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ON THE RIGIDITY OF WEBS

by Michel Belliart

Abstract. — Plane d-webs have been studied a lot since their appearance at the
turn of the 20th century. A rather recent and striking result for them is the theorem of
Dufour, stating that the measurable conjugacies between 3-webs have to be analytic.
Here, we show that even the set-theoretic conjugacies between two d-webs, d ≥ 3 are
analytic unless both webs are analytically parallelizable. Between two set-theoretically
conjugate parallelizable d-webs, however, there always exists a nonmeasurable conju-
gacy; still, every pair of set-theoretically conjugate 3-webs (parallelizable or not) also
are analytically conjugate, while if d ≥ 4 there exist pairs of d-webs which are set-
theoretically conjugate but not even measurably so.

Résumé (Sur la rigidité des tissus). — Les d-tissus plans ont été amplement étu-
diés depuis leur apparition au début du xxe siècle. Un résultat relativement récent
et impressionnant est le théorème de Dufour qui stipule que les conjugaisons mesu-
rables entre 3-tissus sont nécessairement analytiques. Dans cet article nous montrons
que les conjugaisons ensemblistes entre d-tissus (avec d ≥ 3) sont analytiques sauf
si les deux tissus sont analytiquement parallélisables. Cependant, entre deux d-tissus
parallélisables conjugués de manière ensembliste il existe toujours une conjugaison non-
mesurable ; de plus, toute paire de 3-tissus conjugués de manière ensembliste (qu’ils
soient parallélisables ou non) sont également conjugués analytiquement, alors que si
d ≥ 4, il existe des paires de d-tissus qui sont conjugués de manière ensembliste mais
non pas de manière mesurable.
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2 BELLIART (M.)

1. Introduction

1.1. Foliations. — Throughout this note we consider the word “foliation” as
meaning “analytic foliation of the plane R2 by curves”. The classification of
foliations (in this very restricted sense of the word) has been known for years;
first of all, we can describe foliations in two dual ways:

– Given any foliation F , there exists an analytic action of R on R2 whose
orbits are the leaves of F (this is not difficult at all to show).

– Given any foliation F , there exists a continuous submersion φ from R2

to R which is constant along the leaves of F : therefore these leaves are the
connected components of the fibers of φ (this is Kaplan’s Theorem [9]).

Starting from there, it is not too difficult to describe the topological conjugacy
classes of foliations; see [7] for a nice description of the classification (due to
Kaplan [10]).

We simply define the set-theoretic conjugacies between two foliations F
and F ′ as being bijective maps from R2 to R2 which send every leaf of F bijec-
tively onto some leaf of F ′. This is a straightforward but completely formal
definition; observe that any two foliations are set-theoretically conjugate! But
the following very simple example shows us that the notion of a set-theoretic
conjugacy already stops being trivial if we consider more than just one foliation
at a time.

Example 1.1.1. — Let F1 be the foliation of R2 by horizontal lines; let F2 be
that by vertical lines, and let F3 be that by curves having the form y = ex+C

where (x, y) are the natural coordinates and C is a parameter. Then, there
is no bijection of R2 onto R2 inducing a conjugacy of F1 onto itself and a
conjugacy of F2 onto F3 at the same time: indeed any leaf of F1 and any leaf
of F2 meet at exactly one point, while for every leaf L of F3 there is on the
contrary a leaf of F1 not meeting L.

1.2. Webs. — Funnily enough, webs have appeared in mathematics way before
foliations, perhaps because their local geometry is so visibly richer. We call d-
web the datum W = (F1, . . . ,Fd) of d ≥ 3 foliations which we require to be
pairwise transverse at each point: this means e.g., that any leaf L1 of F1 and
any leaf L2 of F2, if not disjoint, intersect at exactly one point with distinct
tangents.

We should mention that usually, a web is locally defined as an unordered col-
lection of d foliations (possibly singular) which are in general position. There
are then obstructions to the possibility of “separating” this data in d distinct
foliations; but these obstructions read either on the singular locus of the con-
figuration, or on the topology of the ambient manifold. Here, we chose to
work with everywhere transverse nonsingular (local) foliations of a contractible
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RIGIDITY OF WEBS 3

space; for this reason, our d local foliations glue into global ones and we can
order the collection of them.

In 1908 already, Cartan [3] asks to study the topology of the figure formed
by three families of curves, a problem which he calls the first problem of textile
geometry. From the 1930ies on, the school of Blashke and Bol will give this
problem due consideration, as well as generalize it a lot; the works of that school
are collected in the books [2] and [1]. For a more modern point of view on web
theory, we should mention the surveys [4] and [13] written by two experts in
the field.

We say, of course, that the bijection f of R2 conjugates the d-web W to
the d-web W ′ if it conjugates each of the foliations forming W to the foliation
of W ′ which has the same index. Example 1.1.1 implies that not every couple
of d-webs are conjugate in this way. Finally, we call a web parallelizable if
it is conjugate to some web whose foliations are by parallel affine lines.

1.3. Rigidity. — We have grown used to the fact that a typical map from R
to R is not measurable, that a typical measurable such map is not continuous,
and so forth. . . But the first historical examples of such uncanny behaviour
had been built as counterexamples and did not answer any “real” problems: for
this reason, even after these first examples appeared in the works of Peano,
Riemann, Weierstraß et al., one could still place some faith in the following
informal, sadly erroneous belief,

Credo 1.3.1. — If a problem whose datum is purely analytic has a unique
solution, then that solution must be analytic.

As we hinted to, the above credo was baffled by many counterexamples
which, as a rule, came from dynamical systems theory: for instance, to certain
dynamical systems – the so-called Anosov diffeomorphi sms – one can asso-
ciate invariant foliations which will not necessarily be differentiable even if the
diffeomorphism we started with is analytic (see [11, III.3]; we quote from the
same source: “in general, even if f is C∞, Poincaré transformations are not
even Lipschitz”). Another famous example is that of the “cohomological equa-
tion” f(x+ k)− f(x) = g(x), where the datum g and the unknown f both are
smooth functions from R to itself with period one and k is a given real number:
as soon as k is irrational and

∫ 1

0
g(x)dx = 0, there exists a formal solution for

that equation in the shape of a Fourier series f̂ which, in general, does not
converge at all; for f̂ to converge to a smooth function whatever our choice of
g, the real number k must be diophantine (see [8]). In conclusion, examples
of analytic problems whose solutions only possess a low regularity abound in
modern practice, and this is what makes the following result so very interesting
to us:
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4 BELLIART (M.)

Theorem (Dufour, [6]). — Any measurable bijection of R2 onto itself which
exchanges two 3-webs must be analytic.

This is the first version of Dufour’s Theorem; we should perhaps mention
the existence of a recent generalization of it to arbitrary dimensions and codi-
mensions by the same author, and the existence of a complex version by Nakai
in codimension one (see [5] and [12], respectively).

1.4. Statement of the theorems. — The purpose of this note is mostly to show:

Theorem 1.4.1. — Let W and W ′ be two d-webs one of which at least is not
analytically parallelizable. Then every set-theoretic conjugacy from W to W ′
is analytic.

If W is a parallelizable web, one can easily show that W possesses non-
measurable self-automorphisms; so, Theorem 1.4.1 is sharp. We should next
wonder if the existence of a set-theoretic conjugacy f between two d-webs al-
ways implies the existence of an analytic one f ′ not necessarily equal to f : this
is a weaker sort of rigidity. Theorem 1.4.1 already solved that problem except
for parallelizable webs, for which we have

Theorem 1.4.2. — The two notions of analytic conjugacy and of set-theoretic
conjugacy for parallelizable d-webs are equivalent precisely if d = 3.

For d ≥ 4 we will exhibit interesting counterexamples.
We would like to underline the similarity of ideas between our proof of

Theorem 1.4.1 and the so-called fundamental theorem of affine geometry. This
famous result states that a bijection of R2 preserving the family of lines has to
be affine; recall how the proof works: first, by using elementary constructions
which are in fact valid over any field K but the field {0, 1}, one associates to
any line-preserving bijection f of K2 a field automorphism τf of K such that
the equality f(

∑
mıMı) =

∑
τf (mı)Mı holds for any barycenter

∑
mıMı

in K2. Thus, the map f will be affine precisely if the field automorphism τf is
trivial. . . which, as one knows, must happen if K = R. Now, the construction
of τf uses the whole set of lines in K2; but if we restrict our attention to
three particular families of parallel lines, we can still build an automorphism of
abelian group τf of K2 and show that the equality f(M + ~v) = f(M) + τf (~v)

holds for every point M and vector ~v. This equality is a weakening of the
former one obtained thanks to the whole set of lines, if we remember that
formally, a vector is simply a barycenter with total mass zero. Instead of the
fact that every field automorphism of R is trivial, we may now invoke the
other fact that every measurable group automorphism of R2 is linear to obtain
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RIGIDITY OF WEBS 5

what is both an alternative version of the fundamental theorem and a subcase
of Dufour’s Theorem:

Theorem 1.4.3. — A measurable bijection from R2 to itself which preserves
three directions of lines has to be affine.

As the reader will see, our proof of Theorem 1.4.1 consists in noticing that
the proof to Theorem 1.4.3 which we just hinted to still works (and works even
better!) if we replace our three directions of lines by a general d-web.

1.5. The method of proof. — Dufour shows his theorem using a certain normal
form for 3-webs (the so-called Bol loop of the web). Nakai’s proof is of a
dynamical nature: although this is not exactly how this author puts it, the
rigidity comes from the existence of a conjugacy between certain pseudogroups
of biholomorphisms which are defined on the spaces of leaves of the involved
complex webs. Our contribution to the subject is mostly to have seen that
Nakai’s construction, not only had nothing to do with holomorphy, but could
even be performed by purely set-theoretical means and moreover yielded the
continuity of the conjugating maps in most of cases.

In the second section of this paper, we deal with pseudoactions on curves
in a somewhat abstract fashion; the main topic is the possibility of recovering
the topology of the curve from the pseudoaction by purely set-theoretic means.
In the third (and last) section, we study the geometry of d-webs; we start
with the parallelizable case, which is quite elementary, and proceed by showing
that general webs fall into three classes: A) incomplete webs, B) complete
curved webs, and C) parallelizable webs. The words “complete” and “curved”
are defined in Subsection 3.4; webs of the classes A and B are then shown to
be rigid thanks to the main lemma of Section 2 which we apply to a certain
pseudogroup that is built from the web in Subsection 3.3.

1.6. Generalizations and perspectives. — Because our object of study is so sim-
ple, we wished our statements to be simple too, and so we chose to work in the
analytic category; we leave it to the reader to check that our methods work in
fact for every class Cr, r ∈ N∪{∞} (and for other classes as well): that is, if we
let the word “foliation” mean “foliation of R2 by level curves of a Cr map”, then
Theorem 1.4.1 still holds, its original conclusion “f is analytic” to be replaced
with “f is of class Cr”.

One could next think of possible generalizations of Theorem 1.4.1 to webs
with a “mixed” regularity (this was suggested by the referee). To mention
one example that seems promising: consider webs whose global class is C0,
but whose leaves all are analytic. Our results only lead to the continuity of
conjugacies (with the same exceptional case as in Theorem 1.4.1). But perhaps
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6 BELLIART (M.)

the conjugating map is analytic as soon as it is continuous? Our methods do
not lead to this conclusion but we could think of no counterexample either.

It is the author’s strong belief that webs are very rigid objects, and that
this rigidity is worth exhibiting. The rigidity under consideration here is the
strongest possible (no requirement is made at all on the map f conjugating the
given webs!) Then, the proofs deeply rely on the basic features of the topology
of R2, so that it is highly improbable that Theorem 1.4.1 would extend to
higher dimensions. But it seems to the author that a continuous (measurable?)
bijection from a domain in Rn to another such domain which conjugates two
families of analytic foliations may have to be analytic itself in certain privileged
directions as soon as the two families of foliations under consideration are
“general enough”. Although no clear statement is available at the moment,
there is the evidence of Dufour’s and Nakai’s higher dimensional results. This
is a natural question to investigate. Also, because of the natural links between
web theory and algebraic geometry, a wide part of web theory takes place in
a local holomorphic context; it would therefore be interesting to investigate
holomorphic webs from this point of view, in order to obtain generalizations
of [13] (there again, it seems to the author that the involved conjugating maps
should be required to be at least measurable; the dynamics of a complex one-
dimensional and codimensional foliation are much wilder than those of a real
such foliation, and there is little hope that our set-theoretic approach would
still work).

Acknowledgement. — The author wishes to thank heartfully Alain Hénaut,
who read a first draft of this paper and made many very interesting comments
on it, and also the referee of the first submitted version, for the same reasons.

2. Curves and pseudogroups

2.1. Curves. — In this section we will show a very simple lemma on the topol-
ogy of a curve. Here, we call curve any topological space C whose connected
components all are homeomorphic to R; an interval in a curve C is for us any
subspace homeomorphic to R, and the interval is bounded (respectively bounded
on one side) if it has two (respectively one) point(s) in its frontier. In partic-
ular, every interval is open in our terminology. There also is a natural notion
of an orientation on a curve, and if C is endowed with one, the family of inter-
vals which are bounded on one side naturally split into the two subfamilies of
intervals unbounded to the left and intervals unbounded to the right. Here is
the main example which we have in mind:

tome 135 – 2007 – no 1



RIGIDITY OF WEBS 7

Example. — Let F be a foliation; we may find an analytic vector field X ev-
erywhere tangent to F whose flow admits the leaves of F for its orbits (cf. Sub-
section 1.1). We now call interval of F any part of R2 which consists of all the
points having the form exp(tX)m with m a given point and t varying in some
open interval of R; with this notion of an interval, R2 becomes a curve whose
connected components are the leaves of F . We write C(F) for that curve and
call it the curve of F . Our choice of X provides us with a natural orientation
of C(F), should we need one.

2.2. Convenient topologies on a curve. — From now on, let C be a curve. Let
T1(C) be its topology, and let T0(C) be the (much weaker) topology on C whose
open sets write as unions of connected components of C for T1(C). Our interest
lies in a certain type of topologies on C, which are intermediary between T0(C)
and T1(C):

Definition 2.2.1. — A topology T on C is convenient if T0(C) ⊂ T and if T
is generated by intervals (so that T ⊂ T1(C)).

Example 2.2.2. — On C, the topology whose nonempty open sets are the
open neighborhoods of infinity is not convenient; indeed, unless C is connected,
this topology contains no interval at all!

Definition 2.2.3. — Let ϑ denote some choice of an orientation on C. We
write −ϑ for the opposite orientation. We write T (ϑ) for the convenient topol-
ogy on C which is spanned by the intervals of C which are unbounded to the
left (thus T (−ϑ) stands for the convenient topology spanned by intervals which
are unbounded to the right). Finally we let G(C) denote the space of “good”
topologies on C, which are by definition T1(C) together with every topology
having the form T (ϑ).

Lemma 2.2.4. — Let C, C′ be curves and let f be a set-theoretic bijection
from C to C′. If f(G(C)) ∩ G(C′) 6= ∅ then f(G(C)) = G(C′) and f is a
homeomorphism.

Proof. — It is obvious enough that the condition f(T1(C)) = T1(C′) implies
f(G(C)) = G(C′). Next show that if f(G(C))∩G(C′) 6= ∅ then f(T1(C)) = T1(C′).
For that, consider some T ∈ G(C); it suffices to show that we can build T1(C)
back from T by a purely set-theoretic construction. But we can describe T1(C)
as follows:

– If T is Hausdorff then T = T1(C).
– If not, then T1(C) is the weakest topology having the following two prop-

erties, (a) T ⊂ T1(C) and (b) if In is an infinite, strictly decreasing sequence
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8 BELLIART (M.)

of connected open sets for T then the complementary set of ∩nIn in C is open
for T1(C).

2.3. Pseudogroups on a curve. — Let C still be a curve. Let G be a collection
of couples (U, φ) where U is an interval in C and φ is an injective continuous
map from U to C. We assume that G has the following properties:

– Let (U, φ) belong to G and let V = φ(U): then the couple (V, φ−1) lies
in G.

– Let (U, φ) and (V, ψ) belong to G and let the interval φ(U) ∩ V be
nonempty in C: then, (φ−1(φ(U) ∩ V ), ψ ◦ φ) is in G.

Definition 2.3.1. — A collection of maps such as G above we call a pseudo-
group on C – keeping in mind that normally, a pseudogroup in the usual sense of
the word should be required to satisfy two more axioms (stability by localization
and by gluing) which we must forbear here, because they would ruin the proofs
to come!

Here is a painstaking list of further definitions, holding no real surprise.
First, given any x in C, we define theG-orbit of x as the set of all y in C for which
there exists a (U, φ) in G with x ∈ U and φ(x) = y; the relation of being in the
same G-orbit is readily seen to be an equivalence relation on C. Next, we call G
transitive on C if it has only one orbit. If x is some point of C, the stabilizer of x
in G is the subset of couples (U, φ) ∈ G with x ∈ U and φ(x) = x; it is readily
seen to be a subpseudogroup of G, i.e., a pseudogroup on C which is contained
in G. There is an obvious notion of a G-invariant orientation on C. Next,
identifying an element (U, φ) of G with its graph Γ(U, φ) ⊂ C×C, we can define
the notion of a set-theoretic conjugacy f between two pseudogroups G and G′

(the map f is required to exchange the two collections of graphs corresponding
to G and G′). Finally, call subcurve of C any subspace C′ of C which is a curve
for the induced topology: then obviously, the collection G(C′) of all couples
(U, φ) ∈ G for which U ⊂ C′ and φ(U) ⊂ C′ is a subpseudogroup of G defined
on C′. We call it the restriction of G to C′.

2.4. Pseudogroups and convenient topologies. — Let still C be a curve and let G
be a pseudogroup on C. Consider some topology T on C.

Definition 2.4.1. — We say that T is invariant by G if for any open set O
of T and any couple (U, φ) in G, the subset φ(U ∩ O) of C is again an open
set of T .
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RIGIDITY OF WEBS 9

Remark 2.4.2. — This condition implies in particular that for any O and
(U, φ) as above, O∩U belongs to T (indeed, a consequence of our two assump-
tions on G is that the couple (U, IU ) lies in G, where IU = φ−1 ◦ φ denotes the
identity map of U). As a special case, letting O = C, we see that U belongs
to T for all (U, φ) in G.

Let T be a convenient topology on C which is invariant by G. Let Γ be the
set of all couples (U, φ) with the following properties: U is an interval of T , φ
is an injective continuous map from U to C, and there exists a couple (U ′, φ′)

in G with U ⊂ U ′ such that φ is the restriction of φ′ to U . Then, first of all,
Γ is a pseudogroup on C; secondly, Γ contains G; and lastly, the topology T is
invariant by Γ.

Definition 2.4.3. — We call Γ the completion of G relative to T .

Example 2.4.4. — There are two very obvious convenient topologies on C
which are invariant by every G (they are T0(C) and T1(C)). If we next en-
dow C with an orientation ϑ and consider the pseudogroup G consisting of
all the couples (U, φ) such that U is unbounded to the left, φ is a continuous
orientation-preserving injection from U to C and φ(U) is unbounded to the left,
then T (ϑ) will be invariant by G.

2.5. A lemma. — We now show:

Lemma 2.5.1. — Let C be a curve and let G be a pseudogroup on C; let T be a
convenient topology on C which is invariant by G. We assume that G preserves
the orientation ϑ and is transitive on C. Then

T ∈
{
T0(C), T1(C), T (ϑ), T (−ϑ)

}
.

Proof. — Clearly, we can assume with no loss of generality that G coincides
with its completion relative to T (cf. Definition 2.4.3). Assume that T 6= T0(C)
from now on. We start by remarking that in order to show that T = T1(C)
(which is one of the possibilities), it would clearly suffice to build, for all x ∈ C,
an interval Ix of C containing x with Ix ∈ T , and then to show that every
subinterval of Ix containing x lies in T as well. Then, because G is transitive
on T , it would suffice to do this for just one particular x. Letting x be any
point of I = Ix in the statement just below, we thus see that the following
equivalence holds,

Fact 2.5.2. — We have T = T1(C) if and only if there is an interval I ∈ T
whose every subinterval also lies in T .

Now, since T is distinct from T0(C) it contains an interval whose boundary
is nonempty; there are only two possibilities:
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10 BELLIART (M.)

First case. — T contains some bounded interval I = ]a, b[ of C. Pick any sub-
interval ]α, β[ of I. By transitivity of G on C, for every r in I there is an
interval J of C containing a and a couple (J, φ) in G with φ(a) = r. Then
the interval I ∩ J lies in T , so that its image J ′ also does; the intersection J ′′

of that image with I, by construction, writes J ′′ = ]r, s[ for some s ∈ ]r, b[.
Next considering the union of all the J ′′ which are obtained for some r > α,
we get that ]α, b[ ∈ T . By the same token, using b instead of a, we construct
]a, β[ ∈ T ; the intersection of ]a, β[ and ]α, b[ being ]α, β[, we have T = T1(C)
in view of Fact 2.5.2.

Second case. — No bounded interval can be found in T . Still, there is a
couple of distinct intervals I, J in T with I ⊂ J , otherwise we would have
T = T0(C). With no loss of generality, we can assume that J belongs to T0(C)
(that is: we can replace J with the whole connected component of I in T ).
We now define the set X− of all r ∈ J for which T contains ]−∞, r[ and the
set X+ of all r ∈ J for which T contains ]r,+∞[ (we hope that the notation
“]−∞, r[ , ]r,+∞[”, which we haven’t bothered to define, is self-evident enough).
We have X− ∪X+ 6= ∅, because by assumption the interval I is bounded on
one side and thus X− ∪X+ must contain its bound.

Lemma 2.5.3. — If nonempty, X− is an interval which is unbounded on the
left; if nonempty, X+ is an interval which is unbounded on the right.

Proof. — Both cases are studied in the same way, so we do just one. Assume
that X+ 6= ∅ and consider some r ∈ X+. There is by transitivity of G, for
any s > r, a couple (U, φ) in G with r ∈ U and φ(r) = s. We must have
U = J or U = ]t,+∞[ for some t < r, otherwise we would have U ∩ ]r,+∞[

both nonempty and bounded in T , a contradiction. By the same token, since
φ preserves the orientation and sends r to s we have φ( ]r,+∞[ ) = ]s,+∞[, so
that s ∈ X+. In other words, X+ contains s as soon as it contains some r with
r < s; this is a characterization of the open intervals which are unbounded on
the right.

Lemma 2.5.4. — We have X− ∩ X+ = ∅ and X− ∪ X+ = J , so that by
connexity of J , either J = X− or J = X+.

Proof. — First show that X− ∩X+ = ∅: indeed if some r lies in both inter-
vals then there is an α < r in X+ and a β > r in X−, which by definition
of X− and X+ satisfy ]α,+∞[ ∈ T and ] −∞, β[ ∈ T , so that their bounded
intersection ]α, β[ lies in T ; a contradiction. Next show that X− ∪ X+ = J :
indeed assume that some r ∈ J would lie neither in X− nor in X+; then the
only connected neighborhood of r in T would be J . On the other hand, unless
X+ is empty, we can find by transitivity of G a couple (U, φ) in G with r ∈ U
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RIGIDITY OF WEBS 11

and φ(r) ∈ X+; by what we just saw, U = J . Let s = φ(r) and let a < b < s

lie in the interval X+ ∩ φ(J): then φ−1( ]b,+∞[ ) is a subinterval of J strictly
contained in φ−1( ]a,+∞[ ), so that r possesses, after all, strictly more than one
connected neighborhood in T ; a contradiction. Of course we reached that con-
tradiction by assuming that X+ 6= ∅, but if X+ = ∅ we can perform the same
proof mutatis mutandis with X− instead of X+ (recall that X−∪X+ 6= ∅).

We know that J = X− or J = X+. This, given the definitions, means
that T coincides with T (ϑ) or with T (−ϑ) in restriction to J . Now, let J ′

in T0(C) be any connected component of C; by transitivity of G, we can find
an interval I ∈ T contained in J and a couple (I, φ) in G with domain I and
image φ(I) ⊂ J ′. Then even if we have φ(I) = J ′, we can always find a smaller
interval I ′ ⊂ I, I ′ 6= I in T and we will then have φ(I ′) ⊂ J ′ with this time a
strict inclusion. We can now repeat our construction on J ′, to conclude that
T coincides with either T (ϑ) or T (−ϑ) in restriction to J ′ as well. Then, it
may a priori happen that T coincides with T (ϑ) on J and with T (−ϑ) on J ′

(say); but we can easily rule out this possibility by using the transitivity of G,
which obviously implies that this pseudogroup can only leave invariant the two
opposite orientations ϑ and −ϑ.

3. The geometry of a web

3.1. Parallelizable webs. — For any κ ∈ R, let Fκ denote the foliation of R2

by parallel lines with slope κ; let F∞ be the foliation by vertical lines. For us,
the model 3-web W3 is by definition (F0,F∞,F1). Given any three pairwise
distinct elements α, β and γ of RP1, there will exist a homography h sending
the triple (α, β, γ) to (0,∞, 1); from there one quickly deduces that every par-
allelizable 3-web is analytically conjugate to W3. Next, if d ≥ 4 and δ4, . . . , δd
are pairwise distinct real numbers all different from 0 and 1, we define the
model d-web Wd(δ4, . . . , δd) as being (F0,F∞,F1,Fδ4 , . . . ,Fδd). According to
Theorem 1.4.1, whose proof, as the reader may check, does not rely on the con-
tents of this subsection, any parallelizable web is analytically conjugate to some
model. So, the problem of describing the set-theoretic or analytic conjugacy
classes of parallelizable webs amounts to that of describing the corresponding
conjugacy classes for models. Then, the group of translations of R2 acts tran-
sitively on R2 and leaves invariant every model; so that two models will be
conjugate precisely if they are conjugate by a map which fixes the origin. We
are therefore left with the following

Problem 3.1.1. — Let W and W ′ be two model d-webs. Under what condi-
tions are W and W ′ set-theoretically, or analytically, conjugate by a map f

fixing the origin?

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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The analytic case is very simple to deal with:

Proposition 3.1.2. — Let W and W ′ be as above. Then W and W ′ are
analytically conjugate if, and only if, they coincide.

Proof. — Both webs have the same first three foliations F0,F∞ and F1. Then
the exponents δı of the subsequent foliations Fδı , if any, can be defined as the
(constant) cross-ratios of the tangents to F0,F∞,F1 and Fδı in that order;
this shows that they are invariants of C1-conjugacy.

Another way of stating the preceding proposition would be to say that
there is exactly one analytic conjugacy class of parallelizable 3-webs, and that
for d ≥ 4 the “vector of slopes” (δ4, . . . , δd) is a complete invariant of analytic
conjugacy. In the set-theoretic context, the answer is somewhat different:

Proposition 3.1.3. — Let W and W ′ be as in Problem 3.1.1 and have re-
spective vectors of slopes (δ4, . . . , δd) and (δ′4, . . . , δ

′
d). Then W and W ′ are

set-theoretically conjugate if, and only if, there is a field automorphism φ from
the field Q(δ4, . . . , δd) to the field Q(δ′4, . . . , δ

′
d) such that φ(δı) = δ′ı for all

ı ∈ {4, . . . , d}.

Proof. — First suppose that both fields are isomorphic, and build from there
a set-theoretic conjugacy between the corresponding webs. For that, we choose
some isomorphism φ from Q(δ4, . . . , δd) to Q(δ′4, . . . , δ

′
d) satisfying φ(δı) = δ′ı

for all ı, then choose a basis {bı} of the Q(δ4, . . . , δd)-vector space R, a basis
{b′ı} of the Q(δ′4, . . . , δ

′
d)-vector space R, and finally define a set-theoretic bi-

jection α of R onto itself by the formula α(
∑
kıbı) =

∑
φ(kı)b

′
ı where the kı

belong to Q(δ4, . . . , δd) and both sums are understood to be finite (this makes
sense because the families (bı) and (b′ı) are equipotent, so that we can use
the same collection of indexes ı for both of them). Once this is done, it is
straightforwardly checked that the map f(x, y) = (α(x), α(y)) conjugates W
to W ′. Notice that even in the case of a self-conjugacy from W to itself, a
well-chosen α will not be continuous; therefore, it will not be measurable by
Dufour’s Theorem.

Conversely, suppose that W and W ′ are set-theoretically conjugate by some
map f(x, y) = (α(x, y), β(x, y)). Then, first of all, f leaves F0 invariant, so that
β does not depend on x; similarly, because f leaves F∞ invariant, α does not
depend on y. Next, since f leaves both the origin and F1 invariant, it preserves
the diagonal x = y; at the same time, it sends it to the curve α(x) = β(y), so
that the two maps α and β from R to itself must coincide. Finally, consider
some other leaf of F1, which admits the equation y = x + k for a certain
constant k: its image by f will be both the curve y = α−1(α(x) + k) and some
other leaf of F1 with equation y = x+ k′; from which it is not hard to deduce
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that α(x + k) = α(x) + α(k). This takes place for every x and k, so that α is
an automorphism of the additive group R; we now show the following

Lemma 3.1.4. — Let Γ be the subset of couples (a, b) in R × R for which
α(ax) = bα(x) for all x ∈ R. Let A and B respectively be the first and the
second projections of Γ on R. Then A and B are subfields of R and Γ is the
graph of an isomorphism of fields between A and B.

Proof. — The relation (a, b) ∈ Γ is, in any case, the graph of a bijection
from A to B, because this relation implies α(a) = bα(1) where α is bijec-
tive and α(1) 6= 0 = α(0). Write b = φ(a) if (a, b) lies in Γ. Since α(0) = 0 and
α(x) = α(x) we have (0, 0) ∈ Γ and (1, 1) ∈ Γ. Because

0 = α(x− x) = α(x) + α(−x)

by additivity of α, we have (−1,−1) ∈ Γ too. Next, let (a, b) and (a′, b′) belong
to Γ: for every x, again by additivity of α, we have

α
(
(a+ a′)x

)
= α(ax) + α(a′x) = (b+ b′)α(x),

so that (a + a′, b + b′) also lies in Γ; applying the definition, we also have
α(aa′x) = bα(a′x) = bb′α(x), so that (aa′, bb′) lies in Γ too. Finally, if a is
nonzero then we deduce from α(x) = α(aa−1x) = bα(a−1x) that (a−1, b−1) lies
in Γ. To sum up, both A and B are stable by inversion, addition, multiplication,
opposition (which is multiplication by −1) and φ moreover commutes with
addition and multiplication, as asserted.

Resume showing Proposition 3.1.3. Let ı be some index in {4, . . . , d} and
consider the line y = δıx which is the leaf of Fδı passing through the origin:
its image under f is the curve y = α−1(δıα(x)), and at the same time it is the
leaf of Fδ′ı passing through the origin – that is to say, the line y = δ′ıx. From
there we deduce that α(δıx) = δ′ıα(x) for all x. This shows that the subfields
A and B in Lemma 3.1.4 respectively contain Q(δ4, . . . , δd) and Q(δ′4, . . . , δ

′
d);

according to said lemma, there is a field isomorphism φ from A to B with the
property that φ(δı) = δ′ı for all ı ∈ {4, . . . , d}.

To sum up all that precedes:

– Between every pair of parallelizable set-theoretically conjugate webs,
there exists a nonmeasurable conjugacy;

– Still, all parallelizable 3-webs are analytically conjugate (that is, if we
take Theorem 1.4.1 for granted);

– Finally if d ≥ 4, there exist set-theoretically conjugate d-webs which are
not even measurably conjugate, whence Theorem 1.4.2.
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14 BELLIART (M.)

An example of the last situation is provided by the family of models
W(δ4, . . . , δd) for which the extension Q(δ4, . . . , δd) of Q is purely transcen-
dental with transcendence degree d − 3 (any two models of that kind are
set-theoretically conjugate!)

3.2. Conjugacies and continuity. — Let W = (F1, . . . ,Fd) be a d-web with d ≥
3. We can associate withW the d curves Cı = C(Fı); for a better understanding
of what follows, one should keep in mind that Cı is just R2 equipped with some
strange topology. Now, if W ′ is another d-web, we can define as well the
curves C′ı for it; then if f is a set-theoretic conjugacy from W to W ′, it will be
psychologically useful to distinguish between f when seen as a map from R2 to
R2 and the same f when seen as a map from Cı to C′ı (although both objects
are logically the same): this is why we will use the notation fı in the second
case. This convention, while logically useless, makes the proofs all the more
legible: e.g., if we say “fı is continuous”, we mean that fı(T1(Cı)) = T1(C′ı). We
next remark that the maps f1, . . . , fd are continuous as soon as f is so; what
is not so trivial is that the reciprocal also holds true:

Proposition 3.2.1. — The function f is analytic if and only if one of the fi’s
is continuous.

Proof. — With no loss of generality, we may assume that ı = 1 during the
proof. We first show the following, seemingly weaker

Lemma 3.2.2. — The function f is continuous if and only if both f1 and f2
are so.

Proof. — Let I1 and I2 be nonempty subsets of R2; we assume that each Iı
lies in a single leaf Li of the corresponding foliation Fı. Notice that L1 cannot
meet L2 at more than one point: indeed, let φ be a map from R2 to R whose
level curves are the F1-leaves (it exists by Kaplan’s Theorem). By transver-
sality, φ will be strictly monotonous on L2, while by definition it will be constant
on L1. So, it will be constant and injective at the same time in restriction
to L1 ∩ L2.

Now, given P1 ∈ I1 and P2 ∈ I2, the F2-leaf of P1 and the F1-leaf of P2

intersect at most at one point; if this point exists, we call it S(P1, P2). Con-
versely, for any point Q of R2, the F3−ı-leaf of Q meets Iı at one point
Pı(Q) at most; and if both P1(Q) and P2(Q) are defined, we obviously have
Q = S(P1(Q), P2(Q)). All this to say that we can define an injective func-
tion S(P1, P2) from part of I1 × I2 to R2 in a purely set-theoretic way; when,
and only when, S is defined on all of I1 × I2, we call its image the square with
sides I1 and I2 for W.
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The following picture helps understand the construction: we identify R2

with the inside of a euclidian triangle thanks to some analytic map; on that
triangle, we let W be the 3-web by segments which are parallel to one of the
triangle’s sides. Assume F1 and F2 are respectively the horizontal and the
vertical foliation: then I1 and I2 allow us to build a square, while I ′1 and I ′2 do
not (to the leftmost point of I ′1 and the highest point of I ′2, there corresponds
no point of the triangle).

Picture 1: squares for webs

Letting Σ(W) denote the collection of all squares for W, we have obviously
f(Σ(W)) = Σ(W ′); furthermore, with an obvious choice of notation, we will
have

(1) f ◦ S(P1, P2) = S
(
f1(P1), f2(P2)

)
for any square S for W. Consider now the special case where I1 and I2 are
intervals: this provides us with a special subfamily Σ0(W) of squares which are
domains in R2; notice that the map S(P1, P2) from I1× I2 to R2 is in that case
a bianalytic map.

Lemma 3.2.3. — Every P ∈ R2 has a neighborhood N which is a square
for W.

Proof. — Define F1 and F2 as the foliations by level curves of analytic submer-
sions φ1 and φ2 from R2 to R. Then, the map φ(Q) = (φ1(Q), φ2(Q)) is a local
diffeomorphism from R2 to itself which sends the 2-web (F1,F2) to that whose
leaves are the vertical and horizontal lines. Letting (α, β) stand for φ(P ), there
will exist for ε > 0 small enough a neighborhood N of P in restriction to which
f is a diffeomorphism onto the square sup(|x−α|, |y−β|) < ε. By construction,
that N has the desired property.

Assume now that f1 and f2 both are continuous: then from (1) and the fact
that S is bianalytic, it follows at once that f is continuous on the image S(I1, I2)

of S. So, Lemma 3.2.2 is just a consequence of the existence of sufficiently many
squares ensured by Lemma 3.2.3.
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Getting back to Proposition 3.2.1, we will show that f2 is continuous as soon
as f1 has the same property. It suffices to do so in the neighborhood of every
point P ∈ R2. Respectively call L1 and L2 the F1-leaf and the F2-leaf of P ;
let P ′, L′1, L′2 be respectively f(P ′), f(L′1), f(L′2). We define a bianalytic map φ
from L1 to L2, defined in some neighborhood of P , and a bianalytic map φ′

from L′1 to L′2, defined in some neighborhood of P ′, for which f2 ◦ φ = φ′ ◦ f1.
This clearly suffices to ensure the desired result. Since both definitions are
symmetric, we will define only the first of these two maps by letting Q2 = φ(Q1)

if Q1 ∈ L1, Q2 ∈ L2 and Q1 and Q2 are on the same F3-leaf. The following
picture illustrates this.

Picture 2: proof of 3.2.1

We have shown that f is continuous as soon as f1 is so; and by Dufour’s
Theorem, f is analytic as soon as it is continuous.

3.3. The pseudogroups of a web. — Let k be some index in {1, . . . , d}. We will
now define a certain pseudogroup Gk on Ck which emerges from W through
certain purely set-theoretic considerations; as a result, the map fk will yield
a conjugacy between Gk and the corresponding pseudogroup G′k on C′k. This
fact will allow us to show Theorem 1.4.1.

Let L and L′ be any two leaves of Fk, pick some index ı in {1, . . . , d} − {k}
and define the subset Xı(L,L′) of L × L′ consisting of those couples (P,Q)

which lie along the same Fı-leaf.
In the following picture, we identify R2 with the interior of a euclidian trian-

gle and letW be some linear web with F1 horizontal and F2 vertical. Let k = 1

and ı = 2: then with our choice of leaves L,L′1 and L′2, we have X2(L,L′2) = ∅
while X2(L,L′1) is an unbounded interval.

Lemma 3.3.1. — If nonempty, Xı(L,L′) is the graph of a bianalytic map
τ ı(L,L′) whose domain is a subinterval of L and whose image is a subinterval
of L′.
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Picture 3: the domain of Xi(L,L′) may be empty

Proof. — An Fı-leaf can only meet an Fk-leaf at one point (as we saw during
the proof of Lemma 3.2.2); therefore, if nonempty, Xı(L,L′) is the graph of
an injective map τ ı(L,L′) from part of L to part of L′. Openness of the
domain and bianalyticity come at once from the implicit function theorem and
transversality of Fk with Fı; the fact that τ ı(L,L′) has intervals for its domain
and target comes from elementary topological considerations based on the fact
that any leaf of any foliation cuts R2 in two topological disks.

We call τ ı(L,L′) a translation of Fk along Fı; we notice that τ ı(L,L′) has
τ ı(L′, L) for inverse. We call bounce of L on L′ along Fı and F the map from
L to L which writes as Bı (L;L′) = τ (L′, L)◦τ ı(L,L′); the inverse of Bı (L;L′)

is Bı(L;L′). The set τk of all possible translations τ ı(L,L′), where L,L′ are
leaves of Fk and ı is an index in {1, . . . , d} − {k}, generates a pseudogroup Gk
on Ck. We can similarly define a pseudogroup G′k on C′k. Now, even if Gk
and G′k consist of analytic maps, their definition from W and W ′ only uses
set-theoretic notions, so that we will have, as planned:

Proposition 3.3.2. — fk yields a set-theoretic conjugacy from Gk to G′k.

Picture 4 may surely help, and justify at the same time our heuristic use of
the noun “bounce”.

Let L,L′ and L′′ be leaves of Fk. Let ı,  be indexes other than k. We notice
for further use the following equalities, which are obvious on our picture:

τ ı(L′, L′′) ◦ τ ı(L,L′) = τ ı(L,L′′),

τ (L′, L′′) ◦ τ ı(L,L′) = τ (L,L′′) ◦Bı (L,L′).

We next check that Gk satisfies the assumption of Lemma 2.5.1 (and of course,
a similar result holds for G′k as well).
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Picture 4: translations and bounces in a web

Proposition 3.3.3. — The pseudogroup Gk is transitive on Ck and preserves
the natural orientation of that curve given by the choice of some nonvanishing
vector field tangent to Fk.

Proof. — Gk preserves the orientation because it is spanned by maps which do
so (we hope this is obvious enough on Picture 4). Check that it is also transitive.
For that, pick some point P in Ck (which, we recall one more time, is R2 as a
set). Also choose two distinct indexes ı,  in {1, . . . , d} − {k} and notice that
the orbit of P under Gk is invariant by both the foliations Fı and F, which
are transverse: therefore, this orbit is open in the usual topology of the plane.
Since every orbit is open and the plane is connected, there is just one orbit.

3.4. A disjonction of cases. — We now notice that webs fall into three classes
corresponding to different behaviours of the pseudogroups Gk we just built.

A. Incomplete webs. — We call W complete if for any pair of distinct indexes
ı,  ∈ {1, . . . , d}, every leaf Lı of Fı and every leaf L of F meet at exactly
one point (we already saw that they met at most at one point in any case).
Otherwise, we call W incomplete. If W is incomplete, then by applying a
suitable permutation on the set {1, . . . , d} of indexes we may assume with
no loss of generality that some leaf L1 of F1 and some leaf L2 of F2 do not
meet. We then notice that in such a case, the subset X of R2 consisting of
points whose F2-leaf does not meet L1 is a nonempty closed subset whose
complementary open subset is also nonempty: therefore, we may assume with
no loss of generality that L2 lies in the boundary of X . Consider next some
point P in L2 and its leaf L′1 for F1: since L′1 is transverse to the boundary
of X , part of L′1 will lie outside X , to the effect that the translation τ2(L1, L

′
1)
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will not have empty definition domain. On the other hand, this map will not be
a bijection from L1 to L′1, because by construction its image will not contain P
(see Picture 5). We thus have shown the following

Proposition 3.4.1. — If W is incomplete, then we may assume with no loss
of generality that G1 contains a certain couple (U, φ) where U is not a leaf
of F1.

In the following picture, we identify R2 with the Poincaré half-plane; F1 is
the foliation by half-lines which originate from some boundary point A, simi-
larly the leaves of F2 come from another point B, and F3 consists of horizontal
lines.

Picture 5: τ2(L1, L
′
1) sends all L1 to ]AP [

From our last proposition, we deduce that incomplete webs are rigid:

Proposition 3.4.2. — W is complete if and only if W ′ is so, and if these
webs are not complete then f1 is continuous.

Proof. — The fact that both W and W ′ must be complete or incomplete at
the same time is obvious in view of the definition. Next, let T be the weakest
topology on C1 which is both G1-invariant and not weaker than T0(C1): if
W is incomplete then T is spanned by intervals one at least of which does
not belong to T0(C1) (that interval is the “U ” of Proposition 3.4.1). In that
case we may apply Lemma 2.5.1 to see that T belongs to the space G(C1) of
good topologies on C1. Defining a similar topology T ′ on C′1, we will have
f1(T ) = T ′ and therefore f1(G(C1)) ∩ G(C′1) 6= ∅, whence the continuity of f1
by Lemma 2.2.4.
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B. Complete, curved webs. — Let W be complete. Then, the stabilizer GLk in
Gk of any leaf L of Fk is a pseudogroup whose every map has L for both its
domain and target; in other words, it is a group of homeomorphisms of L in
the usual sense.

Lemma 3.4.3. — The group GLk is a connected subgroup of Hom(L) for the
compact-open topology.

Proof. — It suffices to show that GLk admits as a set of generators the collection
of all bounces Bı (L;L′), with L′ a variable leaf of Fk and ı,  indexes different
from k and from one another. Indeed, assume for a moment that this result
holds. For the compact-open topology on Hom(L), and for fixed ı and , the
bounce Bı (L;L′) obviously depends continuously on the leaf L′, which in turn
evolves in the connected space of leaves of Fk; therefore, if we let Bı(L) denote
the space of all bounces Bı (L;L′), that space is connected. Next notice that all
the Bı(L) contain the identity map of L (which writes Bı (L;L)). The union of
connected spaces with a common point is connected; therefore the union B(L)

of the Bı(L) is connected. A topological group with a connected system of
generators has to be connected; so if B(L) generates GLk , that group will be
connected.

Show that B(L) generates GLk . Any element w in GLk writes as a “word”
in the “alphabet” of translations: more precisely, there exist an integer n ≥ 1,
a family of leaves L1, . . . , Ln in Fk and a sequence of indexes a1, . . . , an+1 ∈
{1, . . . , d} − {k} such that

w = τan+1(Ln, L) ◦ τan(Ln−1, Ln) ◦ · · · ◦ τa2(L1, L2) ◦ τa1(L,L1).

We will assume that n is the smallest integer for which such a decomposition
of w exists. We already noticed that for all leaves A,B,C of Fk, one has

τ ı(B,C) ◦ τ ı(A,B) = τ ı(A,C);

so, the assumption that n is minimal implies that ap 6= ap+1 for 1 ≤ p ≤ n.
We now reason by induction on n. Notice that n is not the minimum number
of translations required to write w: that number is n + 1. If n = 1 then
w = Ba2

a1
(L;L1) and we are done. If n > 1, notice that

w = w′ ◦ τa2(L1, L2) ◦ τa1(L,L1)
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where w′ is the product of n− 1 translations. We saw that

τa2(L1, L2) ◦ τa1(L,L1) = τa2(L,L2) ◦Ba2
a1

(L;L2)

so that w is the product of the bounce Ba2
a1

(L;L2) and of the word
w′◦τa2(L,L2). But since that word lies in GLk and is the product of n
translations at most, it writes as a product of bounces by the assumption of
our induction: therefore, w does too.

We will say that W is curved if GLk is not simply transitive on L for some L
and some k. If W is not curved we call it flat. Recall that a classical invar-
iant, called the Blaschke (or Chern) curvature, has been defined for 3-webs;
and although this is not obvious at the time being, the contents of the next
subsection imply that the 3-webs which are curved in our sense are precisely
those whose curvature tensor is not everywhere vanishing – which is our reason
for choosing this terminology.

Let L be as above, let P belong to L and let GPk be the stabilizer of P in Gk,
which is a subgroup of GLk . We have the following

Lemma 3.4.4. — GPk is a connected group.

Proof. — Since Gk is transitive on Ck, GLk has to be transitive on L; so that
the map from GLk to L sending g to g(P ) endows GLk with the structure of a
principal bundle with group GPk (acting on GLk by translations on the right) and
contractible base space L. Bundles with contractible base spaces are product
bundles, so that GLk has the same homotopy type as GPk ; since G

L
k is connected,

we have the desired result.

From there we deduce:

Proposition 3.4.5. — If W is curved then fk is continuous for some k.

Proof. — We assume that W is curved, which implies that GLk is not simply
transitive for some k and L as above; or in other words, that GPk is not trivial
for some k and P as above. Consider now the family of GPk -orbits in L: by
assumption, not every point of L is fixed under GPk , so that certain of these
orbits will have more than one point; let O be one of them. Since O is an orbit
of a connected group acting continuously on a line, and O does not consist of
a global fixed point, O has to be an interval in L. This interval is not equal
to L because it does not contain P . We now let T be the weakest topology
on Ck which contains every orbit such as O, for every possible P . This is
by construction a convenient, Gk-invariant topology on Ck which is distinct
from T0(Ck); its image by fk is a topology of the same nature on C′k, and we
can conclude as in Proposition 3.4.2.
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C. Complete, flat webs. — We will show the following

Proposition 3.4.6. — If W is both complete and flat, then W ′ is so, and in
that case, both webs are analytically parallelizable.

Proof. — The first part of the statement is obvious. We next choose two iso-
morphisms of Lie groups x → g1(x) and x → g2(x) from R to GP1 and GP2
respectively, where P is some point of R2 chosen as an origin. We write re-
spectively L1 and L2 for the F1- and the F2-leaf of P . Let Q be any point
of R2: since W is complete, the F2-leaf of Q meets L1 at one point exactly,
and this point writes g1(x)P in a unique way; similarly, the F1-leaf of Q meets
L2 at one point exactly, and this point writes g2(y)P in a unique way. The
map Q 7→ (x, y) provides us with an analytic global chart in which we work
from now on; this leads us to assume with no loss of generality that F1 = F0,
that F2 = F∞, that P is the origin, that L1 and L2 are the coordinate axes
and that GP1 and GP2 are the groups of translations along these axes. Consider
now some index ı ∈ {3, . . . , d}, some parameter c and two leaves A and B of Fı:
these leaves will intersect the leaf L1(c) of F1 defined by y = c at points whose
coordinates in our chart write respectively in the form (a(c), c) and (b(c), c).
Computing explicitly the values that the bounce B2

ı (L1, L1(c)) from L to itself
takes for x = a(0) and x = b(0), and remembering that this bounce is by as-
sumption a translation in x, we conclude that a(c) − b(c) = a(0) − b(0). This
happens for all values of c and all leaves A,B of Fı; therefore, Fı is invariant by
horizontal translations. The same argument with F1 and F2 exchanged allows
us to conclude thatW is invariant by all the translations of R2, which of course
forces this web to be a model.

3.5. From continuity to analyticity. — Once f has been shown to be continuous,
it will be analytic by Dufour’s Theorem. To conclude this paper, we would
like to hint to an alternative proof of that fact, on the lines of an argument
by Nakai. We just sketch the construction, because this part of the result is
not really original. Let P be a point, and show that f is analytic on some
neighborhood of P . If this neighborhood is small enough, the restriction of
F1 to it is the family of level curves for some analytic submersion φ; next,
define locally each of F2 and F3 as the foliations by orbits of a (possibly not
complete) vector field Xı, normalized by the condition dφ(Xı) = 1. Finally,
let X1 = X3 − X2. Since dφ(X1) = dφ(X3) − dφ(X2) = 0, we see that X1

is everywhere tangent to F1; since F2 and F3 are transverse, X1 is nowhere
vanishing. Local integration of the ODE ẋ = X1(x) starting from some point P
yields a local chart for C1 around P . If two such charts overlap, the transition
map from one to another is a translation; but we can consider if we wish the
bigger atlas A on C1 which contains all the charts above and is at the same
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time invariant by affine transformations of its parameters – in other words,
we turn C1 into an affine curve thanks to X1. This amounts to dropping the
arbitrariness in our choice of X1 by considering all the charts corresponding
to all possible fields X1; for given the normalization dφ(Xı) = 1, any other
field X ′1 such as X1 writes in the form X ′1 = g ·X1 with g a first integral for F1.
We have:

Proposition 3.5.1. — The affine atlas A described above for C1 is an invari-
ant of C0-conjugacy.

In other words: the map f1 from C1 to C′1 equipped with the atlases above
will be an affine map as soon as it is continuous!

No proof, but a hint. — Pick a leaf L of F1. Let I be an interval in L; let Bn
be a sequence of bounces from L to L which are all defined on I, and assume
that Bn tends to the identity on I for the compact-open topology. Let Γn
be the pseudogroup on L which is spanned by Bn; finally, let Γ(I,Bn) be the
“limit” of the sequence Γn of pseudogroups, in the following sense:

Definition 3.5.2. — A continuous injective map g from I to L lies in Γ(I,Bn)

if some sequence γn ∈ Γn admits g for an accumulation point w.r.t. the
compact-open topology on the space of continuous maps from I to L.

Perform this construction for all possible L, I and Bn. Consider the pseu-
dogroup G spanned by the union of all the Γ(I,Bn) thus obtained. Using only
elementary calculus and the equalities

df 1(X2) = 1, df 1(X3) = 1, X1 = X3 −X2,

one can show that G is transitive on L and that its elements are restrictions
to suitable intervals of the elements of the pseudoflow of X1. Thus, we defined
this analytic pseudoflow – of which the affine structure of C1 derives – by purely
topological considerations.
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