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GENERALIZED KUMMER VARIETIES

BY MARTIN G. GULBRANDSEN

ABsTrRACT. — We investigate the existence of Lagrangian fibrations on the generalized
Kummer varieties of Beauville. For a principally polarized abelian surface A of Picard
number one we find the following: The Kummer variety K™ A is birationally equivalent
to another irreducible symplectic variety admitting a Lagrangian fibration, if and only
if n is a perfect square. And this is the case if and only if K™ A carries a divisor with
vanishing Beauville-Bogomolov square.

RESUME (Fibrations lagrangiennes sur les variétés de Kummer généralisées)

Nous étudions l’existence de fibrations lagrangiennes sur les variétés de Kummer
généralisées dde Beauville. Pour une surface abélienne principalement polarisée dont le
nombre de Picard égale 1 nous prouvons le résultat suivant : la variété de Kummer K™ A
est birationnellement équivalente & une &variété symplectique irréductible admettant
une fibration lagrangienne si et seulement si n est un carré parfait. Et cela est le cas
si et seulement si K™ A supporte un diviseur dont le carré de Beauville-Bogomolov
s’annule.

1. Introduction

Let X denote a projective irreducible symplectic variety of dimension 2n.
We refer the reader to Huybrechts’ exposition [6] for definitions and general
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284 GULBRANDSEN (M. G.)

background material. Matsushita [8], [9], [10], [L1] studied fibrations of X,
that is, proper maps

(1) f: X — B,

such that a generic fibre is connected and has positive dimension. Assuming B
to be projective and nonsingular, Matsushita showed that every component of
every fibre of f is a Lagrangian subvariety of X of dimension n, and every non-
singular fibre is an abelian variety. Furthermore, the base B is n-dimensional
Fano and its Hodge numbers agree with those of P™. It is a conjecture that B
is in fact isomorphic to P".

The setup can be generalized slightly:

DEeFINITION 1.1. — With X and B as above, a rational map
f:X--+B

is a rational fibration of X over B if there exist another projective irreducible
symplectic variety X’ and a birational equivalence ¢: X’ -=» X such that the
composition f o ¢ is a (regular) fibration of X’ over B.

A basic tool in the study of irreducible symplectic varieties is the Beauville-
Bogomolov form, which is an integral quadratic form q on H2(X,Z), satisfying

g(a)" = cdeg(a®")

for a positive real constant c¢. A birational map between irreducible symplectic
varieties induces an isomorphism on H?(—,Z), compatible with the Beauville-
Bogomolov forms. It follows that in the situation of Definition 1.1, the pullback
D = f*H of any divisor H on B satisfies ¢(D) = 0. Conversely, one may ask:

QUESTION 1.2. — Suppose X carries a nontrivial divisor D with vanishing
Beauville-Bogomolov square. Does X admit a rational fibration over P™?

One may try to answer the question for the known examples of projective
irreducible symplectic varieties. There are two standard series of examples,
both due to Beauville [1]: The first is the Hilbert scheme S (of dimension 2n)
parametrizing finite subschemes of length n of a K3 surface S. The second is
the (generalized) Kummer variety K™A (of dimension 2n — 2) associated to an
abelian surface A, defined as the fibre of the map

(2) o: AN A

induced by the group law on A. The map o is locally trivial in the étale topol-
ogy, and in particular all fibres are isomorphic. So there is no ambiguity in this
definition. Recently, Sawon [15] and Markushevich [7] answered Question 1.2

in the affirmative for the Hilbert scheme SI™ of a generic K3 surface. In this
text, we consider the case of the Kummer varieties.
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LAGRANGIAN FIBRATIONS ON GENERALIZED KUMMER VARIETIES 285

To state our result, we need the notion of the dual divisor class: If C' € Pic(A)
is an ample divisor class, then there is a canonically defined dual divisor class
C ¢ Pic(A), which is also ample, and the two divisors C' and C have the
same self intersections. A precise definition is given in Example 2.4. With this
notation, our result is the following:

THEOREM 1.3. — Let A be an abelian surface carrying an effective divisor
C C A with self intersection 2n, where n > 2, and assume there exist non-
singular trreducible curves in the linear system |6| on A. Then the Kummer
variety K™ A admits a rational fibration

(3) frKMA - |C| 2Pt

REMARK 1.4. — The assumption that |6’\ | contains nonsingular irreducible
curves is only used to verify that a generic fibre of f is connected. We will
see in Example 2.4 that this assumption is satisfied whenever A is indecompos-
able, i.e. not a product of elliptic curves, and also whenever C' is nonprimitive,
i.e. divisible in the Néron-Severi group of A.

The theorem is proved in Section 3. We have the following corollary, which
answers Question 1.2 in the affirmative for the Kummer varieties associated to a
generic principally polarized abelian surface, and which is proved in Section 3.5:

COROLLARY 1.5. — If the abelian surface A has Picard number one and ad-
mits a principal polarization, then the following are equivalent, for each n > 2:

1) The Kummer variety K™ A admits a rational fibration over P"~1.
2) K™A carries a divisor with vanishing Beauville-Bogomolov square.

3) n is a perfect square.

The present work has been carried out independently of the works of Sawon
and Markushevich, but the construction is similar. However, Sawon and
Markushevich are able to answer Question 1.2 for the Hilbert scheme of any
(generic) K3 surface, and their construction involves a certain moduli space
of twisted sheaves. In this text, we avoid twisted sheaves, but are only able
to answer Question 1.2 for (generic) principally polarized abelian surfaces.
It might be possible to extend the construction to arbitrary polarizations
by adapting the use of twisted sheaves in the construction of Sawon and
Markushevich. ")

(1) After this paper was written, K. Yoshioka (arXiv:math.AG/0605190) answered Ques-
tion 1.2 affirmatively for Kummer varieties of arbitrarily polarized abelian surfaces. The
proof uses twisted sheaves.
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I would like to thank Geir Ellingsrud for numerous fruitful discussions, and
Manfred Lehn for introducing me to the question of existence of Lagrangian
fibrations.

2. Preparation

We work in the category of noetherian schemes over C. By a map of schemes
we mean a morphism in this category. By a sheaf on a scheme X we mean a
coherent O x-module.

If A is an abelian variety, we denote the identity element for the group law
on A by 0, and if a is a point on A, we write T,: A — A for translation by a.
We write A for the dual abelian variety. We denote by P, the homogeneous
line bundle on A corresponding to a point z € A. If D is a divisor on A,
we denote by

¢pp: A— A

the map that takes a point a € A to the (invertible sheaf associated to the)
divisor T;D — D.

We use the same symbol to denote a divisor on a variety, its class in the
Picard group and its class in the second cohomology group.

In this section, we recall a few results from the literature on sheaves on
abelian surfaces.

2.1. The Fourier-Mukai transform. — Let X — T be an abelian scheme over
T, and let X — T denote its dual abelian scheme. Let P be the Poincaré line
bundle on X X X , normalized such that the restrictions of P to X x 0 and
0 x X are trivial. Let

XEXxr X LX
denote the two projections.

Following Mukai [12], [13], we define a functor S from the category of Ox-
modules to the category of O-modules by

5(8) = ¢.(0*(E) ®P).

Reversing the roles of X an X , we get a functor S taking an O )?—module F to
the Ox-module

S(F) =p.(q"(F) @ P).

TOME 135 — 2007 — N° 2
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DEFINITION 2.1. — An Ox-module & satisfies the weak index theorem (WIT)
with index 4 if
RPS(E)=0 forall p#i.

The Fourier-Mukai transform of such a sheaf £ is the O)?—module
£ = R'5(&).

For each ¢t € T, we may view £ ® k(t) as a sheaf on the fibre X;, which is an
abelian variety. We have the following base change result:

THEOREM 2.2 (see Mukai [13]). — Let £ be a sheaf on X — T, flat over T.
The locus of points t € T such that £ ® k(t) satisfies WIT is open. If € Q k(t)
satisfies WIT with indez i for allt € T, then £ also satisfies WIT with index 1,
£ is flat over T and we have for allt € T

EQk(t) X E k().

We will apply this only in the case X = Ax T, where A is an abelian surface,
and view £ as a family of sheaves on A parametrized by T

Mukai’s discovery was the following:

THEOREM 2.3 (see Mukai [12]). — Let A be an abelian variety of dimension g.
The functor S induces an equivalence of derived categories

RS: D(A) — D(A)
with quasi-inverse taking a complex K* to (—1)4RS(K*)[—g]. In particular,

~

if £ is a sheaf on A satisfying WIT with index i, then £ also satisfies WIT,
with index g — i, and we have a natural isomorphism

£ = (—1)%8.

A similar statement holds when A is replaced with an arbitrary abelian
scheme [13], but we will not need this.

Mukai [13] also calculated the Chern character in H*(A,Z) of RS(K*) in
terms of the Chern character of the complex K*: To state the result, recall that
there is a canonical duality between the cohomology groups of A and those of A.
Thus, using Poincaré duality, we may identify

(4) HP(A,Z) = H*7P(A, 7).

Writing ch? for the 2p’th component of the Chern character, and suppressing
the isomorphism (4), Mukai found

(5) ch? (RS(K*)) = (=1)P ch? P(K*).
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In particular, whenever £ satisfies WIT with index 4, we have
(6) chP(E) = (—=1)"FP ch9P(€).

We remark that, on an abelian surface, the components of the Chern character
are the rank, the first Chern class and the Euler characteristic:

ch®(&) =7(&), ch* (&) =1 (&), ch?(&) = x(E)

EXAMPLE 2.4. — Let C C A be an effective divisor with positive self inter-
section on an abelian surface. By a theorem of Mumford [14, §16], we have

HP(A,PE(C)) =0, forallp>0andallxe A.

Hence, O4(C) satisfies WIT with index 0, and O4(C) is locally free on A.

e —

Applying formula (6), we see that O4(C) has rank equal to x(O4(C)) = 3C?

and Euler characteristic 1, whereas under the isomorphism (4), we have

o —

c1(04(C)) = —C.

Thus, defining C € Pic(A) to be the divisor class such that

.

04(~C) = det 04(C),

we see that the classes of C and C in H 2(—,Z) correspond under the isomor-
phism (4).

Note that the pullback of O4(C) by the map ¢c: A — A is [12]

o —

¢ (0a(C)) = Oa(~C)®*
where d = %02, which is also the degree of ¢¢. It follows that
¢ (C) =dC.
Consequently, C is ample, and its self intersection is 0?2 = 2.

We also note that, by Bertini’s theorem, the assumption in Theorem 1.3,
that |6 | contains nonsingular irreducible curves, is automatically satisfied un-
less |6’\ | has base points. This can only happen if both C is indivisible in
H2(A\, Z) [14, §6,816] and Ais a product of elliptic curves [2, §10.1]. This
proves the claim in Remark 1.4, since C is divisible if and only if c is, and A
is a product if and only if A is.
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2.2. Moduli of sheaves on an abelian surface. — Let A be an abelian surface and
fix a polarization H. By a (semi-) stable sheaf on A we will mean a Gieseker
(semi-) stable sheaf with respect to H. Fixing a rank r > 0, first Chern class
¢1 € NS(A) and Euler characteristic x, we denote by Ma(r, ¢1, x) the Simpson
moduli space of stable sheaves with the given invariants. In the cases of interest
to us, stability and semi-stability will be equivalent, so that M 4(r, c1, x) is going
to be projective.

We will in fact only consider sheaves of rank one or zero, so we note that
every torsion free sheaf of rank one is stable, whereas in the rank zero case,

Riemann-Roch gives the following condition: A pure one-dimensional sheaf £
on A is stable if and only if we have

WE) x(E)
@) dog (F) ~ degpy(©)

for every nontrivial proper subsheaf F C £.

Yoshioka [16] defines a (regular) map
(8) a: Ma(r,cr,x) — Ax A

that can be described at the level of sets as follows, except that we take the
liberty to make a sign change: Choose a representative £ € Pic(A) in the class
c1, and also a representative £’ € Pic(A) in the class corresponding to ¢; via
Poincaré duality (4). Then define a = (,6), where

§(F) = det (RS(F)) "o L',

§(F) =det(F)®@ L.
Note that /6\(.7-') is an element of Pic’(A) = A and, by equation (5), §(F) is an
element of Pic’(A) = A.

THEOREM 2.5 (see Yoshioka [16]). — Assume the triple (r,c1,x) is primitive
in the even cohomology €P; H?(A,7) and that semi-stability and stability are
equivalent conditions on a sheaf with these invariants. Furthermore assume the
polarization H is generic. If the dimension of Ma(r,c1,X) is at least 8, then

1) Ma(r,c1,x) is deformation equivalent to Al™ x A for suitable n.
2) The map « in (8) is locally trivial in the étale topology.

3) A fibre K4(r,c1,x) of the map « is deformation equivalent to the Kum-
mer variety K™ A. In particular, K 4(r,c1,x) s an irreducible symplectic
variety.

As we will be free to choose the polarization H arbitrarily, the genericity
hypothesis will not be of importance to us. We remark, however, that in the
case where A has Picard number one, every polarization is generic.
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2.3. The Beauville-Bogomolov form on Kummer varieties. — Beauville [1] has de-
termined explicitly the second cohomology group of a Kummer variety, together
with the Beauville-Bogomolov form on it. See also Britze [4, Proposition 1]
or Yoshioka [16, Section 4.3.1] for the calculation of the Beauville-Bogomolov
form.

Firstly, there is a canonical monomorphism
(9) H?*(A,C) — H*(K™A,C)

which is compatible with the Hodge structure. Secondly, there is a primitive
integral class ¢ € H%(K™A,C) such that 2¢ is the fundamental class of the
locus E C K™A consisting of nonreduced subschemes. Thus € is a (1,1)-class.
Together, H%(A,C) and ¢ generate H2(K" A, C). In fact, we have:

PROPOSITION 2.6. — There is a direct sum decomposition
H?*(K"A,C) = H?*(A,C) ® Ce

which is orthogonal with respect to the Beauville-Bogomolov form q. Further-
more, the restriction of g to H*(A,C) is the intersection form on A, whereas

q(e) = —2n.
We are interested in classes in H2(K" A, C) coming from divisors, that is,

the Néron-Severi group NS(K"™A). Since the inclusion (9) is compatible with
the Hodge structure, and € is a primitive (1, 1)-class, we find

(10) NS(K™A) = NS(A) & Ze,

by the Lefschetz theorem on (1,1)-classes.

3. Construction

Consider the setup of Theorem 1.3, that is, we have a curve C C A with self
intersection 2n on an abelian surface A.

To construct the fibration in Theorem 1.3, we want to associate to each
¢ € A" a curve in a certain linear system. As a first try, one might ask
whether there exists a curve in the linear system |C| containing £. This turns
out to be too restrictive:

LEMMA 3.1. — A generic element £ € A is not contained in any curve in
the linear system |C|.
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Proof. — As we have seen in Example 2.4, we have
HP(A,04(C)) =0 forall p>0
and thus, by Riemann Roch,
dimHO(A, OA(C)) = X(OA(C)) =n.

Thus the complete linear system |C| has dimension n — 1. It follows that the
set of subschemes & € Al"l contained in a curve in |C| forms a family of dimen-
sion 2n — 1. (If |C| contains singular or nonreduced curves, this is not entirely
obvious, but follows from Briangon’s result [3] that the family of length k sub-
schemes supported at a fixed point on a surface has dimension k — 1. In any
case, for our purpose it is sufficient that the family of reduced subschemes &

contained in a curve in |C| has dimension 2n — 1, which is clear.) On the other
hand, A" has dimension 2n. O

Let us, starting from the observation in the lemma, sketch our construction:
By allowing not only curves in |C|, but in the linear systems associated to P, (C)
for any x € A , we see that we “win” two more degrees of freedom: The set of
length 7 subschemes contained in a curve in |P,(C)|, for some z € A, forms
a family of dimension 2n + 1. Since, again, A" has dimension 2n, we expect
the locus
(11) De={z e A| H(A,Z: ® P.(C)) # 0}
to be a curve. We will see that this is indeed true for generic £, and furthermore,
when £ is a generic element of the Kummer variety K™ A, the curve D¢ belongs
to the linear system |6 |. The fibration f in Theorem 1.3 is given by sending &
to DE'

More precisely we will see that, for generic { € K™A, the sheaf Z(C) satisfies

2

WIT with index 1. Sending £ to the Fourier-Mukai transform Z¢(C) induces a
birational equivalence

(12) K"A-"5 K4(0,C,-1)

where the target space is the symplectic variety introduced in Yoshioka’s Theo-
rem 2.5. The sheaves parametrized by K X(O’ C,—1) are supported on curves

in the linear system |6 |, and sending a sheaf to its support defines a map
(13) K4(0,C,-1) — |C|.

The composition of the two maps (12) and (13) again gives us the fibration of

=

Theorem 1.3. We remark that the support of Z¢(C') is precisely the curve Dg
n (11). In fact, the fibres of Z¢(C) are the vector spaces

Ze(C) ® k(z) = HY(A, Te ® P, (C))
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which vanish precisely when H°(A,Z; ® P,(C)) vanish, since both the Euler
characteristic and the second cohomology of Z; ® P,(C) is zero.

It turns out to be convenient to extend the setup as follows: We will first
see that there is a natural identification A"l x A = M,(1,C,0) in such a way
that the Kummer variety is recovered as the fibres of the map

a: Ms(1,C,0) > Ax A
introduced in Section 2.2. Then we will construct a commutative diagram

v —~
Ma(1,C,0) = M2(0,C,~1) —— P

(14) la la l
—~ n —~ q
AxA — AxA —_—
where ¥ is a birational map induced by the Fourier-Mukai transform, 7 is an
isomorphism, ¢ denotes second projection and P — A is a projective bundle

—_

with the complete linear system associated to P,(C) as fibre over a. Choosing
compatible base points in the lower row, and restricting the upper row to the
respective fibres, we recover the maps (12) and (13).

3.1. Rank one sheaves and the Hilbert scheme. — As usual, Al can be regarded
as a moduli space of rank one sheaves on A. More precisely, there is an iso-
morphism

(15) A" x A = M4(1,0,—n)
which, on the level of sets, is given by the map

& x) — L @ Py

By twisting with C, we can furthermore identify M4 (1,0,—n) with
M4 (1,C,0). Including the isomorphism (15), we can thus identify

A" A =~ My(1,0,0).
We want to describe the composition
AP x A= Mu(1,0,00-5 A% A

where « is the map (8) of Yoshioka. Recall that to define o, we must choose
invertible sheaves £ and L’ representing c; = C on A and on A, respectively.
By Example 2.4, we have the natural choices

L=04C), L' =04(0),
and then we have:
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LEMMA 3.2. — The diagram
Al x A =~ M,(1,C,0)

lo’X 1:4\ la

AxA %, AxA

is commutative, where 0 is the isomorphism
b(a,z) = (a+ qﬁa(a:),x).
In particular, the fibres K™ A on the left are taken isomorphically to the fibres
K4(1,C,0) on the right.
Proof. — Let us, for the sake of readability, use additive notation in the Picard
groups. Firstly, we have
3(Ze ® Py (C)) = det (e ® Po(C)) + Oa(—C) = Ps.

Secondly, applying the Fourier-Mukai functor to the short exact sequence

PRI ENSBACTINNG (P, (0)) — §(0¢) — R'S(Ze ® P (C)) — 0,
since P, (C) satisfies WIT with index 0, as in Example 2.4. Thus we have
§(Ze ® Po(C)) = — det § (Po(C)) + det §(O¢) + O2(—C).

To determine det S(P,(C)), apply the fact [12, §3] that tensoring with P,
before applying S is the same thing as translating with z after applying S.
Hence N

det S (P,(C)) = 04(-T;0C)
by the definition of C in Example 2.4.

To calculate detS (O¢), note that, whenever n C § is a subscheme of

length n — 1, we have an exact sequence

0—k(a) — O — 0, -0
where £ = 1+ a as cycles on A. The induced exact sequence

0— P, — §((’)§) — g((’)n) -0

shows that det 5(05) = det §((9,,) + P,. By induction on the length of &, we
find
det S(O¢) = Poe)

where o is the summation map (2).
We have thus shown that

(T ® Po() (C)) = Poge) + O4(T2C - C).
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More concisely, we may write this as

a(Ze ® Po(C)) = (0(€) + ¢35 (), @)

which is what we wanted to prove. O

3.2. The weak index property

LEMMA 3.3. — The (open) locus of sheaves € € M4(1,C,0) satisfying WIT
with index 1 is nonempty. In fact, there exist WIT-sheaves in every fibre
K4(1,C,0) of a.

Proof. — The operations of translation and twisting by a homogeneous line
bundle

Er—TrE, Er—EQRP,
are essentially exchanged by the Fourier-Mukai functor [12, §3], and hence do
not affect the WIThness of a sheaf £. Thus, it is enough to prove the existence
of a WIT-sheaf in M4 (1, C,0), since we can move such a sheaf to any fibre of «
by translating and twisting.

Let £ = Z¢(C). We have
H?*(A,Z:(C)®P;) =0

for all = € A, for instance by the short exact sequence (16), so R2§(I§(C’)) =0.
Furthermore, by Lemma 3.1, we have

H°(A,Z¢(C)) =0

for generic £&. But § (Z¢(C)) is torsion free, hence we conclude that

~

S(Z:(C)) = 0 for generic §. Thus Z¢(C) satisfies WIT with index 1. O

3.3. Stability

LEMMA 3.4. — Let £ be a sheaf in M4(1,C,0) satisfying WIT with index 1.
Then the Fourier-Mukai transform & is stable with respect to any polarization
of A.

Proof. — We first show that £ is pure. Being the Fourier-Mukai transform of
a WIT-sheaf with index 1, £ itself satisfies WIT with index 1. It has rank zero

and first Chern class C # 0, hence it is one-dimensional. If 7 C & is a zero-
dimensional subsheaf, then 7 satisfies WIT with index 0, but

S(T)C S(E)=0
and hence 7 = 0. Thus & is pure of dimension 1.
Suppose F C £ were a destabilizing subsheaf. Then F also satisfies WIT
with index 1.
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As & /F is torsion, its degree is nonnegative, so we have
deg(F) < deg(£)

with respect to any polarization of A. On the other hand, since F is destabi-
lizing, we have by (7)

(F) _ xE
deg(F) deg(é’\ )
and thus R
X(F) > x(€) = -1
Since the Fourier-Mukai transform F has rank —x(F) < 1 by equation (6), it
must be a torsion sheaf. Now, applying the Fourier-Mukai functor to the exact
sequence
0-F—E—E/F—0
we obtain a left exact sequence
0> SE/F) — F —E&=(-1)¢
where Theorem 2.3 is applied to obtain the isomorphism on the right. But

both S (E /F) and (—1)*& are torsion free, hence it is impossible for the middle
term F to be torsion. Thus we have reached a contradiction. O

We are now ready to construct the leftmost square in diagram (14): Let
U C Ma(1,C,0) denote the set of sheaves satisfying WIT with index 1. Then U
is open and nonempty, by Theorem 2.2 and Lemma 3.3. Let U denote the
restriction of the universal family on M4(1,C,0) to U. Applying Theorem 2.2
again, U satisfies WIT with index 1, and its Fourier-Mukai transform Uis a
flat family of sheaves on A parametrized by U. The fibres of U are stable by
Lemma 3.4, and by equation (6) they have rank one, first Chern class C and
Euler characteristic —1. Thus there is an induced rational map

U: Ma(1,C,0) ---» M4(0,C, 1)

which is regular on U. In fact, by Theorem 2.3, the restriction of ¥ to U is an
open immersion. It follows that ¥ is birational, as M 2(0, c ,—1) is irreducible
by Theorem 2.5. Let us verify that ¥ fits into the diagram (14), i.e. we check
the commutativity of the leftmost square. So let £ be a sheaf in M4(1,C,0)
satisfying WIT with index 1. Then

3() = det(&) ® O2(~C), 3(€) = det(€) ® Oa(—C)
whereas
§(€) = det(€) ® Oa(~C) = (~1)7 det(€) ® O4(~C),
3(8) = det(&) ® 04(—0).
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Thus we see that, defining the map 7 in diagram (14) by
n(a,z) = (—z,a) + ((-1)*C - C,0),

the left square in that diagram commutes. Since, by Lemma 3.3, no fibre
K4(1,C,0) of « is contained in the base locus of ¥, we conclude that ¥ restricts
to a birational equivalence

(17) ®: Ka(1,C,0)-» K4(0,C,-1).

.

3.4. The fibration. — Let G denote the Fourier-Mukai transform of O 4(C). By
the base change theorem in cohomology, the fibre of G over a € A is canonically
isomorphic to HY(A,P,(C)). Thus, the associated projective bundle

(18) P=PG") — A

.

has the complete linear systems associated to P,(C') as fibres.

The Fitting ideal of a sheaf F in M 2(0, c ,—1) defines a curve representing
the first Chern class of F, and hence a point in the bundle P. The map of sets

(19) F:M;‘\(O,C,—l)—>P

thus obtained is in fact a (regular) map of varieties, since formation of the Fit-
ting ideal commutes with base change. Clearly, F fits into diagram (14), making
its rightmost square commute. Thus, restricting F' to the fibre K Z(O’ c,-1)

above zero in A x A, we find a map

(20) f:K£(0,C,-1) — |C].

We claim that f is a fibration, i.e. a generic fibre is connected. For this, let
D € |C| be a nonsingular curve. Viewing D as a point in P, the fibre F~1(D)
is just the Jacobian J"~! of D, parametrizing invertible sheaves of degree n — 1
on D. The restriction of o to J”~! can be identified with the summation map

(21) Jl A

sending a divisor Y n;p; on D to the point Y n;p; on A, using the group law
on A. Thus, the fibre of f above D equals a fibre of the map (21). It follows
from D being ample that such a fibre is connected. This concludes the proof
of Theorem 1.3.
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3.5. Principally polarized surfaces. — Let us prove Corollary 1.5. Thus we as-
sume (A, H) is a principally polarized abelian surface with Picard number one.

The implication 1) = 2) is automatic, as explained in the introduction.
For the implication 2) = 3), suppose K" A admits a divisor D with van-
ishing Beauville-Bogomolov square, corresponding to rH + se under the iso-
morphism (10), where r and s denote integers. Then

0=¢q(D) = (rH)*+ s?q(e) = 2r* — 2s’n

from which it is immediate that n is a perfect square.

Finally, the implication 3) = 1) follows from Theorem 1.3: If n = m? is a

perfect square, the effective curve C = mH has self intersection 2n, and hence
the theorem applies. The corollary is proved.

4. On the base locus

Again let (A, H) be a principally polarized abelian surface, and let C = mH
and n = m?2. Then there does exist £ € Al such that Z;(C) fails WIT: It is
easy to check that this is the case whenever ¢ € Al is contained in some
translate T, ' (H) of the polarization.

In the first nontrivial case n = 4, assuming the Picard number of A is one,
the author has checked [5] that the base locus of the map ® in equation (17)
is exactly the locus of sheaves failing WIT. Furthermore, this locus has the
structure of a P2-bundle Q over A. By a careful study of the map ® one can
show that the base locus of the fibration in Theorem 1.3 is the same locus Q.
It seems likely that ® is in fact the Mukai elementary transform along Q.
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