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THE WKB METHOD AND GEOMETRIC INSTABILITY FOR
NONLINEAR SCHRÖDINGER EQUATIONS ON SURFACES

by Laurent Thomann

Abstract. — In this paper we are interested in constructing WKB approximations

for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a

stable geodesic. These approximate solutions will lead to some instability properties

of the equation.

Résumé (Méthode WKB et instabilité géométrique pour les équations de Schrödinger
non linéaires sur des surfaces)

À l’aide de la méthode WKB nous construisons des solutions approchées à l’équa-

tion de Schrödinger cubique sur une variété qui possède une géodésique stable. Cette

construction permet d’obtenir des résultats d’instabilités dans des espaces de Sobolev.

1. Introduction

Let (M, g) be a Riemannian surface (i.e., a Riemannian manifold of dimen-
sion 2), orientable or not. We assume that M is either compact or a compact
perturbation of the euclidian space, so that the Sobolev embeddings are true.
Consider ∆ = ∆g the Laplace-Beltrami operator. In this paper we are inter-
ested in constructing WKB approximations for the nonlinear cubic Schrödinger
equation
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(1)
®

i∂tu(t, x) + ∆u(t, x) = ε|u|
2
u(t, x), ε = ±1,

u(0, x) = u0(x) ∈ H
σ(M),

that is, given a small parameter 0 < h < 1 and an integer N , functions uN (h)
satisfying

(2) i∂tuN (h) + ∆uN (h) = ε|uN (h)|2uN (h) + RN (h),

with �uN (h)�Hσ ∼ 1 and �RN (h)�Hσ ≤ CNh
N

.

Here h is introduced so that uN (h) oscillates with frequency ∼ 1
h
.

These approximate solutions to (1) will lead to some instability properties in
the following sense (where h

−1 will play the role of n):

Definition 1.1. — We say that the Cauchy problem (1) is unstable near 0
in H

σ(M), if for all C > 0 there exist times tn −→ 0 and u1,n, u2,n ∈ H
σ(M)

solutions of (1) so that

�u1,n(0)�Hσ(M), �u2,n(0)�Hσ(M) ≤ C,

�u1,n(0)− u2,n(0)�Hσ(M) −→ 0,

lim sup �u1,n(tn)− u2,n(tn)�Hσ(M) ≥
1

2
C,

when n −→ +∞.

This means that the problem is not uniformly well-posed, if we refer to the
following definition:

Definition 1.2. — Let σ ∈ R. Denote by BR,σ the ball of radius R in H
σ.

We say that the Cauchy problem (1) is uniformly well-posed in H
σ if the flow

map
u0 ∈ BR,σ ∩H

1(M) �−→ Φt(u0) ∈ H
σ(M),

is uniformly continuous for any t.

We now state our instability result:

Proposition 1.3. — Let 0 < σ <
1
4 , and assume that M has a stable and

non degenerated periodic geodesic (see Assumptions 1 and 2 ), then the Cauchy
problem (1) is not uniformly well-posed.

This problem is motivated by the following results: Let (M, g) be a riemannian
compact surface, then in [5], N. Burq, P. Gérard and N. Tzvetkov prove that
(1) is uniformly well-posed in H

σ(M) for σ >
1
2 . Whereas, in [4], they show

that (1) is unstable on the sphere S2 for 0 < σ <
1
4 . In fact they construct

solutions of (1) of the form

(3) u
κ

n
(t, x) = κeiλ

κ
nt(n

1
4−σ

ψn(x) + rn(t, x)),
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where 0 < κ < 1, ψn = (x1 + ix2)n is a spherical harmonic which concentrates
on the equator of the sphere when n −→ +∞ and where rn is an error term
which is small. To obtain instability, they consider κn −→ κ, then

�u
κ

n
(0)− u

κn
n

(0)�Hσ(S2) � |κ− κn| −→ 0,

but
�u

κ

n
(tn)− u

κn
n

(tn)�Hσ(S2) � κ|eiλ
κ
ntn − eiλ

κn
n tn | −→ 2κ,

with a suitable choice of tn −→ 0.
We follow this strategy but as the surface is not rotation invariant, the ansatz
will be more complicated than (3).
This result is sharp, because in [6] they show that (1) is uniformly well-posed
on S2 when σ >

1
4 .

On the other hand, in [3] J. Bourgain shows that (1) is uniformly well-posed
on the rational torus T2 when σ > 0.
These results show how the geometry of M can lead to instability for the
equation (1). Therefore it seems reasonable to obtain a result like Proposition
1.3 with purely geometric assumptions.

We first make the following assumption on M :

Assumption 1. — The manifold M has a periodic geodesic.

Denote by γ such a geodesic, then there exists a system of coordinates (s, r)
near γ, say for (s, r) ∈ S1×] − r0, r0[, called Fermi coordinates such that (see
[13], p. 80)

1. The curve r = 0 is the geodesic γ parametrized by arclength and
2. The curves s = constant are geodesics parametrized by arclength. The

curves r = constant meet these curves perpendicularly.
3. In this system the metric writes

g =

�
1 0

0 a
2(s, r)

�
.

We set the length of γ equal to 2π. Denote by R(s, r) the Gauss curvature at
(s, r), then a is the unique solution of

(4)






∂
2
a

∂r2
+ R(s, r)a = 0,

a(s, 0) = 1,
∂a

∂r
(s, 0) = 0.
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The initial conditions traduce the fact that the curve r = 0 is a unit-speed
geodesic. In these coordinates the Laplace-Beltrami operator is

∆ :=
1

√
detg

div(
�

detg g
−1
∇) =

1

a
∂s(

1

a
∂s) +

1

a
∂r(a∂r).

A function on M , defined locally near γ, can be identified with a function of
[0, 2π]×]− r0, r0[ such that

∀(s, r) ∈ [0, 2π]×]− r0, r0[ f(s + 2π, r) = f(s, ωr)

where ω = 1 if M is orientable and ω = −1 if M is not. Define

(5) ω1 =
1

2
(ω − 1) ∈ {−1, 0}.

From (4) we deduce that a admits the Taylor expansion

(6) a = 1−
1

2
R(s)r2 + R3(s)r

3 + · · ·+ Rp(s)r
p + o(rp),

with R(s) = R(s, 0) and

(7) Rk(s) =
1

k!

∂
k
a

∂rk
(s, 0),

for k ≥ 3.
As a(s + 2π, r) = a(s, ωr), we deduce R(s + 2π) = R(s) and for all j ≥ 3,
Rj(s + 2π) = ω

j
Rj(s).

Let p2 = 1
a2 σ

2 + ρ
2 be the principal symbol of ∆, and

(8)






d

dt
s(t) =

∂p2

∂σ
=

2σ

a2
,

d

dt
σ(t) = −

∂p2

∂s
= −∂s(

1

a2
)σ2

,

d

dt
r(t) =

∂p2

∂ρ
= 2ρ,

d

dt
ρ(t) = −

∂p2

∂r
= −∂r(

1

a2
)σ2

,

s(0) = s0, σ(0) = σ0, r(0) = r0, ρ(0) = ρ0,

its associated hamiltonian system, where p2 = p2(s(t), r(t), σ(t), ρ(t)). The
system (8) admits a unique solution and defines the hamiltonian flow

Φt : (s0, σ0, r0, ρ0) �−→ (s(t), σ(t), r(t), ρ(t)).

The curve Γ = {(s(t) = t, σ(t) = 1/2, r(t) = 0, ρ(t) = 0), t ∈ [0, 2π]} is solution
of (8) and its projection in the (s, r) space is the curve γ. Now denote by φ

the Poincaré map associated to the trajectory Γ and to the hyperplane Σ =
{s = 0}. There exists a neighborhood N of (σ = 1/2, r = 0, ρ = 0) such
that the following makes sense: solve the system (8) with the initial conditions
(0, σ0, r0, ρ0) ∈ {0} × N and let T be such that s(T ) = 2π, then φ is the
application

φ : (r0, ρ0) �−→ (r(T ), ρ(T )).
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Moreover, the Poincaré map is continuously differentiable (see [14] p. 193). To
obtain its differential dφ(0, 0) at (0, 0), we linearize the system (8) about the
orbit Γ, i.e.,

(9)






d

dt
s(t) = 2σ,

d

dt
σ(t) = 0,

d

dt
r(t) = 2ρ,

d

dt
ρ(t) = −

1

2
R(s(t))r,

then σ = 1
2 , s(t) = t and

(10)
d

dt

�
r

ρ

�
=

�
0 2

−R/2 0

� �
r

ρ

�
.

Hence the application dφ(0, 0) is

(11) dφ(0, 0) : (r0, ρ0) �−→ (r(2π), ρ(2π)) ,

where (r, ρ) solves (10). As dφ(0, 0) is symplectic, it admits two eigenvalues Λ
and Λ−1 that are called the characteristic multipliers of the system (10). We
add the following assumption on γ, which can be formulated in terms of the
eigenvalues of dφ(0, 0):

Assumption 2. — The geodesic γ is stable, i.e., dφ(0, 0) is a rotation. Then
the multipliers take the form Λ = eiλ and Λ−1 = e−iλ with λ ∈ R. We assume
moreover that there exist τ, µ > 0 such that

(12) ∀(p, q) ∈ Z× N |p− q
λ

π
| ≥

µ

|(p, q)|τ
,

where |(p, q)| = |p| + |q|. When this condition is fulfilled, we say that γ is non
degenerated.

Remark 1.4. — Almost every λ ∈ R satisfies (12) with τ > 1. This is an easy
consequence of [1] p. 159, e.g.

Examples 1. — Let M be a surface which has a periodic geodesic γ. In the
general case, the eigenvalues of dφ(0, 0) defined by (11) are Λ = ρeiλ and
Λ−1 = ρ

−1e−iλ, with Λ + Λ−1 ∈ R+, i.e.,

(13) (ρ− ρ
−1) sinλ = 0.

Assume that M is a surface of revolution and that R > 0 on γ. Then the
characteristic multipliers are

Λ = ρe2πi
√

R and Λ−1 = ρ
−1e−2πi

√
R
.

i) If λ = 2π
√

R satisfies (12) then ρ = 1 and M satisfies the assumptions.
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172 THOMANN (L.)

ii) Let 2
√

R �∈ N. Let M̃ be a perturbation of M , and denote by

Λ̃ = ρ̃eiλ̃ and Λ̃−1 = ρ̃
−1e−iλ̃

,

the new characteristic multipliers.
By (13), ρ̃ = 1, and Assumption 2 is satisfied almost surely.

iii) Let a > 0, then the torus M = R/Z×R/aZ is not under the hypotheses:
in this case dφ(0, 0) is not diagonalizable.

Notice that the function r which satisfies (10) is solution of

(14) ÿ(s) + R(s)y(s) = 0.

Consider a0 the solution of (14) with initial conditions a0(0) = 1 and ȧ0(0) = i.
Then, from the Floquet theory, there exists a 2π-periodic function P so that

a0(s) = ei
λ
2π s

P (s)

(or a0(s) = exp (−i
λ

2π
s)P (s), but λ can be replaced with −λ).

Here, and in all the paper we denote by ḟ = d
ds

f if f is differentiable. This
notation is motived by the fact that s will play the role of a time variable (see
section 2).

In order to prove Proposition 1.3, we construct stationnary approximate solu-
tions of (1), as stated in the following theorem

Theorem 1.5. — Assume 1 and 2. Let h ∈]0, 1] such that 1
h
∈ N, let κ, σ > 0

and k ∈ N. Let λ be given by Assumption 2 and ω1 by (5).
Define E0(k) = −

1
4π

λ + 1
2k(ω1 −

λ

π
).

Then for all N ∈ N, there exist λN (k) ∈ R and a family uN (h) such that
C1h

σ ≤ �uN (h)�L2(M) ≤ C2h
σ with C1, C2 > 0 independent of N and h, and

(15) −∆uN (h) = λN (k)uN (h)− ε|uN (h)|2uN (h) + h
N

gN (h)

with for all N ∈ N
�h

N
gN (h)�Hn(M) � h

N−n
.

Moreover

λN (k) =
1

h2
−

2

h
E0(k) +

1
√

h
εκ

2
h

2σ
C0 +O(1),

where C0 > 0 is independent of ε, κ and σ.

Remark 1.6. — The analog of Theorem 1.5 was proved by J. Ralston in [15]
for the linear case (ε = 0), with the same type of assumptions.
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Remark 1.7. — Consider the more general equations

(16) i∂tu + ∆u = F (u),

where F : C −→ C is a C∞ function. The result of Theorem 1.5 is likely to
hold with other nonlinearities F (u), for example for F (z) = z

3, F (z) = z
4

or F (z) = (1 + |z|2)α
z with α < 1. However, the instability phenomenon is

strongly related to the gauge invariance of the equation (16).

The scheme of the paper is the following: Thanks to a scaling, we reduce the
problem (15) to the resolution of linear Schrödinger equations with a harmonic
time dependent potential, and we will see, using Assumption 2, that these
equations have periodic solutions. To prove Proposition 1.3 we show that the
family uN (h) provides good approximations of (1) in times where instability
occurs.

Notations 1.8. — In this paper c, C denote constants the value of which may
change from line to line. We use the notations a ∼ b, a � b if 1

C
b ≤ a ≤ Cb,

a ≤ Cb respectively. By δi,j we mean the Kronecker symbol, i.e., δi,j = 0 for
i �= j and δi,i = 1.

Remark 1.9. — In the sequel we do not always mention the dependence on
h of the functions: we will write u, f , ri, . . . instead of uh, fh, ri,h, . . .

Acknowledgements. — The author would like to thank his adviser N. Burq
for his constant guidance in this work, P. Pansu for his help in the frame of
geometry, and B. Helffer for having pointed out the reference [11].

2. The WKB construction

Consider the equation

(17) −∆u = λu− ε|u|
2
u.

Given h > 0, we are looking for a solution of the form

(18) u = δh
− 1

4 ei
s
h f(s, r, h),

where δ = κh
σ, with κ > 0 and 0 ≤ σ ≤

1
4 . In all this section, δ will play the

role of a parameter.
We try to find a solution (u, λ) of (17) of the form

u ∼

�

j≥0

h
j/2

uj , λ ∼ h
−2

�

j≥0

h
j/2

λj .

As we will see, identifying each power of h will lead to a linear equation which
can be solved with a suitable choice of λj .
Choose h such that h

−1 ∈ N, this ensures that exp i
s

h
is 2π−periodic. Such a
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condition on h is natural and is known as a Bohr-Sommerfeld quantification
condition.
With the ansatz (18), equation (17) becomes

−
1

a2

Å
2i

h
∂sf + ∂

2
s
f −

1

h2
f

ã
−

1

a
∂s

Å
1

a

ãÅ
i

h
f + ∂sf

ã

−∂
2
r
f −

∂ra

a
∂rf = λf − εδ

2
h
− 1

2 |f |
2
f.(19)

We make the change of variables x = r√
h

and set v(s, x, h) = f(s,
√

hx, h).
Thus ∂rf = 1√

h
∂xv and ∂

2
r
f = 1

h
∂

2
x
v.

Therefore we now have to find v ∼
�

j≥0 h
j/2

vj .
Using (6) we obtain the following Taylor expansions in h

1

a2
= 1 + hRx

2
− 2h

3
2 R3x

3 +O(h2),

a
−1

∂s(a
−1) = O(h) and a

−1
∂ra = O(h

1
2 ).

Equation (19) can therefore be written, after multiplication by 1
2h

i∂sv +
1

2
∂

2
x
v −

1

2
Rx

2
v

=
1− λh

2

2h
v + h

1
2 R3x

3
v +

1

2
εδ

2
h

1
2 |v|

2
v + hPv,

(20)

where

(21) P = A1∂
2
s

+ A2∂s + A3∂x + A4

is a second order differential operator with coefficients Aj = Aj(s, x, h) satis-
fying Aj(s + 2π, x, h) = Aj(s, ωx, h) for 0 ≤ j ≤ 4.
Denote by E = 1−λh

2

2h
= E0 + h

1
2 E1 + · · · + h

p
2 Ep + o(h

p
2 ) and write v =

v0 + h
1
2 v1 + · · · + h

p
2 vp + o(h

p
2 ) and by identifying the powers of h we obtain

the system of equations:
Å

i∂s +
1

2
∂

2
x
−

1

2
Rx

2
− E0

ã
v0 = 0,(22)

Å
i∂s +

1

2
∂

2
x
−

1

2
Rx

2
− E0

ã
v1 = E1v0 + R3x

3
v0 +

1

2
εδ

2
|v0|

2
v0,(23)

· · · = · · ·Å
i∂s +

1

2
∂

2
x
−

1

2
Rx

2
− E0

ã
vp = Epv0 + Qp.(24)

· · · = · · ·

so that the (j + 1)th equation of unknown (vj , Ej) corresponds to the annihi-
lation of the coefficient of h

j
2 in (20).

Here Qp is a function which only depends on x, s, (vj)j≤p−1 and (Ej)j≤p−1.
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Remark 2.1. — Notice that thanks to the scaling, we have reduced the prob-
lem (17) to the resolution of linear equations. However we have to solve them
exactly; no smallness assumption on x is possible, as x can be of size ∼ 1√

h
.

In this section we will show

Proposition 2.2. — For all p ∈ N, there exist (E0, · · · , Ep) ∈ Rp+1 and
(v0, · · · , vp) ∈ (C∞ ([0, 2π],S(R)))p+1 with v0 �= 0, which solve the system (22)-
(24).

This permits us to construct approximate solutions of (17); more precisely, we
will obtain the following proposition, which is the main result of this section.

Proposition 2.3. — Let χ ∈ C∞0 (] − r0, r0[) be such that 0 ≤ χ ≤ 1, χ = 1
on [−r0/2, r0/2] and suppose moreover that χ is an even function. Let δ > 0.
Denote by

(25) up(s, r) = δh
− 1

4 χ(r)ei
s
h (v0 + h

1
2 v1 + · · ·+ h

p
2 vp)(s,

r
√

h
)

and by

(26) λp =
1

h2
−

2

h
(E0 + h

1
2 E1 + · · ·+ h

p
2 Ep).

Then up satisfies �up�L2(M) ∼ δ and

(27) −∆up = λpup − ε|up|
2
up + h

p−1
2 gp(h)

with
∀h ∈]0, 1], ∀n ∈ N, �h

p−1
2 gp(h)�Hn([0,2π]×R) � δh

p−1
2 −n

.

2.1. Preliminaries: the analysis of the linear equations. — We will solve the sys-
tem (22)-(24) for x ∈ R. Notice that the Fermi coordinates are only defined
for |r| ≤ r0 i.e., for x ≤

r0√
h
. That’s the reason why we need the cutoff which

appears in the Proposition 2.3.

We first give an expansion of the operator P defined by (21).

Lemma 2.4. — Let

P (s, x, h) = A1(s, x, h)∂2
s

+ A2(s, x, h)∂s + A3(s, x, h)∂x + A4(s, x, h),

be the differential operator defined by (21). Then for all p ≥ 2, P can be written

(28) P (s, x, h) =
p−1�

k=0

h
k
2 Pk(s, x) + h

p
2 P̃p(s, x, h),
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so that
i) For all 0 ≤ k ≤ p− 1,

Pk(s, x) = A
k

1(s, x)∂2
s

+ A
k

2(s, x)∂s + A
k

3(s, x)∂x + A
k

4(s, x),

where A
k

j
∈ C∞ ([0, 2π]× R), for all s ∈ [0, 2π] the function x �→ A

k

j
(s, x) is a

polynomial and A
k

j
(s + 2π, x) = A

k

j
(s, ωx).

ii) Let χ ∈ C∞0 (]− r0, r0[) and v ∈ C∞ ([0, 2π],S(R)), then for all n ∈ N, there
exists C = C(p, n) independent of h ∈]0, 1] so that

(29) �χ(h
1
2 x)P̃pv(s, x)�Hn([0,2π]×R) ≤ C.

Proof. — We first compute the coefficients of P .
By the Taylor formula near r = 0 we have

1

a2
(s, r) = 1 + R(s)r2

− 2R3(s)r
3 +

p+3�

k=4

r
k
Rk(s)

+
r

p+4

(p + 3)!

� 1

0
(1− t)p+3 ∂

p+4

∂rp+4

Å
1

a2

ã
(s, tr) dt,

where Rk is given by (7).
Now write r =

√
hx and obtain

(30)
1

a2
(s,
√

hx) = 1 + hR(s)x2
− 2h

3
2 R3(s)x

3 + h
2
I1(s, x, h),

where

(31) I1(s, x, h) =
p+3�

k=4

h
k−4
2 x

k
Rk(s)+

+ h
p
2

x
p+4

(p + 3)!

� 1

0
(1− t)p+3 ∂

p+4

∂rp+4

Å
1

a2

ã
(s,
√

hxt) dt.

Similarly

(32)
1

a
∂s(

1

a
)(s,

√
hx) = hI2(s, x, h),

with

(33) I2(s, x, h) =
p+1�

k=2

h
k−2
2

x
k

k!

1

a
∂s(

1

a
)(s, 0)+

+ h
p
2

x
p+2

(p + 1)!

� 1

0
(1− t)p+1 ∂

p+2

∂rp+2

Å
1

a
∂s(

1

a
)

ã
(s,
√

hxt) dt,

tome 136 – 2008 – no 2



GEOMETRIC INSTABILITY FOR NLS ON SURFACES 177

and

(34)
∂r a

a
(s,
√

hx) = h
1
2 I3(s, x, h),

where

(35) I3(s, x, h) =
p�

k=1

h
k−1
2

x
k

k!

∂
k

∂rk

Å
∂r a

a

ã
(s, 0)+

+ h
p
2
x

p+1

p!

� 1

0
(1− t)p

∂
p+1

∂rp+1

Å
∂r a

a

ã
(s,
√

hxt) dt.

Plug the expressions (30), (32) and (34) in equation (20), and deduce that
coefficients Aj are

A1 =
1

2
(−1− hRx

2 + 2h
3
2 R3x

3
− h

2
I1),

A2 = −iRx
2 + 2ih

1
2 R3x

3
− ihI1 −

1

2
I2,

A3 = −
1

2
I3,

A4 =
1

2
(I1 − iI2).

Then with the developments (31), (33) and (35), we see that for all 1 ≤ j ≤ 4
and 0 ≤ k ≤ p − 1, x �→ A

k

j
(s, x) is a polynomial. Moreover as a(s + 2π, x) =

a(s, ωx), we also have A
k

j
(s + 2π, x) = A

k

j
(s, ωx).

To obtain the bound (29), we now have to control the integral rests which
appear in (31),(33) and (35).
Let q ∈ N∗ and let (s, r) �→ f(s, r) be one of the functions a

−2, a
−1

∂s(a−1) or
a
−1

∂r. Let χ ∈ C∞ (]− r0, r0[) and define Fq by

Fq(s, x) = χ(
√

hx)

� 1

0
(1− t)q−1 ∂

q

∂rq
f(s,

√
hxt) dt.

As f ∈ C∞ ([0, 2π]×]− r0, r0[), we deduce that for all n1, n2 ∈ N there exists
C = C(q, n1, n2), independent of h ∈]0, 1] so that

∀(s, x) ∈ [0, 2π]× R, |∂
n1
s

∂
n2
x

Fq(s, x)| ≤ C.(36)

Now let v ∈ C∞ ([0, 2π],S(R)) and n ∈ N. We can assume that n ≥ 2, so that
H

n is an algebra. Then by (36)

(37) �x
q
Fq v�Hn([0,2π]×R) ≤ C�Fq�Hn([0,2π]×R)�x

q
v�Hn([0,2π]×R) ≤ C,

and this yields ii).
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Consider the Hilbertian basis of L
2(R) composed of the Hermite functions

(ϕk)k≥0 which are the eigenfunctions of the harmonic oscillator H = −
1
2∂

2
x

+
1
2x

2, i.e., Hϕk = (k + 1
2 )ϕk. Moreover ϕk(x) = Pk(x)e−x

2
/2 where Pk is a

polynomial of degree k with Pk(−x) = (−1)k
Pk(x). The link between the s-

dependent operator − 1
2∂

2
x

+ 1
2R(s)x2 and H is given by the following result

proved by M. Combescure in [11].

Theorem 2.5. — Let a0 : R −→ C be the solution of (14) with a0(0) = 1,
ȧ0(0) = i. Define

α = log |a0|, β =
1

2i
log

a0

a0
,

let the unitary transform T (s) be defined by

T (s) = eiα̇(s)x2
/2e−iα(s)D

, where D = −
i

2
(x · ∇+∇ · x),

and let U(s, τ) be the unitary evolution operator for − 1
2∂

2
x

+ 1
2R(s)x2, i.e.,

U(s, τ)ϕ is the unique solution of the problem





Å
i∂s +

1

2
∂

2
x
−

1

2
R(s)x2

ã
u = 0,

u(τ, x) = ϕ(x) ∈ L
2(R).

Then we have for any s, τ ∈ R

U(s, τ) = T (s)e−i(β(s)−(β(τ))H
T (τ)−1

.

Remark 2.6. — The functions α and β are well defined: suppose that there
exists s0 such that a0(s0) = 0, then Re a0 and Im a0 are linearly dependent,
which is impossible with this choice of the initial conditions.

Remark 2.7. — Define θ(s) = β(s)− λ

2π
s where λ is given by Assumption 2.

Then α and θ are 2π-periodic real functions. Moreover α(0) = α̇(0) = β(0) =
θ(0) = 0.

Denote by S(R) the Schwartz space, i.e., the space of smooth functions which
are fast decreasing and their derivatives too.

Proposition 2.8. — Let ψ0 ∈ S(R) and E ∈ C. Let f ∈ C∞ ([0, 2π]× R, R)
be such that

∀n ∈ N, ∀s ∈ [0, 2π], ∂
n

s
f(s, ·) ∈ S(R),

in other words f ∈ C∞ ([0, 2π],S(R)).
Let ψ ∈ C1

�
[0, 2π], L2(R)

�
∩ C0

�
[0, 2π], H2(R)

�
be the solution of

tome 136 – 2008 – no 2



GEOMETRIC INSTABILITY FOR NLS ON SURFACES 179

(38)





i∂sψ +

1

2
∂

2
x
ψ −

1

2
R(s)x2

ψ − Eψ = f,

ψ(0, x) = ψ0(x).

Then ψ ∈ C∞ ([0, 2π],S(R)).

Proof. — By replacing ψ with eiEt
ψ, we can assume that E = 0. The solution

of equation (38) is given by

ψ(s, ·) = U(s, 0)ψ0 − i

�
s

0
U(s, τ)f(τ, ·) dτ

= T (s)e−iβ(s)H

Å
ψ0 − i

�
s

0
e
iβ(τ)H

T (τ)−1
f(τ, ·) dτ

ã
.(39)

As D is a transport operator, we have

T, T
−1 : C∞ ([0, 2π],S(R)) −→ C

∞ ([0, 2π],S(R)) ,

we only have to show that

eiβH : C∞ ([0, 2π],S(R)) −→ C
∞ ([0, 2π],S(R)) .

This follows from the fact that β is regular and eiH : S(R) −→ S(R).

The description of U given in Theorem 2.5 yields the following representation
of U(s, 0)ϕk:

Proposition 2.9. — For all k ∈ N and s, x ∈ R we have

(40) U(s, 0)ϕk(x) = eiα̇(s)x2
/2e−i( 1

2+k)β(s)e−
1
2 α(s)

ϕk

Ä
xe−α(s)

ä
.

Proof. — According to Theorem 2.5, and as Hϕk = (k + 1
2 )ϕk,

U(s, 0)ϕk = eiα̇(s)x2
/2e−i(k+ 1

2 )β(s)e−iα(s)D
ϕk.

Denote by f(s) = e−iα(s)D
ϕk. Then f is solution of the transport equation

∂sf = −
1

2
α̇(s) (x∂xf + ∂x(xf)) = −

1

2
α̇(s) (f + 2x∂xf)

with Cauchy data f(0, x) = ϕk(x). Make the change of variables σ = α(s) and
set g(σ) = f(s). Therefore g satisfies ∂σg = −

1
2 (g + 2x∂xg). The equation

x = ẋ, x(0) = x0 admits the solution x(τ) = x0eτ and the characteristics
method gives g(τ, x(τ)) = e− 1

2 τ
ϕk(x0) = e− 1

2 τ
ϕk(x(τ)e−τ ), hence

f(s) = e−
1
2 α(s)

ϕk(xe−α(s)).
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Corollary 2.10. — Let k ∈ N, define ω1 = 1
2 (ω − 1) and

E0(k) = −
1
4π

λ + 1
2k(ω1 −

λ

π
). Then

wk = e−isE0(k)
U(s, 0)ϕk

= e−isE0(k)eiα̇(s)x2
/2e−i( 1

2+k)β(s)e−
1
2 α(s)

ϕk

Ä
xe−α(s)

ä
(41)

is solution of the equationÅ
i∂s +

1

2
∂

2
x
−

1

2
R(s)x2

− E0(k)

ã
wk(s, x) = 0.

Proof. — On the one hand, from Proposition 2.9 we deduce

wk(s + 2π, x) = e−2iπE0(k)e−iλ( 1
2+k)

wk(s, x) = e−ikω1π
wk(s, x)

= (−1)kω1wk(s, x) = wk(s, ωx).

On the other hand, wk satisfies (22) because of the definition of U(s, 0).

Fix k0 ∈ N and take v0 = wk0 with the previous choice of E0(k0). This choice
corresponds to the k0th level of energy for the harmonic oscillator.

Remark 2.11. — Until now we did not use the restriction (12), but it will be
crucial in the following.

Proposition 2.12. — For all p ≥ 0, there exist Ep ∈ C and
vp ∈ C∞ ([0, 2π],S(R)) which solve (24).

Remark 2.13. — As stated in Theorem 1.5, the Ej ’s are in fact real numbers.
This will be proved in Lemma 2.17.

Proof. — We proceed by induction on p ∈ N.
For p = 0 the result was proved in Corollary 2.10.
Let p ≥ 1, and suppose that for all j ≤ p − 1 there exist Ej ∈ C and vj ∈

C∞ ([0, 2π],S(R)) which solve the (j + 1)th equation of (22). When p ≥ 2, set

ṽp−1 = h
1
2 v1 + · · ·+ h

p−1
2 vp−1,

Ẽp−1 = h
1
2 E1 + · · ·+ h

p−1
2 Ep−1

and ṽ0 = Ẽ0 = 0. By (28), the function Qp given by (24) is the coefficient of
h

p
2 in the expansion in h of

Ẽp−1ṽp−1 +
1

2
εδ

2
|v0 + ṽp−1|

2(v0 + ṽp−1) + h

�
p−1�

k=0

h
k
2 Pk

�
(v0 + ṽp−1).

Now using the regularity of the vj ’s and the fact that for all 0 ≤ k ≤ p− 1, Pk

is an operator

Pk : C∞ ([0, 2π],S(R)) −→ C
∞ ([0, 2π],S(R)) ,
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we obtain Qp ∈ C∞ ([0, 2π],S(R)) .

Moreover Qp satisfies, ∀(s, x) ∈ [0, 2π]× R

Qp(s + 2π, x) = Qp(s, ωx)

because this property holds for the vj ’s, and a.
Define Fp(s, x) = e−iα̇(s)e2α(s)

x
2
/2

Qp(s, xe
α(s)), then Fp ∈ C∞ ([0, 2π],S(R))

and satisfies Qp(s, x) = eiα̇(s)x2
/2

Fp(s, xe−α(s)) and Fp(s + 2π, x) = Fp(s, ωx).
Let us decompose Fp on the basis (ϕj)j≥0: there exists a unique family of
smooth functions (gp

j
(s))j≥0 ∈ l

2(N) so that

(42) Fp(s, y) =
�

j≥0

g
p

j
(s)ϕj(y).

Then

(43) Qp(s, x) =
�

j≥0

g
p

j
(s)eiα̇(s)x2

/2
ϕj(xe−α(s)) =

�

j≥0

h
p

j
(s)wj(s, x),

where according to (41)

(44) h
p

j
(s) = eisE0(j)ei( 1

2+j)β(s)e
1
2 α(s)

g
p

j
(s).

We have
Qp(s, ωx) =

�

j≥0

h
p

j
(s)wj(s, ωx),

but also

Qp(s, ωx) = Qp(s + 2π, x) =
�

j≥0

h
p

j
(s + 2π)wj(s + 2π, x)

=
�

j≥0

h
p

j
(s + 2π)wj(s, ωx),

and from the uniqueness of the h
p

j
’s we deduce h

p

j
(s + 2π) = h

p

j
(s).

We are now looking for a solution of (24) of the form

(45) vp(s, x) =
�

j≥0

e
p

j
(s)wj(s, x)

where the e
p

j
’s are 2π-periodic functions. For all j ≥ 0, by Corollary 2.10 we

have Å
i∂s +

1

2
∂

2
x
−

1

2
Rx

2

ãÄ
e
p

j
wj

ä
= iė

p

j
wj + (E0(k0)− E0(j)) e

p

j
wj ,

hence we have to solve the equations

(46) iė
p

j
+ (E0(k0)− E0(j)) e

p

j
= h

p

j
+ δj,k0Ep.
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As E0(k0)− E0(j) = 1
2 (k0 − j)(ω1 −

λ

π
), the solutions of (46) take the form

(47) e
p

j
(s) = e

1
2 i(k0−j)(ω1− λ

π )s

Å
C

p

j
− i

�
s

0
h

p

j
(τ)e−

1
2 i(k0−j)(ω1− λ

π )τ dτ

ã

for j �= k0, and

e
p

k0
(s) = C

p

k0
− i

�
s

0
h

p

k0
(τ) dτ − iEps.

The constants C
p

j
∈ C and Ep ∈ C have to be determined such that e

p

j
(s+2π) =

e
p

j
(s).

• Case j = k0:

e
p

k0
(s + 2π) = −i

� 2π

0
h

p

k0
(τ) dτ − 2πiEp + e

p

k0
(s),

thus e
p

k0
is 2π-periodic iff

(48) Ep = −
1

2π

� 2π

0
h

p

k0
(τ) dτ.

• Case j �= k0:
Denote by h̃

p

j
: τ �−→ h

p

j
(τ)e−i

1
2 (k0−j)(ω1− λ

π )τ and by K = ei(k0−j)(πω1−λ).
Then

�
s+2π

0
h̃

p

j
(τ) dτ =

� 2π

0
h̃

p

j
(τ) dτ +

�
s+2π

2π

h̃
p

j
(τ) dτ

=

� 2π

0
h̃

p

j
(τ) dτ + K

−1

�
s

0
h̃

p

j
(τ) dτ,

and by (47)

e
p

j
(s + 2π) = Kei

1
2 (k0−j)(ω1− λ

π )s

Ç
C

p

j
− i

�
s+2π

0
h̃

p

j
(τ) dτ

å

= ei
1
2 (k0−j)(ω1− λ

π )s

Ç
KC

p

j
− iK

� 2π

0
h̃

p

j
(τ) dτ − i

�
s

0
h̃

p

j
(τ) dτ

å
.(49)

tome 136 – 2008 – no 2



GEOMETRIC INSTABILITY FOR NLS ON SURFACES 183

Notice that K �= 1, as λ �∈ πQ and choose

C
p

j
=

iK

K − 1

� 2π

0
h̃

p

j
(τ) dτ,

then according to (47)and (49), the function e
p

j
is 2π−periodic.

Now, we show that the constants C
p

j
are uniformly bounded in j ≥ 0, so

that the function vp given by (45) is well defined. We first need the

Lemma 2.14. — Let (hp

j
)j≥0 ∈ l

2(N) be the family of 2π−periodic functions
defined by (44) and h

p

j
(s) =

�
n∈Z c

p

l,j
eils its Fourier decomposition. Then for

all n1, n2 ∈ N there exists C
p

> 0 such that for all j ∈ N
�

l∈Z
j
2n1 l

2n2 |c
p

l,j
|
2
≤ C

p
.

Proof. — Consider the function Fp ∈ C∞ ([0, 2π],S(R)) which defines the fam-
ily (gp

j
(s))j≥0 ∈ l

2(N) with (42). Denote by H = −
1
2∂

2
x

+ 1
2x

2. Let n1, n2 ∈ N
and decompose the function ∂

n2
s

H
n1Fp on the basis (ϕj)j≥0

∂
n2
s

H
n1Fp(s, y) =

�

j≥0

g̃
p

j
(s)ϕj(y)

where (g̃p

j
)j≥0 is a smooth family of functions in l

2(N).
Using that Hϕj = (j + 1

2 )ϕj and that Fp ∈ C∞ ([0, 2π],S(R)), we have for all
n1, n2 ∈ N

∂
n2
s

H
n1Fp(s, y) =

�

j≥0

(j +
1

2
)n1(gp

j
)(n2)(s)ϕj(y).

By uniqueness of such a decomposition,
Å

(j +
1

2
)n1(gp

j
)(n2)

ã

j≥0

= (g̃p

j
)j≥0 ∈ l

2(N).

Then by the definition (44) of h
p

j
, an easy induction on n1, n2 ∈ N shows thatÄ

j
n1(hp

j
)(n2)

ä
j≥0

∈ l
2(N). Write the Fourier decomposition of h

p

j

h
p

j
(s) =

�

n∈Z
c
p

l,j
eils

and by Parseval
�

j≥0

�

l∈Z
j
2n1 l

2n2(s)|cp

l,j
|
2 =

�

j≥0

j
2n1

� 2π

0
|(hp

j
)(n2)(s)|2 ds ≤ C

p
.

In particular, for all j ∈ N
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�

l∈Z
j
2n1 l

2n2 |c
p

l,j
|
2
≤ C

p
,

hence the result.

End of the proof of Proposition 2.12: Using the Fourier decomposition of hj

we obtain

C
p

j
=

iK

K − 1

� 2π

0
h̃

p

j
(τ) dτ

=
iK

K − 1

�

l∈Z
c
p

l,j

� 2π

0
ei(l− 1

2 (k0−j)(ω1− λ
π ))τ

= −i

�

l∈Z

c
p

l,j

l −
1
2 (k0 − j)(ω1 −

λ

π
)
.(50)

With Assumption 2 we have
��l − 1

2
(k0 − j)(ω1 −

λ

π
)
�� =

1

2
|(2l − (k0 − j)ω1) + (k0 − j)

λ

π
|

≥
1

2

µ

|(2l − (k0 − j)ω1, k0 − j)|τ
,

and for j ≥ k0, |2l − (k0 − j)ω1|+ |k0 − j| ≤ 2(|l|+ |j|), then

(51)
��l − 1

2
(k0 − j)(ω1 −

λ

π
)
�� ≥ cµ

(|l|+ |j|)τ
.

Hence, from (50) and (51) we deduce

(52) |C
p

j
| �

�

l∈Z
|c

p

l,j
|(|j|+ |l|)τ �

�

l∈Z
|c

p

l,j
|(|j|τ + |l|

τ ).

By Cauchy-Schwarz and Lemma 2.14, from (52) we obtain

|C
p

j
| �

�

l∈Z

1 + |l|

1 + |l|
|c

p

l,j
|(|j|τ + |l|

τ )

�
�

�

l∈Z

1

(1 + |l|)2

� 1
2

�
�

l∈Z
|c

p

l,j
|
2(1 + |l|)2(|j|2τ + |l|

2τ )

� 1
2

≤ C
p
.(53)

Set
vp(s, x) =

�

j≥0

e
p

j
(s)wj(s, x).
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For all j ∈ N, s �−→ e
p

j
(s)wj(s, x) is continuous and there exists c > 0 such that

for all j > k0, and for all s ∈ [0, 2π]

|e
p

j
(s)wj(s, x)| � |g

p

j
(s)||ϕj(cx)|

and this shows that vp ∈ C
�
[0, 2π], L2(R)

�
. Now using Proposition 2.8 we

conclude, by uniqueness of such a solution, that vp ∈ C∞ ([0, 2π],S(R)).

2.2. The nonlinear analysis and proof of Proposition 2.3

Lemma 2.15. — The constant E1 given by Proposition 2.12 writes
E1 = −εδ

2
C0 where C0 > 0 is independent of ε and δ.

Proof. — Consider the equation
Å

i∂s +
1

2
∂

2
x
−

1

2
Rx

2
− E0

ã
v1 = E1v0 + R3x

3
v0 +

1

2
εδ

2
|v0|

2
v0,

with

v0(s, x) = e−isE0(k0)eiα̇(s)x2
/2e−i( 1

2+k0)β(s)e−
1
2 α(s)

ϕk0

Ä
xe−α(s)

ä
.

By the definition of Qp (see (24)),

Q1(s, x) = R3(s)x
3
v0(s, x) +

1

2
εδ

2
|v0|

2
v0(s, x),

and by (43), Q1 can be written

Q1(s, x) =
�

j≥0

h
1
j
(s)wj(s, x).

According to formula (48), we only have to compute the term h
1
k0

in the previous
expansion.
Write the expansion of |ϕk0 |

2
ϕk0 on the basis (ϕj)j≥0:

(54) |ϕk0 |
2
ϕk0 =

�

j≥0

pjϕj ,

with pj ∈ R and pj = 0 for j − k0 = 1 mod 2 as ϕk(−x) = (−1)k
ϕk(x).

Then by (54) and the expression (41) of wj

|v0|
2
v0(s, x) = e−isE0(k0)eiα̇(s)x2

/2e−i( 1
2+k0)β(s)e−

3
2 α(s)

|ϕk0 |
2
ϕk0

Ä
xe−α(s)

ä

=
�

j≥0

pje−isE0(k0)eiα̇(s)x2
/2e−i( 1

2+k0)β(s)e−
3
2 α(s)

ϕj

Ä
xe−α(s)

ä

=
�

j≥0

fj(s)wj(s, x)
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where

fj(s) = pje−is(E0(k0)−E0(j))e−i(k0−j)β(s)e−α(s)

= pje−i(k0−j)(θ(s)+ s
2 ω1)e−α(s)

.

Therefore fk0(s) = pk0e−α(s) with, using (54), pk0 =
�

R |φk0 |
4

> 0.
In the same manner we write

(55) x
3
ϕk0(x) =

�

j≥0

qjϕj(x),

with qj = 0 when j − k0 = 0 mod 2 and by (55) we have

R3(s)x
3
v0(s, x)

= R3(s)e−isE0(k0)eiα̇(s)x2
/2e−i( 1

2+k0)β(s)e
5
2 α(s)(xe−α(s))3ϕk0

Ä
xe−α(s)

ä

=
�

j≥0

qjR3(s)e−isE0(k0)e−i( 1
2+k0)β(s)e

5
2 α(s)eiα̇(s)x2

/2
ϕj

Ä
xe−α(s)

ä
.

By (41) we have

eiα̇(s)x2
/2

ϕk0

Ä
xe−α(s)

ä
= eisE0(j)ei( 1

2+j)β(s)e
1
2 α(s)

.

Then
R3(s)x

3
v0(s, x) =

�

j≥0

f̃j(s)wj(s, x),

where

f̃j(s) = qjR3(s)e−is(E0(k0)−E0(j))e−i(k0−j)β(s)e3α(s)

= qjR3(s)e−i(k0−j)(θ(s)+ s
2 ω1)e3α(s)

.

Then f̃k0 = 0 as qj = 0 when j − k0 = 0 mod 2. Thus

h
1
k0

(s) =
1

2
εδ

2
fk0(s) =

1

2
εδ

2
pk0e

−α(s)
.

Finally, from (48) we deduce

E1 = −
1

4π
εδ

2
pk0

� 2π

0
e−α(τ) dτ = −εδ

2
C0,

where C0 > 0 as pk0 > 0.

Lemma 2.16. — Let ψ ∈ C∞0 (R) such that ψ = 0 near 0, and let f ∈ S(R).
Then for all n, N ∈ N, there exists C = C(n, N) so that

(56) �ψ(h
1
2 ·)f�Hn(R) ≤ Ch

N
.
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Proof. — We only show (56) for n = 0, the general case follows from the
Leibniz rule. We can assume that suppψ ⊂ [a, b] with a > 0. Then as f ∈ S(R),
for all N ∈ N, there exists CN > 0 so that

|f(x)| ≤ CN

1

1 + |x|N
.

Thus
�

R
|ψ(h

1
2 x)|2|f(x)|2 dx = h

− 1
2

�
b

a

|ψ(x)|2|f(h−
1
2 x)|2 dx

≤ CNh
N− 1

2

�
b

a

|ψ(x)|2
1

hN + x2N
dx

≤ CNh
N− 1

2 ,

hence the result.

Proof of Proposition 2.3. — Let p ≥ 1, and consider

Vp(s, x) =
Ä
v0 + h

1
2 v1 + · · ·+ h

p
2 vp

ä
(s, x),

and
Ẽp = E0 + h

1
2 E1 + · · ·+ h

p
2 Ep,

where the vj ’s and the Ej ’s are given by Proposition 2.12.
Let χ ∈ C∞0 (]− r0, r0[) be an even function such that 0 ≤ χ ≤ 1 and χ = 1 on
[−r0/2, r0/2].
We claim that there exists Gp(h) ∈ C∞ ([0, 2π],S(R)), so that

(57) ∀n ∈ N, �Gp(h)�Hn([0,2π]×R) ≤ Cn,p,

where Cn,p is independent of h ∈]0, 1], and such that Gp(h) satisfies

χ(h
1
2 x)

Å
(i∂s +

1

2
∂

2
x
−

1

2
Rx

2
− Ẽp)Vp

−h
1
2 R3x

3
Vp −

1

2
εδ

2
h

1
2 |Vp|

2
Vp − hPVp

ã
= h

p+1
2 Gp(h).(58)

By construction of the vj ’s and the Ej ’s, in the l.h.s. of (58), the coefficient of
h

j cancels for 0 ≤ j ≤ p.
Then write the expansion in powers of h

1

2
εδ

2
|Vp|

2
Vp =

3p+1�

k=0

h
k
2 V

k

p
,

and use (28) to obtain

hPVp = h

�
p−1�

k=0

h
k
2 Pk + h

p
2 P̃p

� �
p�

k=0

h
k
2 vk

�
:=

2p+2�

k=0

h
k
2 W

k

p
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We therefore obtain the explicit formula of Gp(h)

h
p+1
2 Gp(h) := −χ(h

1
2 x)

2p+2�

k=p+1

h
k
2 W

k

p
− χ(h

1
2 x)

3p+1�

k=p+1

h
k
2 V

k

p
− χ(h

1
2 x)h

p+1
2 R3x

3
vp

= −h
p+1
2 χ(h

1
2 x)

�
p+1�

l=0

h
l
2 W

l+p+1
p

2p�

l=0

h
l
2 V

l+p+1
p

+ R3x
3
vp

�
.

The bound (57) then follows from an application of Lemma 2.4.

Denote by Ṽp = χ(h
1
2 x)Vp, and write

PṼp = (A1∂
2
s

+ A2∂s + A3∂x + A4)(χ(h
1
2 x)Vp)

= χ(h
1
2 x)PVp + h

1
2 χ
�(h

1
2 x)A3Vp.

By (58) we deduce that

(i∂s +
1

2
∂

2
x
−

1

2
Rx

2
− Ẽp)Ṽp − h

1
2 R3x

3
Ṽp −

1

2
εδ

2
h

1
2 |Ṽp|

2
Ṽp − hP Ṽp

= h
p+1
2 G

p

h
+ h

1
2 χ
�(h

1
2 x)∂xVp +

1

2
hχ

��(h
1
2 x)Vp

+
1

2
εδ

2
h

1
2 χ(1− χ

2)(h
1
2 x)|Vp|

2
Vp − h

3
2 χ
�(h

1
2 x)A3Vp

:= h
p+1
2 G̃p(h).

Each of the functions χ
�, χ

�� and χ(1−χ
2) vanishes near 0, hence by Lemma 2.16

and (57)

(59) ∀n ∈ N, �G̃p(h)�Hn([0,2π]×R) ≤ Cn,p.

Finally, set
up = δh

− 1
4 ei

s
h Vp(s,

r
√

h
),

then
−∆up − λpup + ε|up|

2
up =

2

h
ei

s
h h

p+1
2 G̃p(h),

and gp(h) = 2ei
s
h G̃p(h) satisfies the conclusion of Proposition 2.3 by (59).

Lemma 2.17. — Let p ≥ 1 and Ep given by Proposition (2.12). Then Ep ∈ R.

Proof. — We already know that E0, E1 ∈ R. Let p ≥ 3. Multiply (27) by up,
integrate on M and take the imaginary part

0 = �up�
2
L2Im λp + h

p−1
2 Im

�
gp(h)up.
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As �up�L2 ∼ 1 and �gp�L2 � 1, we obtain the estimate

|Im λp| � h
p−1
2 �gp�L2�up�L2 � h

p−1
2

and as
Im λp = −2(Im E2 + h

1
2 Im E3 + · · ·+ h

p−1
2 Im Ep)

it follows that for all 0 ≤ j ≤ p− 1, Im Ej = 0, i.e., Ej ∈ R.

3. The instability for the nonlinear Schrödinger equation

3.1. The error estimate

Proposition 3.1. — Let α > 0, σ ∈]0,
1
4 ] and let v ∈ H

2(M) be such that

�v�L2 � 1, �v�L∞ � h
− 1

4+σ
, �∆v�L∞ � h

− 9
4+σ

,

and suppose that v satisfies

i∂tv + ∆v = ε|v|
2
v + h

α
R(h),

with for all β ∈ [0, 2], �R(h)�Hβ � h
−β. Let u be solution of

®
i∂tu + ∆u = ε|u|

2
u,

u(0, x) = v(0, x).

Then, if α >
1
4 + 3σ we have

�(u− v)(th)�Hσ −→ 0 when h −→ 0,

where th ∼ h
1
2−2σ log( 1

h
).

Proof. — Define w = u− v and

E(t) = �w�
2
L2 + �h2∆w�

2
L2 .

We have E(0) = 0 and the following estimates:

(60) �w�L2 ≤ E
1
2 , �∆w�L2 ≤ h

−2
E

1
2 , �∇w�L2 ≤ h

−1
E

1
2 .

The function w satisfies the equation

(61) i∂tw + ∆w = ε(|w + v|
2(w + v)− |v|

2
v)− h

α
R(h).

The energy method gives
1

2

d

dt
�w�

2
L2 = Im

�
w

�
ε(|w + v|

2(w + v)− |v|
2
v)− h

α
R(h)

�

� h
α
�w�L2 + �w�4

L4 + �w�2
L2�v�

2
L∞ .

The Gagliardo-Nirenberg inequality gives

�w�
4
L4 � �w�

2
L2�∇w�

2
L2 � h

−2
E

2
,

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



190 THOMANN (L.)

and as �v�L∞ � h
− 1

4+σ, we obtain

(62)
d

dt
�w�

2
L2 � h

α
E

1
2 + h

− 1
2+2σ

E + h
−2

E
2
.

Now, apply ∆ to (61)

(63) i∂t∆w + ∆2
w = ε∆A− h

α∆R(h),

with

A = |w + v|
2(w + v)− |v|

2
v

= 2w|v|
2 + wv

2 + w
2
v + 2|w|2v + |w|

2
w,

then

|∆A| � |v|
2
|∆w|+ |v||∇v||∇w|+ |∇v|

2
|w|+ |v||∆v||w|

+|∆v||w|
2 + |w|

2
|∆w|+ |w||∇w|

2
,

hence

�∆A�L2 � �v�
2
L∞�∆w�L2 + �v�L∞�∇v�L∞�∇w�L2 + �∇v�

2
L∞�w�L2

+�v�L∞�∆v�L∞�w�L2 + �∆v�L∞�w�
2
L4(64)

+�w�2
L∞�∆w�L2 + �w�L2�∇w�

2
L4 .

The following inequality holds in dimension 2

�w�L∞ � �w�
1
2

L2�∆w�
1
2

L2 � h
−1

E
1
2 ,

and with (60) and (64) we deduce

�∆A�L2 � h
− 5

2+2σ
E

1
2 + h

− 13
4 +σ

E + h
−4

E
3
2 .

But
h
− 13

4 +σ
E = h

− 5
4+σ

E
1
4 h
−2

E
3
4 � h

− 5
2+2σ

E
1
2 + h

−4
E

3
2 ,

and we obtain

(65) �∆(A)�L2 � h
− 5

2+2σ
E

1
2 + h

−4
E

3
2 .

Now, using (65) and �∆(R(h))�L2 � h
−2, the energy method and the Cauchy-

Schwarz inequality gives
1

2

d

dt
�∆w�

2
L2 = Im

�
∆w (∆A− h

α∆R(h))

� h
−2

E
1
2 (hα−2 + h

− 5
2+2σ

E
1
2 + h

−4
E

3
2 ),(66)

therefore from (62) and (66) we have
d

dt
E � h

α
E

1
2 + h

− 1
2+2σ

E + h
−2

E
2
.
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Interpolation gives

�w�Hσ � �w�L2 + �w�
Ḣσ � �w�L2 + �w�

1−σ
2

L2 �∆w�
σ
2

L2 � h
−σ

E
1
2 := F.

The function F satisfies F (0) = 0 and

(67)
d

dt
F � h

−σ+α + h
− 1

2+2σ
F + h

−2+2σ
F

3
.

As long as h
−2+2σ

F
3 � h

− 1
2+2σ

F , i.e., F � h
3
4 , we can write

d

dt
F � h

−σ+α + h
− 1

2+2σ
F,

and the Gronwall inequality yields

F � h
α+ 1

2−3σeCh
− 1

2 +2σ
t
.

The nonlinear term in (67) can be removed with the continuity argument for
times such that

h
α+ 1

2−3σeCh
− 1

2 +2σ
t � h

3
4+η

,

with η > 0 i.e., for t � (α − 1
4 − 3σ − η)h

1
2−2σ log 1

h
, which is possible with η

small enough as we assume α >
1
4 + 3σ.

Corollary 3.2. — Let κ > 0, 0 < σ <
1
4 and set δ = κh

σ. Denote by
v = e−iλ3t

u3 where u3 and λ3 are defined by (25) and (26) respectively.
Let u be solution of

®
i∂tu + ∆u = ε|u|

2
u,

u(0, x) = v(0, x).

Then �v�Hσ ∼ 1 and

�(u− v)(th)�Hσ −→ 0 when h −→ 0,

where th ∼ h
1
2−2σ log( 1

h
).

Proof. — The result directly follows from Propositions 2.3 and 3.1, as for all
0 < σ <

1
4 , we have σ + 1 >

1
4 + 3σ.
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3.2. The instability argument. — Let κ, κh > 0 and consider v = v
1 defined in

Corollary 3.2 associated with κ and v
2 associated with κh. Let u be a solution

of �
i∂tu

j + ∆u
j = ε|u

j
|
2
u

j
,

u
j(0, x) = v

j(0, x),

and th ∼ h
1
2−2σ log 1

h
. Then

�(u2
− u

1)(th)�Hσ ≥ �(v2
− v

1)(th)�Hσ − �(u2
− v

2)(th)�Hσ

−�(u1
− v

1)(th)�Hσ .(68)

From Corollary 3.2 we deduce that for j = 1, 2

(69) �(uj
− v

j)(th)�Hσ −→ 0.

Observe that

�(v2
− v

1)(th)�Hσ ∼

���e−iλ
2
3th − e−iλ

1
3th

��� =
���ei(λ2

3−λ
1
3)th − 1

��� ,

from Lemma 2.15 we have

(λ2
3 − λ

1
3)th ∼ h

2σ−1(κ− κh)th ∼ (κ− κh) log
1

h
.

It is possible to choose κh such that κh −→ κ and (κ− κh) log 1
h
−→∞. Then

using (68) and (69)

lim sup
h−→0

�(u2
− u

1)(th)�Hσ ≥ lim sup
h−→0

�(v2
− v

1)(th)�Hσ ≥ 2,

even though

�(u2
− u

1)(0)�Hσ = �(v2
− v

1)(0)�Hσ ∼ |κ− κh|,

which tends to 0 with h. According to Definition 1.1, we have proved Proposi-
tion 1.3.
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