 6¢, the curves Ct(n),
C%(6) would have all their intersections at z* and in the neighbourhood of the
double points of C?, different from y4. Moreover, if 7 is close enough to 7!,
we can assume that the loop formed by RC,(4) close to the cusp of C? is in
the interior of the one formed by RC(n).

- RC0O)

RC?

red

FIGURE 3

Then, RC!(n) intersects RCL(d) at two points belonging to the two local
branches of RC5(d) near y!. As n decreases, there is some parameter 7’ for
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which RC}(n’) passes through the double point of RC,(§) belonging to its
loop. For this parameter 7/, the two curves C%(n’) and C(§) would have at
least three intersection points in the neighbourhood of the tacnode of C* and
thus a total intersection at least equal to d® 41, which is impossible. We deduce
that the number of real rational cuspidal J*-holomorphic curves close to C%
is bounded by the number of real double points of C? ; close to the tacnode
of C' that is two. O

Proof of the Theorem 3.2. — 1t follows from Lemmas 3.3 and 3.4 that there
exist a neighbourhood W of C* in RM, and € > 0 such that for every ¢ €
Jto—e, tol, #(m; 1 (t)NW) < 2 and for every t € Jto, to+€[, 7! (t)NW = @. Since
the parity of the number of real rational cuspidal J-holomorphic curves which
pass through z does not depend on the generic choice of (J,z), it suffices to
prove that 77! (t) "W cannot be empty when ¢ € Jto — €, to[, that is there exists
at least one real rational cuspidal J-holomorphic curves which passes through z
for some J close to J%. Now such a curve can be constructed by reversing the
construction of Lemma 3.3. One starts with a reducible real J-holomorphic
curve having two real non isolated double points close to the tacnode of C?.
Then, from Proposition 2.14 of [11], one can smooth one of these double points
to obtain a 1-parameter family RC(n) of curves which forms a loop. As n
decreases, it has to degenerate onto a cuspidal curve by some argument similar
to the one used in the proof of Lemma 3.3. O

REMARK 3.5. — When r = (0,...,0), a sequence of real rational cuspidal J-
holomorphic curves can converge to a reducible curve C' having two irreducible
components which are complex conjugated and transversal to each other except
at one point which is of order two, that is an ordinary tacnode. To extend
Theorem 0.1, one should take into account these reducible curves. This would
be possible provided an analog of Theorem 3.2 holds in this case. Namely,
assume that over a path v, the curve deforms to a reducible curve having
two real (resp. complex conjugated) double points in a neighbourhood of the
tacnode for ¢ € Jtg — €, to[ (resp. t € Jto, to + €]). Then, one can suspect that for
t € Jto,to + €[, there are no real rational cuspidal J*-holomorphic curve close
to C whereas there are two of them for t € |t — ¢,t9[. Moreover, the latter
come from the two degenerations of the figure eight. However, I have no proof
of this fact and thus leave this case open.

3.2. Neighbourhood of RM{& ™) @2m2) iy RAAE
Cl(X)d2

Lety:te€[0,1] — (J' 2t) € RT, xR, X" be a generic path transversal to g
and RM,, = RM? X [0,1]. Denote by RM,, the Gromov compactification

cusp

of RM., and by 7, : RM,, — [0, 1] the associated projection.

when m, =
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THEOREM 3.6. — Let v : t € [0,1] — (J',2%) € RT, x R, X" be a generic
path chosen as above and C* € RM., N RMEZé’ml)’(d2’m2). Assume that

my = Cl(X)dl —2 and meo = Cl(X)dQ.

Then, there exist a neighbourhood W of Ct in RM,Y and € > 0 such that for
every t € Jto — €, to + €[, 1 (t) N W = {C"}. Moreover, the mass of C* does
not depend on t € Jto — €,to + €.

(See §1.5 for the definition of the space RM41m1):(d2:m2) y

Without loss of generality, we can assume that 2 € R, X" does not de-
pend on ¢ € [0,1]. Denote by Ci° (resp C%°) the irreducible component of C*
which has homology class d; (resp. d2). Let zf = zt N Cl, 2t = 2t N Cl
and U be a compact neighbourhood of C% in X. If U is small enough,
the curve C7° extends to a l-parameter family C}°(n), n € [~1,1], of real
Jt_holomorphic curves which pass through zt, are contained in U and such

that C1°(0) = C°, C¥°(+£1) N AU # @ whereas CI°(n) CU for ne]—11]
We can assume that the curves RCT°(n) and RC% have two real intersection
points in a neighbourhood of the tacnode of C%* when > 0. Let C? be
a real rational cuspidal J*-holomorphic curve close to C% and which passes
through !, t € Jtg — €,t0 + €[\{to}. Then, from Proposition 2.16 of [11], C*
extends to a 1-parameter family of J!-holomorphic curves Ct(n), n € [0, 1] such
that C*(0) = Ct, C*(n) passes through zt for every 5 € [0, 1] and RC*(n) has a
non isolated real double point in the neighbourhood of the cusp of C* as soon
as 17 # 0. Note that in contrast with §3.1, as soon as U is small enough, this
family cannot break into a reducible curve as long as it stays in U. We can
thus assume that C*(1) N U # @.

LEMMA 3.7. — As soon as U is small enough, C*(1) converges to C**(1) as t
converges to tg.

Proof. — Tt suffices to prove that as t converges to to, the curve C*(1) converges
to a reducible curve. Indeed, since this curve in the limit is contained in U,
touches OU and passes through z', it has to coincide with C*(1). Remember
that when ¢ € Jtg — €,t0 + €[\ {to}, the curve RC*(1) forms a loop which
surrounds the cusp of RC?. Hence, if the curve in the limit were irreducible, its
real part would form a loop which would surround the tacnode of C*. As soon
as U is small enough, the latter would then intersect C* with multiplicity 4
near the tacnode, with multiplicity 2 near every double point of C* and at z,
which is impossible. O

Hence, the family C*(n), n € ]0,1], is obtained after smoothing one of the
two real double points of C*(n) close to the tacnode of C'.
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LEMMA 3.8. — Let C*(n) and C*(n)’, t € Jto — €,to + €[\ {to}, n € [0,1], be
two families of real rational Jt-holomorphic curves which pass through x and
such that C*(0), C*(0) are cuspidal. Then, these families are obtained after
smoothing the same real double point of the family Ct(n).

Proof. — Assume the converse. Then, the curves C*(1) and C*(1)’ would in-
tersect (see Figure 4) at z' and with multiplicity 2 near every double point of
C'. Moreover, the loops formed by RC*(1) and RC*(3)" would intersect at
two points at least. Finally, since C’t(%)’ is not obtained after smoothing the
same real double point of the family C'(n) as C*(1), the local real branch in
this smoothing which is not included in the loop of RC*(3)’ would also inter-
sect RC*(1) near the tacnode of C*. This would provide a total intersection
index at least equal to v + d? — ¢1(X)d + 3 > d?, hence the contradiction. O

FIGURE 4

REMARK 3.9. — It also follows from the proof of Lemma 3.8 that if the families
C'(n) and C*(n)" are obtained after smoothing the same real double point of
the family C'(n), n € [0,1], then the loop formed by RC?(1) is included in
the one formed by RC*(1). Indeed, these curves would otherwise also intersect
with multiplicity at least three near the tacnode of C%, which is impossible.

Proof of Theorem 8.6. — There exist a neighbourhood W of C? in RM.Y and
€ > 0 such that for every t € Jto — €,to + €[, #(x; ' (t) N W) < 1. Indeed, if
this set would contain two curves, they would generate two families C*(n) and
C'(n)" as in Lemmas 3.7 and 3.8. From Lemma 3.8, these two families would
be obtained after smoothing the same real double point of the family C?(n).
From Remark 3.9, the loop formed by RC*(1)’ and hence by RC*(n)’ for every
n €10,1] would be included in the one of RC*(1). We then obtain a con-
tradiction repeating the proof of Lemma 3.4. Moreover, as in the proof of
Theorem 3.2, 7! (t) N W cannot be empty for every t € Jtg — €, to + €[, € small
enough. Since the parity of the cardinality of 7 L(#)NW does not depend on ¢
and the masses of cuspidal curves close to C' are obviously the ones of C*,
the theorem is proved. O
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d
cusp

. di,my),(d2,mz2) - AM
3.3. Neighbourhood of RM(CUS;" )(dz2,m2) §n R M

PROPOSITION 3.10. — Let (C9,J°) € RM@Lm)(d2m2) = Thep  there erists

cusp
a path (Ct,JY) € RM(Ccflls’gnl)’(d2’m2), t € [0,1], of class C*™F, such that J* is

integrable in a neighbourhood of C' in X.
(See §1.5 for the definition of the space RM(C?S’;“)’(@’WZ).)

LEMMA 3.11. — Under the hypothesis of Proposition 3.10, there exists a
neighbourhood V' of the singular points of C° in X and a path (Ct,Jt) €
RM(dl’g“)’(dZ’mz), t €[0,1], of class C*=F, such that J'|y is integrable.

cus

Proof. — Let yo be a double point of C°. Then, there exists a neighbour-
hood Vj of yp in X, invariant under cx, as well as a diffeomorphism ® : V; — B4
which is Z/2Z-equivariant such that

(I)(CO ﬂ‘/o) = {(wl,wg) S B4 C (CQ | wWi1Wo = 0}

Denote by J the almost complex structure @, (J°|y; ) of B4, and for § € ]0, 1], by
hs the homothety (w1, w2) € B* — (dwy,dws) € B Set then Ji_s = hi(J),
so that for & € R* = T(y, w,y) B,

J1=6] (w0,w2)(€) = A5 " 0 J(s1, 5w3) © A6 (€) = (500, ,50s) (€)-

Hence, the family (J1-s)s5¢)0,1], extend to a C°°-family (Js5)sejo,1), by setting
J1 = Jo,0)- Now, ®(C° N Vp) is invariant under hs and thus Js-holomorphic
for every 0 € [0,1]. The family (®*Js5)scjo,1) is then a path of almost com-
plex structures of class C¢ of 1y such that ®*Jy = JO|VU, C'NV, is ®*Js-
holomorphic for every 6 € [0,1] and ®*J; is integrable. There is no ob-
struction to extend (®*Js5)scjo,1] to a path of almost complex structures of
class C* on the whole X for which C° is holomorphic and which coincide with
JY outside a neighbourhood of Vy. Now, if yo is the unique real ordinary
cusp of C%, we can proceed in the same way, making use of the weighted ho-
mothety hs : (w1, ws) € B* — (62wy, 83ws) € B* instead of hs. The proof is
then the same as the one of Lemma 2.6 of [11] and is not reproduced here. [

Proof of Proposition 8.10. — From Lemma 3.11, we can assume that JY is in-
tegrable in a neighbourhood Vj of the singular points of C°. Let Cjy € C° be
a smooth compact curve with boundary such that C°\ Cy C Vo. A tubular
neighbourhood N of Cj in X is identified with a neighbourhood of the zero
section in the normal bundle of Cy in X. Denote by p : N — Cy the pro-
jection induced by this identification and equip N with the almost complex
structure J| . This identification can be chosen such that the fibres of p are
J| y-holomorphic. Now as in Lemma 5.1 of [7], there is a map w : N — C
which is holomorphic and injective once restricted to each fibre of p. Such a
map can be constructed as follows. Extend J|y to an almost complex structure
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on the whole compactified normal bundle N over C°, such that p : N — C°
is a sphere bundle with J-holomorphic fibres, the section C'°° at infinity is J-
holomorphic and a third section C! distinct from C° and C*° is J-holomorphic.
The function w : N — CP! is then the unique one given by Riemann’s uni-
formization theorem which is holomorphic once restricted to each fibre and
sends C°, C*>® and C' to 0,00 and 1 respectively. Let z : Cy — C be an
injective holomorphic map, the composition with p will also be denoted by
z: N — C. The antiholomorphic tangent bundle T](\J,’LlN is then generated by
Ow and 0z +a0,+b0,,. Moreover, J| y is integrable if and only if Opa = 0 = Owb
(see [7], Lemma 1.3). This is in particular the case on NN V. Let f: Cp — R
be a C> function which is equal to 1 in a neighbourhood of the boundary of C
and to 0 on Cp \ Vp. For 6 € [0,1], denote by J; the almost complex structure
on N whose antiholomorphic tangent bundle TI(\Jf’,le|N is generated by 0z and
0z +((1—0)+0fop)(ad. + bdy). Then, Jy = J|y and J; is integrable since
Ow(fopa)=fopdga=0 and Iz(fopb)= fopdzb=0.

Hence the result. O

Let v:t €[0,1] — (J*z*) € R, x R, X" be a path transversal to mg and

i) (dama) g pg(dim).(d2im) R 7, xRy X™ x Ry, X2,

Let RM,, = RMZUSP %~ [0,1], RM.,, its Gromov compactification and 7 :
RM., — [0,1] the associated projection.

THEOREM 3.12. — Let v : t € [0,1] — (J,2t) € R, x R, X" be a generic
path chosen as above and C' ¢ R./W»Y N R./\/l(cﬁlllsgm)’(dz’mz). Then, there exist
a neighbourhood W of C* in RM., and € > 0 such that #ﬂ;l(t) NW does not
depend on the choice of t € Jtg —€,to + €[\ {to}-

Note that as soon as W is small enough, all the curves of W have the same
mass, the one of C?o.

LEMMA 3.13. — Under the hypothesis of Theorem 3.12, we can assume that
z' does not depend on t € |t — €,to + €[ and that (J*)icjto—c to+e| 5 an analytic
path of almost complex structures which are integrable in a neighbourhood of C't
mn X.

Proof. — From Proposition 3.10, we can assume that J? is integrable in
a neighbourhood of C'. Indeed, let J'™(\), A € [0,1], be the path in
R./\/l(cﬂljs’;“)’(dz’m2) given by this proposition, such that J%(0) = J% and J' (1)
is integrable in a neighbourhood of C%. There is no obstruction to extend this
path in a 2-parameters family J*()\), A € [0,1], ¢ € Jto — €,to + €[, such that
JH0) = Jt and (J¥(N),z?) satisfies the hypothesis of Theorem 3.12 for every

A € [0,1]. From Lemma 1.5 and the definition of RM(@m)(d2:m2) one of

cusp
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the elements of 7’ L(t) can degenerate onto a critical point of g or a reducible
curve over J*(\). Thus, the cardinality of w5 ' (J(\), z) N W(X), where W ()
is a neighbourhood of C*()) in R, . does not depend on A € [0,1].

cusp’

We have to prove that a transversal path (J*)ieje—e to+e[ tO RM(Ccflls’gnl)’(d2’m2)
can be chosen analytic and made of almost complex structures which are in-
tegrable in a neighbourhood of C% in X. Assume that m; = ¢;(X)d; — 1,
and denote by O}° = [u, J, J?,z;,z2.] the cuspidal component of C*, so
that z; = z N Cf" is of cardinality m;. Then, from Proposition 1.9, the
path (J")icjtg—e to+e 18 transversal to R./\/l(c’fjs’;“)’(dmmz) at Jt if and only if
Jto = & Jt,_, is such that the J} antilinear form J% o duy o J& projects onto
a generator of the cokernel Hb (SQN;;],S_pzl)-i-l =~ R. Let a be a generator of
HE(S; NP, )41 having support in a small ball U of S. Let V be an open
subset of (X, J%) biholomorphic to the bidisc B x B> ¢ €2 and such that
V N Ct = uy(U). We choose this biholomorphism such that it sends V N Cte

onto the disc {w = 0} C B’ x EQ, where the latter is equipped with complex
coordinates (z,w). In this chart, the generator a writes f(z,z)dz ® w, where

I B = Cis 7./2Z-equivariant, with compact support and can be assumed
to be smooth. For every t € |ty — €,to + €|, define then J'|;, to be the
endomorphism given by the matrix

i 0
(t —to)fdz i

Since f is with compact support, J*;, = J%|, in a neighbourhood of the
boundary of V. We can then extend J! on the whole X by setting J¢ = Jto
outside V. The path t € Jtg — €,to + €[ — J! is analytic. Moreover, the anti-
holomorphic complexified tangent bundle of (X, J?) is generated by the vectors
(0= + %(t — t9)fOw, Om). Since %(t — tp)f does not depend on w, it follows
from Lemma 1.3 of [7] that J* is integrable on V for every t € |tg — €,to + €[.
The lemma is proved in the case m; = ¢1(X)d; — 1 and can be proved along
the same lines when my = ¢;(X)d; — 2. O

Proof of Theorem 3.12. — Denote by B?(tg,e) = {t € C; |t — to| < €}. The
path v : t € [tg — €,tg + €[ — J* € RJ, given by Lemma 3.13 is complexified
to an analytic path v¢ : t € B?(to,€) — J' € J, which is Z/2Z-equivariant
and made of almost complex structures which are integrable in a neighbour-
hood of C®. Equip the product Y = B2(tg,¢) x X with the almost complex
structure Jy defined by the matrix [6 ]Ot] It is integrable in a neighbourhood
of {to} x C*. Moreover, the sections (¢,z') are Jy-holomorphic. Note that the
complexified moduli space M. is then a smooth curve which is equipped with
a holomorphic projection m : M,. — B?(tg,€) \ {to}. The complex structure
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of M., extends in a unique way on the compactification M.,. and the projec-
tion m : M.,. — B?(to, €) is holomorphic. We will prove that once restricted to
any irreducible component of ./W.YC, this projection is a biholomorphism. From
now on, we can assume that M. is irreducible. Let U — M., be the universal
curve and U be the stable map compactification of U. The latter is a complex
surface and the projection U — ./W.YC is a projective line bundle having a singu-
lar fibre over C% € M'yc- Denote by 01, ...,0¢,(x)d—2 : ./\7.YC — U the sections
associated to the marked points z1, ..., z¢, (x)a—2 of S and by eval : U —Y the
evaluation map, so that for every C € ./\77C7
eval(o;(C)) = (WWC(C),JC;HC(C)) ev.

Denote by S;, Sa the two irreducible components of the singular fibre of U,
in such a way that eval(S;) is the cuspidal component C° of C*. Note that
since the two components of C™ intersect transversely, d, eval is injective at
the intersection point y of S; N S3. The normal bundle of S7 in U is iso-
morphic to Og, (—1) and the evaluation map induces a non vanishing mor-
phism from this bundle to the normal bundle of C1° in Y, which is isomorphic
to Og, (c1(X)dy — 3) & Og,. Would the projection 7 : M. — B%(t,€) not be
biholomorphic, this morphism would vanish on z; = 2N S which is of cardinal-
ity my. Assume that m; = ¢1(X)dy — 1. The image of Og, (—1) would then be
a subline bundle of degree at least ¢1(X)d; —2 of Og, (¢1(X)d; —3) @ Og,. This
is impossible. In the same way, if m; = ¢1(X)d; — 2, then the normal bundle
of CX in Y (resp. U) is isomorphic to Og, (c1(X)d; —2) @ Og, (resp. Os,(—1)).
Would the projection 7 : M. — B2(tg, €) not be biholomorphic, the morphism
Os,(—1) = Og,(c1(X)d1 — 2) ® Og, would vanish on z, = z N Sy which is of
cardinality mo. Since the latter is equal to ¢1 (X )da, we conclude as before. O

4. Proof of Theorem 0.1
Let (J°,2°) and (J!,z') be two regular values of

R RME S RJ, x R, XY

cusp

which do not belong to g (Rﬂiusp \RMﬁuSp). We can assume that every real
rational cuspidal Ji-holomorphic curve which pass through z¢, i € {0,1}, and
realize the homology class d has a unique real ordinary cusp and transversal
double points as singularities, all of them being outside z. We have to prove

that ['4(J°, 20) = T4 (J%, 21).

4.1. Choice of the path v. — Let v:t € [0,1] — (J!,2) € RT, x R, X"
be a generic path transversal to 7r joining (J°,2°) to (J!,z!). Denote by

RM, =RM?, . x4 [0,1],
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RM.,, its Gromov compactification and 7, : RM, — [0,1] the associated
projection. From Lemma 1.6 and Corollary 1.12, the path v can be chosen
such that all elements of RM, are irreducible real rational curves having a
unique real ordinary cusp and only transversal double points as singularities,
all of them being outside z?, with the exception of finitely many of them which
may have:

1) A unique real ordinary triple point or a unique real ordinary tacnode.

2) A real branch which crosses the real ordinary cusp transversely to its
tangent line.

3) A unique real double point belonging to z.

4) The unique real ordinary cusp belonging to z.

5) A second real ordinary cusp outside z'. In this case, any generator ¢ of

IJO(S7 Ks®@N; _,)-1= Hl(sa Nu,—2)i1

does not vanish at cusps (compare Proposition 2.8 of [11]).

6) A unique cuspidal point, which is a generic order two degenerated cusp,
see §2.1 for a definition.

7) Two irreducible components.

8) Two irreducible components which intersect transversely except at one
point which is a real ordinary tacnode. These curves are not cuspidal.

In the same way, the path v can be chosen such that every real rational re-
ducible Jt-holomorphic curves which pass through z* and realize the homology
class d have only two irreducible components, both real, and transversal double
points as singularities, with the exception of finitely many of them which may
have:

«) A unique real ordinary triple point.

B) A unique real ordinary tacnode.

~) A unique real ordinary cusp. In this case, any generator ¢ of

HO(S1,Ks ® Ny, _, )—1 = H'(S1, Nuy,—2, )51

does not vanish at the cusp, where u; : S; — X parameterize the cuspidal
component (compare Proposition 2.8 of [11]).

§) A unique real double point belonging to z.

€) Three irreducible components.

Finally, the path v can be chosen such that every real rational J*-
holomorphic curve which pass through z?, realize the homology class d, and
have one of the lines T}, i € I, as a tangent line at z!, have only transversal

double points as singularities, with the exception of finitely many which may
have:

a) A unique real ordinary triple point.
b) A unique real ordinary tacnode.
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¢) A unique real ordinary cusp outside zf. In this case, any generator 1) of
H(S,Ks ® Ny _ )12 NS, Nu,—2)'

does not vanish at the cusp (compare Proposition 2.8 of [11]).

d) A unique real ordinary cusp at one point zf, i € I. In this case, the curve
is not tangent to any line 7}, j € I. Moreover, any generator 1 of

HO(S, Ks® N;y,gil = 1(Sa Nu,fg)il

does not vanish at the cusp (compare Proposition 2.8 of [11]).

e) A unique real double point belonging to z!, none of the branches being
tangent to T;.

f) Two irreducible components.

g) Two irreducible components which intersect at one point z¢, i € I. In
this case, the curve is not tangent to any line T}, j € I.

4.2. The case z. € z. — Let (J,z) € RJ, x R, X" be a generic critical
value of g of type 3 given by Lemmas 1.5 and 1.6. Let C be a real rational
J-holomorphic curve which pass through z, realize the homology class d and
has a unique real ordinary cusp in z, say at 1. Then, the space of real rational
cuspidal J-holomorphic curves which pass through z \ {1} and realize d is a 1-
parameter family generated by any non zero element of H%(S, Ny — 542, )+1 = R.
In particular, the cuspidal point moves along a smooth curve . C RX transver-
sal to the tangent line of RC at the cusp x1. Let U be a neighbourhood of x;
in RX diffeomorphic to a ball and small enough so that ¢, divides it in two
components. Denote by U_ (resp. U;) the connected component of U \ ¢,
defined by the relation U_ NRC' # & (resp. Uy NRC = ).

RC L
RC_
FIGURE 5
PROPOSITION 4.1. — Lety € U_ (resp. y € Uy). Then, as soon as U is small

enough,
1) There are exactly 2 (resp. 0) real rational cuspidal J-holomorphic curves
which pass through z U {y} \ {x1} and are close to C.
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2) There is exactly one real rational J-holomorphic curves close to C which
pass through z U {y} \ {z1} and has a real double point at y. Moreover, this
double point is real and non isolated (resp. isolated).

Proof. — As soon as U is small enough, the intersection of RC with U_ is
made of two arcs denoted by RCy and RC_. The 1-parameter family of real
rational cuspidal J-holomorphic curves which pass through z\ {z1} and realize
d produces 1-parameter families of arcs RC; and RC_. As soon as U is small
enough, these two families provide two foliations of U_. If y € U_, there is
exactly one leaf of each foliation which pass through y, hence the first part of
the proposition in this case. If y € Uy, the first part of the proposition follows
from the relation Uy N RC = @. Let us prove now the second part of the
proposition. First, if such a curve exists, it has to be unique. Indeed, two such
curves would intersect twice near each double point of C, with multiplicity one
at each point of 2\ {z1} and with multiplicity four at y. Then, their intersection
index would be at least

d®> —ci(X)d+c1(X)d—3+4=d*+1,

which is impossible. Let zj € RC' N U-. From Proposition 2.16 of [11], the
curve RC extends to a 1-parameter family of real rational J-holomorphic curves
RC(n), n € [-1,1], which pass through z U {2} \ {z1} and have a non isolated
(resp. isolated) real ordinary double point close to the cusp of RC' when n > 0
(resp. n < 0). In the same way as in §3.1, the curves RC(n), n > 0, form
a loop in a neighbourhood of the cusp of RC. Moreover, this 1-parameter
family of loops foliates some disk of RX centered at x;. The curve ¢, intersects
transversely these loops. Then, the non isolated real double point of RC(n),
7 > 0, has to be in the same connected component of U \ ¢. as the branches
RC; and RC_, that is U_. Thus, there exists at least one point y € U_ for
which there is a real rational J-holomorphic curve close to C' which passes
through 2 U {y} \ {1} and has a non isolated real double point at y. By
deforming y € U_, we get the same result for all y € U_ as soon as U is
small enough. The curves RC(n), n < 0, must then have their isolated real
double point in U4, which proves the result. O

Let us assume now that (J,z) = v(to), where « is the path chosen in §4.1
and to € ]0,1[. Without loss of generality, we can assume that there exists
€ > 0 such that for every t € Jtg —€,to + €[, J' = J" and 2 \ {2} } = 2\ {z1}.
The path (21)e)tg—c,to+¢] 15 then transverse to £. in RX at ¢t = to.

PROPOSITION 4.2. — The integer T'4(Jt, xt) does not depend on t € Jto — e,
to + €[\ {to}-

Proof. — We can assume that for ¢ € Jtg — €, to[ (resp. t € Jto,to+¢€|), 2} € U—
(resp. x} € Uy). From the first part of Proposition 4.1, the first term in the
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expression of [%(J, zt) decreases of 2(—1)™() as ¢ crosses the value to. Let
us prove that at the same time, the third term in the expression of I'¢(Jt, z?)
increases of 2(—1)™(C™) as t crosses the value to. From Proposition 3.4 of [11],
we have

1)
X2 = ), (™MD 42 (1" (m),
m=0

CceTand(Jt zt)

T, RO=T
6
xi= Y (D)™ p2 )y (1) (m),
CeTan?(Jt zt) m=0
T, RC=T

where X%, ,, x¢ are invariants and 7} (m) (resp. 7 (m)) is the number of real
rational J?-holomorphic curves of mass m which pass through z?, realize the ho-
mology class d and have a non isolated (resp. isolated) real double point at zt.

From the second part of Proposition 4.1, the term an:o (=1)™f (m) decreases

of (—1)™(C™) as t crosses the value to, while the term an:o(fl)mﬁ; (m) in-

c'o)+1

creases of (—1)™( Since x5, x¢ are constant, we deduce that

>y

CceTan(Jt zt)
T, RC=T

m(Ct0)

increases of 2(—1) as t crosses the value ¢g, hence the result. O

4.3. Proof of Theorem 0.1. — Choose a path v : t € [0,1] — (J?,2t) €
RJ, x R, X" given by §4.1. The integer I'4(J*, z*) is then well defined for every
t € [0,1] but a finite number of parameters 0 < ¢y < - -+ < t;, < 1 corresponding
to accidents listed in §4.1. It is obviously constant between these parameters ¢;,
j €10,...,k}, and we have to prove that is also does not change while crossing
these parameters.

This is easy to check in cases 1),2),3),a),a),b),e) listed in §4.1.

In cases 4),d), it follows from Proposition 4.2.

The cases 5),7), ¢) correspond to critical points which can be treated as in
Proposition 2.16 of [11].

The case 6) follows from Proposition 2.7, the case 7) from Theorem 3.12 and
cases 8), 3) from Theorems 3.2 and 3.6.

Note that in this last case, the loss of two real cuspidal curves described by
Theorem 3.2 is compensated by the decrease of the multiplicity of the corre-
sponding reducible curve.

Cases f) and €) can be treated as in Proposition 2.14 of [11].
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It only remains to prove the invariance in cases §), g). While crossing such
a value tj, the second term in the definition of I'¢(J*, z!) remains clearly un-
changed. Note that the number of real rational J*-holomorphic curves which
pass through zt, t € |ty — €, tr + €[\ {tx}, have T} as a tangent line at x! and
degenerate onto a reducible curve C** having a double point at xt’“ is at most 1.
Indeed, two such curves would intersect with multiplicity 2 at zf-k , 1 at the other
points of the configuration 2! and 2 near every double point of C* but z*.
This provides a total intersection index at least equal to

d>—ci(X)d+2+c(X)d—3+2=d*+1,

which is impossible. Since the mass of such a real rational curve which de-
generate onto such a reducible curve C* is the one of C* and the parity
of the number of real rational J‘-holomorphic curves which pass through zt,
t € Jtx, —€,tr + €[\ {tx} and have T; as a tangent line at z! is independant of ¢,
the result follows. O
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