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Abstract. — Harvey and Lawson introduced the Kähler rank and computed it in
connection to the cone of positive exact currents of bidimension (1, 1) for many classes
of compact complex surfaces. In this paper we extend these computations to the only
further known class of surfaces not considered by them, that of Kato surfaces. Our
main tool is the reduction to the dynamics of associated holomorphic contractions
(C2, 0)→ (C2, 0).

Résumé (Sur le rang de Kähler des surfaces complexes compactes)
Harvey et Lawson ont introduit et calculé le rang de Kähler en relation avec le cône

des courants positifs fermés de bidimension (1, 1) pour beaucoup de classes de surfaces
complexes compactes. Dans ce travail nous étendons ces calculs à la seule classe de
surfaces connues et qui n’avait pas été considérée par eux, celle des surfaces de Kato.
Notre outil principal est la réduction à la dynamique des contractions holomorphes
(C2, 0)→ (C2, 0) associées.
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1. Introduction

In [8] Harvey and Lawson give a characterisation of Kählerianity for com-
pact complex surfaces in terms of existence (or rather non-existence) of closed
positive currents which are (1, 1)-components of a boundary. The authors also
investigate and describe the cones formed by such currents for many types of
non-Kähler surfaces: elliptic, Hopf, Inoue. Later Lamari proved that every
non-Kähler surface admits non-trivial positive d-exact currents of bidimension
(1, 1); cf. [10]. In order to estimate the degree of non-Kählerianity of a compact
complex surface smooth positive d-exact currents are considered in [8] and the
Kähler rank is defined as follows: the Kähler rank is two if the surface admits
some Kähler metric, one if it admits some positive d-exact (1, 1)-form with
some supplementary property and zero in the remaining case; see the more
precise Definition 2. Unfortunately it is not clear whether the Kähler rank is a
bimeromorphic invariant.

We consider in this paper instead a bimeromorphic invariant which we call
the modified Kähler rank and which we define to be two if the surface is Kähler,
one if the cone of positive d-exact currents of bidimension (1, 1) is larger than
a half-line and zero if this cone is a half-line. The two notions agree in the
cases considered in [8]. Our main result is the computation of the cones of
positive exact (1, 1)-currents for Kato surfaces. These are surfaces whose min-
imal models have positive second Betti number and admit a global spherical
shell (see Definition 9) and are the only “known” compact complex surfaces not
considered in [8]. (We refer the reader to [1] for the general theory of compact
complex surfaces.) It turns out that the modified Kähler rank does not coin-
cide with the Kähler rank in general. In order to perform our computations
we reduce ourselves to the investigation of plurisubharmonic functions with a
certain invariance property with respect to polynomial automorphisms of C2

associated to Kato surfaces. As a corollary we obtain

Theorem 1. — (a) Every positive d-exact (1, 1)-current on a Kato surface,
and more generally on any “known” non-Kählerian compact complex surface, is
a foliated current for some holomorphic foliation of the surface.

(b) All positive d-closed (1, 1)-currents on the “known” non-Kählerian com-
pact complex surfaces excepting on parabolic Inoue surfaces are foliated currents
for some holomorphic foliations.

See Section 3 for definitions.
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2. The Kähler rank

We let X be a compact complex surface and denote by Pbdy = Pbdy(X),
P∞bdy = P∞bdy(X) the cones of positive currents of bidimension (1, 1) which are
boundaries (i.e. are d-exact), respectively smooth such currents. These objects
have been first studied in [8]. In [10] it was shown that X is Kähler if and
only if Pbdy(X) is trivial. It is easy to see that on a non-Kähler surface every
positive d-closed differential form of type (1, 1) is d-exact, cf. [10]. The following
definition of Harvey and Lawson gives a measure of non-Kählerianity by looking
at the positive closed differential(1, 1)-forms on X. It is roughly speaking the
largest generic rank of a positive closed (1, 1)-form on X.

Definition 2. — Let B(X) = {x ∈ X | ∃φ ∈ P∞bdy(X) φx 6= 0}. The Kähler
rank of X is defined to be two if X admits a Kähler metric. If X is non-Kähler
the Kähler rank is set to be one when B(X) contains a non-trivial Zariski open
subset of X and zero otherwise.

It is not known whether the Kähler rank is a bimeromorphic invariant.
We propose also the following:

Definition 3. — The modified Kähler rank of X is defined to be two when
X admits no non-trivial positive exact current of bidimension (1, 1), zero when
it admits exactly one such current up to a multiplicative constant and one oth-
erwise.

One can show easily that the modified Kähler rank is a bimeromorphic
invariant by taking push-down and pull-back of currents through blowing up
maps. See the proof of Proposition 7 for a more precise description.

For elliptic surfaces, primary Hopf surfaces and Inoue surfaces one sees that
the Kähler rank and the modified Kähler rank coincide using the precise de-
scription of Pbdy given in [8] in these cases.

Proposition 4. — Let T be a positive exact current of bidimension (1, 1) on
the compact complex surface X. Then there is a representation ρ : π1(X) →
(R,+) and a plurisubharmonic function u on the universal cover X̃ of X such
that T = ddcu and u ◦ g = u+ ρ(g) for all g ∈ π1(X).

The function u can be chosen to be smooth if T is smooth.

Proof. — One has b1 = dimC H
1(X,C) = dimC H

1(X,OX)+dimC H
0(X,Ω1

X) =

h0,1 + h1,0, cf [1]. Denoting the sheaf of closed differential (1, 0)-forms by dOX
and looking at the long exact cohomology sequence of

0→ CX → OX → dOX → 0
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one gets an exact sequence

0→ H0(dOX)→ H1(CX)→ H1(OX).

By the above equality follows now the surjectivity of the natural map
H1(CX) → H1(OX). This is given by mapping a de Rham cohomology class
[β] of a differential form β = β1,0 + β0,1 onto the Dolbeault cohomology class
of β0,1.

Let now T be a positive exact current of bidimension (1, 1) on X. Then
T = dS with S = S1,0 + S0,1, S1,0, S0,1 currents of order zero and bidegree
(1, 0) and (0, 1) respectively, and S1,0 = S̄0,1. Since ∂̄S0,1 = 0, S0,1 represents
a cohomology class in H1(OX) and let β = β1,0 + β0,1 be a closed differential
form with [β0,1] = [S0,1] in H1(OX) and U a current of degree 0 on X with
S0,1 = β0,1 + ∂̄U . The lift β̃ of β to the universal cover X̃ is d-exact and let f
be a smooth function on X̃ with df = β. In particular ∂̄f = β0,1. This implies
S0,1 = ∂̄(f + U) and T = dS = d(∂̄(f + U) + ∂(f̄ + Ū)) = i∂∂̄(2Im (f + U)).

Moreover for g ∈ π1(X) we have d(f ◦ g − f) = 0 hence f ◦ g − f must be
constant. Set ρ(g) = 2Im (f ◦ g− f). The current 2Im (f +U) is associated to
a plurisubharmonic function u on X̃. Since u− 2Im f = 2ImU comes from X

we see that u has the desired automorphy behaviour with respect to the action
of π1(X).

It is clear that u can be chosen to be smooth when T is smooth.

Definition 5. — We say that an effective reduced divisor C = C1 + · · ·+Cn
on X is a cycle of rational curves if n ≥ 1, C1, . . . , Cn are rational curves and
either n = 1 and C1 has a node or n > 1, all components C1, . . . , Cn are smooth
and the dual graph of C is cyclic.

Corollary 6. — For a compact complex surface X with a cycle of rational
curves C and b1(X) = 1 the Kähler rank is zero.

Proof. — Under the above hypotheses the natural map Z ∼= π1(C) → π1(X)

is an isomorphism by a Theorem of Nakamura, [13]. Let g be a generator of
π1(X). If the Kähler rank of X were one, we would get a smooth non-constant
plurisubharmonic function u on the universal cover X̃ satisfying

u ◦ g = u+ c

for some constant c ∈ R by Proposition 4. The inverse image C̃ of the cycle of
rational curves C of X is an infinite chain of rational curves on X̃. Since u is
smooth and constant on each link of this chain we would get c = 0 hence u would
descend to X. But here u must be constant contradicting our assumptions.

Proposition 7. — The modified Kähler rank is a bimeromorphic invariant.
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Proof. — It is known that for smooth surfaces the property of being Kähler is
invariant under bimeromorphic transformations.

Let now X be non-Kähler and X ′ the blown-up surface at a point x ∈ X.
Any plurisubharmonic function u on the universal cover X̃ may be lifted to X̃ ′.
Conversely let u′ be a plurisubharmonic function on X̃ ′. It will be constant
on the exceptional divisors of X̃ ′ coming from X ′ → X. Thus u′ is the pull-
back of a plurisubharmonic function on X̃, which satisfies the same invariance
condition as u with respect to the action of π1(X) ∼= π1(X ′). This gives a
bijective correspondence between Pbdy(X) and Pbdy(X ′), hence the invariance
of the modified Kähler rank.

From the above argument it also follows that a counterexample to the
bimeromorphic invariance of the Kähler rank could only be given by some
non-elliptic non-Kähler minimal surface X of Kähler rank zero admitting a con-
tinuous plurisubharmonic function u on the universal cover X̃ which is smooth
outside a discrete subset of X̃ and exhibits the automorphy behaviour from
Proposition 4. From [8] we gather that this is not the case of Hopf surfaces or
Inoue surfaces and as we shall see it is not going to be the case of Kato surfaces
either.

Finally let us mention the following description of the cone P (X) of positive
d-closed (1, 1)-currents:

Remark 8. — Let C1, . . . , Cn be the irreducible curves of negative self-
intersection a non-Kählerian surface X and [C1], . . . , [Cn] the corresponding
currents of integration. Then

P (X) = Pbdy(X) +
∑
i

R≥0[Ci].

Proof. — Let us denote by Fj the irreducible curves of X of zero self-
intersection. Since X is non-algebraic it will admit no curve of positive
self-intersection. Thus the Siu decomposition of a positive closed current T
takes the form:

T =
∑
i

ai[Ci] +
∑
j

bj [Fj ] +R,

where ai, bj ∈ R and R is a positive current whose Lelong level sets are finite.
By [11] Prop. 4.3 and its proof R is nef. Since X is non-Kählerian it follows
that R must be exact, cf. [11] Thm. 7.1. The integration currents [Fj ] are also
exact, since F 2

j = 0 and the intersection form on H1,1
R (X) is negative definite

for a non-Kählerian surface.
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3. Kato surfaces

We recall here some facts on Kato surfaces which will be needed in the
sequel. We refer the reader to [9], [3], [4], [5], [6] for more details.

Definition 9. — A global spherical shell on a compact complex surface X is
the image Σ of the sphere S3 by a holomorphic embedding of a neighbourhood
of S3 from C2 into X such that X \Σ is connected. We call X a Kato surface
if X admits a global spherical shell and the second Betti number of a minimal
model of X is positive.

The other minimal surfaces admitting a global spherical shell are the Hopf
surfaces. Their second Betti number is zero.

The notion of global spherical shell and a construction method for surfaces
with global spherical shells were introduced by Ma. Kato in [9]. An important
analytic object associated to this construction method was introduced and
studied by Dloussky in [3]. It is the germ of a holomorphic map (C2, 0) →
(C2, 0). We shortly recall the facts now.

Take the unit ball B in C2 around the origin and blow-up the origin. Choose
a point P1 on the exceptional curve C1 thus obtained and blow it up again.
Continue by blowing up a point on the last created exceptional curve. After n
blow-ups one considers the blowing down map π : B′ → B. The exceptional
divisor on B′ is a tree of n smooth rational curves. The only (−1)-curve among
them is the last created curve Cn. Choose a point Pn on Cn, a biholomorphic
map σ : B̄ → σ(B̄) onto a small compact neighbourhood of Pn in B′ and glue
the two components of the boundary of B′ \ σ(B) by means of σ ◦ π. In this
way one obtains a minimal compact complex surface X. One can show that
the image of S3 through σ is a global spherical shell on X and that b2(X) = n.
Thus X is a minimal Kato surface.

The images of the exceptional curves are the only (compact) rational curves
onX. They form an effective reduced divisor which we denote byD. Depending
on the structure of D one subdivides the class of minimal Kato surfaces into:

1. Enoki surfaces, when D is a cycle of rational curves and D is homologi-
cally trivial,

2. intermediate surfaces, when D consists of a cycle of rational curves and
of at least one further rational curve attached to the cycle,

3. Inoue-Hirzebruch surfaces, when D consists of one or two cycles of ratio-
nal curves and D is not homologically trivial.

In particular Kato surfaces admit cycles of rational curves and therefore their
Kähler rank is zero.

In the case of Enoki surfaces a further curve might appear. In such a case
the curve will be elliptic and the surface is called a parabolic Inoue surface.
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By definition the Dloussky germ associated to X is the germ of the map
f := π ◦σ : B → B around the origin. It can be shown that the conjugacy class
of this germ determines the isomorphy class of X. We shall denote by X(f)

a Kato surface associated to such a germ of holomorphic map f : (C2, 0) →
(C2, 0). One can relate certain analytic objects on X to germs of objects on
(C2, 0) which are invariant under f as follows.

One recovers first the universal cover X̃ of X from the above construction
by considering an infinite number of copies (Ai)i∈Z of B̄′ \ σ(B) and by gluing
for all i ∈ Z the pseudoconvex component of the border ∂Ai−1 of Ai−1 to
the pseudoconcave component of ∂Ai by means of σ ◦ π again. If one glues
in this way only the copies (Ai)i≤0 and then caps the pseudoconcave end of
A0 by a copy of B using σ, one obtains a non-compact complex surface X̂,
a holomorphic map p : X̃ → X̂, a (−1)-curve Ĉ on X̂ and a point Ô on Ĉ

such that p extends the identity map of ∪i≤0Ai, Ĉ is the isomorphic image of a
rational curve C of X̃ through p and p restricts to an isomorphism X̃\p−1(Ô)→
X̂ \ {Ô}. In fact p−1(Ô) is the union of the infinitely many rational curves
appearing after C on X̃ in the “order of creation”, cf. [3], Prop. 3.4. Thus
p : X̃ → X̂ can be seen as a blowing down of the infinitely many exceptional
curves in p−1(Ô). The generator g of π1(X) mapping Ai to Ai+1 induces a
holomorphic map ĝ : X̂ → X̂ with p ◦ g = ĝ ◦ p. One sees that Ô is fixed by
ĝ, that ĝ(Ĉ) = Ô, and that the germ of ĝ at Ô is the same as the germ of
π ◦ σ : B → B at the origin.

Let now u be any plurisubharmonic function on X̃. The restriction of u to
X̂ \ {Ô} extends to a plurisubharmonic function û on X̂, [7]. It is clear that
û ◦ ĝ = û − c in case u ◦ g = u − c for some c ∈ R. Conversely one gets a
plurisubharmonic function u = û ◦ p starting from û. In fact, since the germ
of ĝ around Ô is contracting, it is enough to have only a germ of û around Ô
satisfying û◦ĝ = û−c in order to recover u on X̃ with the property u◦g = u−c.

According to [3], [4], [5], [6] we get the following three normal forms for
representatives of conjugacy classes of Dloussky germs:

1. in the case of Enoki surfaces

f(z, w) = (αz,wzs +Q(z)),

where α ∈ ∆∗ = ∆ \ {0}, s ≥ 1 and Q is a complex polynomial of degree
at most s and with Q(0) = 0; we have denoted by ∆ the unit disc in C;

2. in the case of intermediate surfaces

f(z, w) = (zp, λwzs +Q(z)),

where p ≥ 2, s ≥ 1, λ ∈ C∗ and Q(z) =
∑s
m=1 amz

m+az
ps

p−1 is a complex
polynomial with gcd{p, m | am 6= 0} = 1 and a = 0 if (p−1) - s or λ 6= 1;
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3. in the case of Inoue-Hirzebruch surfaces

f(z, w) = (zawb, zcwd),

where the matrix
(
a b
c d

)
is a product of b2(X) matrices of the form ( 0 1

1 1 )

or ( 1 1
0 1 ) with at least one factor of the first kind.

In the rest of this paper we shall determine the germs of plurisubharmonic
functions around the origin of C2 satisfying u◦f = u−c for some fixed c ∈ R>0

and each type of germ f as above.

4. The main results

Theorem 10. — (a) Let f : C2 → C2,

f(z, w) = (αz,wzs +Q(z)),

with α ∈ ∆∗, s ≥ 1 and Q is a complex polynomial of degree at most s and
with Q(0) = 0. Let u : C2 → [−∞,∞[, u(z, w) = log |z|. Then up to some
additive constant, u is the only plurisubharmonic function on C2 which satisfies
u ◦ f = u+ log |α|.

(b) On an Enoki surface the integration current on the cycle of rational
curves is the only positive exact current of bidimension (1, 1) up to multiplica-
tive constants.

Proof. — We start by proving part (b) of the theorem.
Let C = C1 + · · ·+ Cn be the cycle of rational curves on the Enoki surface

X. Since C is homologically trivial the current of integration [C] along C is
a positive d-exact current of bidimension (1, 1). We denote by E the elliptic
curve on X in case it exists.

Let T be an arbitrary positive exact current of bidimension (1, 1) on X and
mCi := inf{ν(T, x) |x ∈ Ci}, mC = minmCi , mE its generic Lelong numbers
along Ci, C and E respectively. We denote by χA the characteristic function
of a subset A of X.

The Siu decomposition of T has the form

T = χET + χCT + χX\(C∪E)T = mE [E] +
∑
i

mCi [Ci] + χX\(C∪E)T =

= mE [E] +
∑
i

(mCi
−mC)[Ci] +mC [C] + χX\(C∪E)T,

(see [2] 6.18, 3.2.4.) Since C is the only homologically trivial effective reduced
non-trivial divisor X we get as in Remark 8 that χX\(C∪E)T is exact and that

T = mC [C] + χX\(C∪E)T.
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Hence we may replace T by χX\(C∪E)T which is positive, d-exact, has van-
ishing generic Lelong number along C and is the trivial extension to X of the
restriction of T to X \ (C ∪E). After normalisation we obtain a corresponding
plurisubharmonic function v on C2 satisfying v ◦ f = v + log |α|. We denote
the current ddcv on C2 by T again. Consequently we have f∗T = T . More-
over, since C corresponds to the axis A = {z = 0} ⊂ C2, the generic Lelong
number mA of T along A must vanish. Since f(A) = {0} and in general
ν(f∗T, x) ≥ ν(T, f(x)) (cf. [12]) it follows that ν(T, 0) = 0.

The differential form dz defines a holomorphic foliation on C2 which is in-
variant by f , since f∗(dz) = αdz.

Claim. — T is a foliation current for this foliation.

This means that for any test function φ ∈ C∞c (C2) one has T (φdz ∧ dz̄) = 0.
As before T is the trivial extension to C2 of its restriction to C2 \ A. It is
therefore enough to check that T (φdz ∧ dz̄) = 0 for test functions φ with
support in C2 \A.

We have

|T (φdz ∧ dz̄)| = |f∗T (φdz ∧ dz̄)| = |T ((f−1)∗(φdz ∧ dz̄))| =

= |T
Å
φ ◦ f−1

|α|2
dz ∧ dz̄

ã
| ≤ max |φ|

|α|2
2σT (f(Suppφ)),

where σT = T ∧ i
2 (dz∧dz̄+dw∧dw̄) denotes the trace measure of T . Iterating

we obtain

(1) |T (φdz ∧ dz̄)| ≤ max |φ|
|α|2n

2σT (fn(Suppφ))

for any n ∈ N.

We now need to estimate how large fn(B(0, R)) is. Take C1 = max{ |Q(z)|
|z| | z ∈

∆̄}. We denote by P (R1, R2) the bidisc of radii R1, R2 centered at the origin
of C2. Then

f(P (1, R2) ⊂ P (|α|, R2 + C1),

f2(P (1, R2) ⊂ P (|α|2, |α|(R2 + C1) + |α|C1) ⊂

⊂ P (|α|2, |α|(R2 + C1) +

Å
1

1− |α|
− 1)C1

ã
,
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f3(P (1, R2) ⊂ P (|α|3, |α|3(R2 + C1) +
|α|2

1− |α|
|C1) ⊂

⊂ P (|α|3, |α|3(R2 + C1) +

Å
1

1− |α|
− 1)C1

ã
,

f4(P (1, R2) ⊂ P (|α|4, |α|6(R2 + C1) +
|α|3

1− |α|
|C1) ⊂

⊂ P (|α|4, |α|6(R2 + C1) +

Å
1

1− |α|
− 1)C1

ã
,

and further

fn(P (1, R2) ⊂ P (|α|n, |α|
n(n−1)

2 (R2 + C1) +
|α|n−1

1− |α|
|C1).

From this and from (1) it follows that there is a constant C2 such that

|T (φdz ∧ dz̄)| ≤ C2 max |φ|σT (B(0, |α|n)

|α|2n
,

for all n sufficiently large. But

lim
n→∞

σT (B(0, |α|n)

|α|2n
= πν(T, 0) = 0,

and the claim follows.
Using the claim it can be easily shown that T is invariant under translations

in the w-direction, hence T = pr∗1S, where S is a positive current on C of
dimension zero and pr1 : C2 → C denotes the first projection. Set f1 : C→ C,
f1(z) = αz. Then pr1 ◦ f = f1 ◦ pr1, hence f∗1 (S) = S. The current S is of the
form µidz ∧ dz̄, where µ is a positive measure on C. Denote by ∆(r) the disc
of radius r around the origin of C. The invariance property of S implies

µ(∆(r)) = µ(∆(|α|r)) = µ(∆(|α|nr))

for all n ∈ N and r ∈ R>0. This entails that S is supported at the origin of C
and hence that T = 0, since T is not carried by A.

We now turn to part (a) of the theorem. Let v be a plurisubharmonic
function on C2 satisfying v ◦ f = f + log |α|. By part (b) of the theorem we
see that ddcv ≤ ddcu or ddcu ≤ ddcv. But then u − v or v − u would give a
plurisubharmonic function on X which has to be constant.

Notation. — For α ∈ R>0 we denote by Kα the set of continuous α-periodic
functions ψ : R→ R which fulfil the inequality

−ψ′′ + ψ′ + 1 ≥ 0

in generalised sense.
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Notice that Kα is infinite dimensional: for any α-periodic smooth function
φ : R→ R and for any small enough factor ε ∈ R>0 one has εφ ∈ Kα.

Theorem 11. — (a) Let f : ∆× C→ ∆× C,

f(z, w) = (zp, λwzs +Q(z)),

where p ≥ 2, s ≥ 1, λ ∈ C∗ and Q(z) =
∑s
m=1 amz

m + az
ps

p−1 is a complex
polynomial with gcd{p, m | am 6= 0} = 1 and a = 0 if (p− 1) - s or λ 6= 1. The
plurisubharmonic functions u : ∆×C→ [−∞,∞[ which satisfy u◦f = u− log p

are precisely the functions of the form

u(z, w) = − log(− log |z|)− ψ(log(− log |z|))

for ψ ∈ Klog p.
(b) The cone of positive exact currents of bidimension (1, 1) on the interme-

diate surface X(f) corresponds bijectively to the cone of currents of the form
cddcu on ∆×C for u as above and c ∈ R>0. In particular, the modified Kähler
rank of X(f) is one.

Proof. — There are no homologically trivial divisors on X(f) this time (ex-
cepting 0 of course). As in the case of Enoki surfaces we reduce ourselves to
the investigation of closed positive currents T on ∆×C with vanishing Lelong
number at the origin and satisfying f∗T = T . Moreover we may again suppose
that T is the extension to ∆× C of its restriction to ∆∗ × C.

The differential form dz defines a holomorphic foliation on ∆ × C which is
invariant under f .

We start again by showing that T is a foliation current for this foliation. For
this it is enough to check that the measure

idz ∧ dz̄ ∧ T

vanishes on ∆∗ × C. We use the invariance of T by f again.
Take 0 < r1 < r2 < 1, r′ > 0, D := (∆(r2) \ ∆(r1)) × ∆(r′), D′ :=

f−n(fn(D)) and A(r1, r2) = A(r1, r2, r
′) := (idz ∧ dz̄ ∧ T )(D) the measure of

the set D. We have of course D′ ⊃ D. Since f : ∆∗×C→ ∆∗×C is p to 1 we
get

(idz ∧ dz̄ ∧ T )(fn(D)) = pn(i|z|2(pn−1)dz ∧ dz̄ ∧ T )(D′) ≥

≥ pn(i|z|2p
n

dz ∧ dz̄ ∧ T )(D′) ≥ pnr2pn

1 A(r1, r2).

Hence

(2) A(r1, r2) ≤ 1

pn

Å
r2

r1

ã2pn

i(∂∂̄(|z|2 + |w|2p) ∧ T )(fn(D))

πr2pn

2

.
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As before we need to estimate the width of fn(D). Let C1 = max{ |Q(z)|
|z| | z ∈

∆̄} and C2 = max(1, |λ|). For 0 < r < 1, 0 < r′ we see that

f(P (r, r′)) ⊂ P
Å
rp, rC2

Å
r′ +

C1

C2

ãã
⊂ P

Å
rp, rC2

Å
r′ +

C1

(1− r)C2

ãã
,

f2(P (r, r′)) ⊂ P
Å
rp

2

, rp+1C2
2r
′ +

rp−1C2
2C1

(1− r)C2

ã
⊂ P

Å
rp

2

, rp−1C2
2

Å
r′ +

C1

(1− r)C2

ãã
,

f3(P (r, r′)) ⊂ P
Å
rp

3

, rp
2

C2

Å
rp−1C2

2

Å
r′ +

C1

(1− r)C2

ã
+
C1

C2

ãã
⊂ P

Ç
rp

3

, rp
2+p−1C3

2r
′ +

rp
2−1C3

2C1

(1− r)C2

å
.

For sufficiently large n we thus obtain

fn(P (r, r′)) ⊂ {|z|2 + |w|2p < 2C1r
pn

}
which in combination with the inequality (2) gives

A(r1, r2) ≤ 1

pn

Å
r2

r1

ã2pn

2i(∂∂̄(|z|2 + |w|2p) ∧ T )({|z|2 + |w|2p < 2C1r
pn

2 })
πr2pn

2

.

But the factor
2i(∂∂̄(|z|2 + |w|2p) ∧ T )({|z|2 + |w|2p < 2C1r

pn

2 })
πr2pn

2

converges to 4C1ν(T, φ, 0), where ν(T, φ, 0) is the Lelong number with respect
to φ = log(|z|2 + |w|2p). This Lelong number vanishes by the Comparison
Theorem for Lelong numbers [2], since the usual Lelong number vanishes. So
for any ε > 0 we can find some N ∈ N such that

A(r1, r2) ≤ 1

pn

Å
r2

r1

ã2pn

ε

for all n ≥ N . Moreover this inequality holds also for smaller r1 and r2.
Let

δ =

Å
r2

r1

ã 1
2pn

and look at the division (r1, δr1, δ
2r1, . . . , δ

2pn

r1 = r2) of the interval [r1, r2].
We have seen that A(δir1, δ

i+1r1) ≤ 1
pn δ

2pn

ε = 1
pn

r2
r1
ε hence A(r1, r2) =∑2pn

i=1 A(δi−1r1, δ
ir1) ≤ 2 r2r1 ε, which proves that T is a foliation current.

As in the proof of Theorem 10, T is invariant under translations in the w-
direction, hence T = pr∗1S, where S is a positive current on ∆ of dimension
zero and pr1 : ∆×C→ ∆ is the first projection. On the other hand T = ddcu,
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where u is a plurisubharmonic function on ∆× C with u ◦ f = u− log p. The
restriction of u to a general leaf {z = const.} of our foliation is a harmonic
function in w. We shall show that ∂u

∂w = 0, the case of ∂u
∂w̄ = 0 being similar.

Since T is a foliation current one has that ∂2u
∂z̄∂w = ∂2u

∂z∂w = 0 as distributions.
In particular ∂u

∂w = 0 is invariant by translations in the z-directions. The
invariance condition by translations in w implies that

(3) λzs
∂u

∂w
(f(z, w)) =

∂u

∂w
(z, w)

Take now a small non-zero solution z′ of the equation

(4) w = λzsw +Q(z)

for fixed small w, w 6= 0. Using the invariance in the z-direction together
with (3) and (4) we obtain

∂u

∂w
(z, w) =

∂u

∂w
(z′, w) = λ(z′)s

∂u

∂w
((z′)p, w) = λ(z′)s

∂u

∂w
(z, w),

hence ∂u
∂w (z, w) = 0 for small w. But for large w the vanishing holds as well

since we can iterate on (3).
Thus u is constant on the leaves {z = const.} and therefore descends to a

subharmonic function u on ∆ fulfilling the condition u(zp) = u(z) − log p for
all z ∈ ∆.

Take now z ∈ ∆ and a pn-th root of unity θ. The invariance condition
implies u(z) = u(zp

n

) + n log p = u(θz) hence each value u(z) is attained on a
dense subset of the circle {|z| = const.}. By semi-continuity it follows that u
depends only on r = |z|.

Let v = u|[0,1[. By the maximum principle and the invariance condition
on u one sees that v is strictly increasing. Using this, the semi-continuity
of u and the definition of subharmonicity (cf. [2] 1.4.13.b) one infers that v
is continuous. The Laplace operator takes the form ∂2

∂r2 + 1
r
∂
∂r + 1

r2
∂2

∂φ2 in
polar coordinates (r, φ). We thus reduce ourselves to the search of continuous
functions v : [0, 1[→ [−∞,∞[ which satisfy

(5) v(rp) = v(r)− log p

and

(6) v′′(r) +
1

r
v′(r) ≥ 0.

Let h : ]−∞,∞] → [0, 1[, h(t) = exp(− exp t) and ψ = −v ◦ h − h. The
conditions (5) and (6) translate into

ψ(t+ log p) = ψ(t),

−ψ′′ + ψ′ + 1 ≥ 0
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and thus ψ ∈ Klog p and the theorem is proved.

For the case of Inoue-Hirzebruch surfaces we need some preparations. Let
f : C2 → C2, f(z, w) = (zawb, zcwd), and denote by A the matrix

(
a b
c d

)
. We

suppose that A is a product of matrices of the form ( 0 1
1 1 ) or ( 1 1

0 1 ) with at least
one factor of the first kind. We have det(A) = ±1 and by Lemma 2.2 from [4],
trace(A) > 2 unless A = ( 0 1

1 1 ) or A = ( 0 1
1 2 ). In any case one sees that the

eigenvalues λ1, λ2 of At are real, irrational and one of them is larger than 1.
We set λ = λ1 > 1. Let (α, β) = (α1, β1), (α2, β2) be eigenvectors associated
to λ1 and λ2 respectively. An easy computation shows that αβ = α1β1 > 0,
α2β2 < 0. We choose α, β, α2 ∈ R>0 and set

φ = φ1 = α log |z|+ β log |w|, φ2 = α2 log |z|+ β2 log |w|,

U := {φ < 0} ⊂ C2.

Then φi ◦ f = λiφi for i = 1, 2.
Now we can state

Theorem 12. — (a) For A, λ, α, β as above let φ = α log |z| + β log |w|,
U = φ−1([−∞, 0[), f : U → U ,

f(z, w) = (zawb, zcwd).

Then the plurisubharmonic functions u on U which satisfy u ◦ f = u − log λ

are precisely the functions of the form

u = − log(−φ)− ψ(log(−φ)),

for ψ ∈ Klog p.
(b) The cone of positive exact currents of bidimension (1, 1) on the Inoue-

Hirzebruch surface X(f) corresponds bijectively to the cone of currents of the
form cddcu on U for u as above and c ∈ R>0. In particular, the modified Kähler
rank of X(f) is one.

Proof. — As in the proof of Theorem 11 we reduce ourselves to the investiga-
tion of currents T on U of the form T = ddcu with u plurisubharmonic on U
and such that u ◦ f = u − log λ and ν(T, 0) = 0. Moreover we may suppose
that T is the extension to U of its restriction to U ∩ (C∗ × C∗).

There is again a holomorphic foliation on U , this time singular, which will
be shown to be compatible with T . On U ∩ (C∗ ×C∗) this foliation is induced
by the smooth positive (1, 1)-form ddcv where v := − log(−φ). As before it is
enough to show that the measure ddcv ∧ T is zero on any compact subset of
U ∩ (C∗ × C∗).
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For a better visualisation of the present situation we introduce the map E :

C×C→ C∗×C∗, E(ζ, ω) = (exp ζ, expω). We denote the linear automorphism
induced by A on C2 again by A and get the relations

f ◦ E = E ◦A,

φ ◦ E(ζ, ω) = αiRe ζ + βiReω, i = 1, 2.

In particular E−1(U) = {αRe ζ + βReω < 0}.
We also see that U is covered by compact subsets of the form D =

D(c1, δ, c2) := φ−1
1 ([−c1δ,−c1]) ∩ φ−1

2 ([−c2, c2]) for c1, c2 ∈ R>0, δ ∈ [1,∞[.
Since both T and ddcv are invariant by f we have

A(c1, δ) = A(c1, δ, c2) := (ddcv ∧ T )(D(c1, δ, c2)) =

= (ddcv ∧ T )fn(D(c1, δ, c2))) = (ddcv ∧ T )(D(λnc1, δ, λ
−nc2)).

We need to estimate ddcv on fn(D). On D we have

−c1δ ≤ α1 log |z|+ β1 log |w| ≤ −c1,

−c2 ≤ α2 log |z|+ β2 log |w| ≤ c2,
hence

exp

Å
c1δβ2 − c2β1

α2β1 − α1β2

ã
≤ |z| ≤ exp

Å
c1β2 + c2β1

α2β1 − α1β2

ã
,

exp

Å−c1δα2 − c2α1

α2β1 − α1β2

ã
≤ |w| ≤ exp

Å−c1α2 + c2α1

α2β1 − α1β2

ã
.

Therefore we get on fn(D)

exp

Å
λnc1δβ2 − λ−nc2β1

α2β1 − α1β2

ã
≤ |z| ≤ exp

Å
λnc1β2 + λ−nc2β1

α2β1 − α1β2

ã
,

exp

Å−λnc1δα2 − λ−nc2α1

α2β1 − α1β2

ã
≤ |w| ≤ exp

Å−λnc1α2 + λ−nc2α1

α2β1 − α1β2

ã
,

hence fn(D) ⊂ B(0, rn), where

r2
n = exp

Å
2
λnc1β2 + λ−nc2β1

α2β1 − α1β2

ã
+ exp

Å
2
−λnc1α2 + λ−nc2α1

α2β1 − α1β2

ã
.

Now on D again

i∂∂̄v =
i∂φ ∧ ∂̄φ

φ2
=
i(αdzz + β dww ) ∧ (αdz̄z̄ + β dw̄w̄ )

4φ2
≤

≤ C1

min{|z|2, |w|2 | (z, w) ∈ D}
i(dz ∧ dz̄ + dw ∧ dw̄)

φ2
,

where C1 is a constant not depending on D. This implies

A(c1, δ) ≤
C1r

2
n

min{φ2(z, w)|z|2, φ2(z, w)|w|2 | (z, w) ∈ fn(D)}
σT (B(0, r2

n))

r2
n

.
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As in the previous cases σT (B(0,r2n))
r2n

converges to zero, therefore for any

ε > 0 we get C1σT (B(0,r2n))
r2n

< ε as soon as n is large enough. Setting

C2 = 2c1 max{α1,−β2}
α2β1−α1β2

+ 1 we get by our estimates r2
n ≤ exp (−λnC2) and

min{|z|2, |w|2 | (z, w) ∈ fn(D)} ≥ exp (−λnC2δ), hence

A(c1, δ) ≤
exp(λnC2(δ − 1))

λ2n

ε

c21
.

Set m = bλ2nc and consider the division (1, exp 1
m , exp 2

m , . . . , exp m
m = e) of

the interval [1, e]. For any subinterval our estimates hold with eC2 instead of
C2, hence

A(c1, e, c2) =
m∑
i=1

A(c1 exp
i− 1

m
, exp

1

m
, c2) ≤

≤ m
exp(λnC2(exp 1

m − 1))

λ2n

ε

c21
≤ exp(C2e

exp 1
m − 1
1
m

)
ε

c21

and the last term converges to exp(C2e)
ε
c21

showing that A(c1, e, c2) = 0.
As in the proof of Theorem 11 we next check that u is constant on the leaves

of the foliation given by αdzz + β dww on U ∩ (C∗ × C∗).
Indeed, for V := u ◦ E one has V ◦ A = V − log λ on {αRe ζ + βReω < 0}

and ddcV is a foliation current for the foliation given by αdζ + βdω.
We consider a linear change of coordinates which diagonalizes A on C2 lead-

ing to A(ξ, τ) = (λξ, λ−1τ). Keeping the notation V for V after this coordinate
change we notice that V restricted to the leaves {ξ = const.} is harmonic and
that ∂V

∂τ ,
∂V
∂τ̄ are invariant by translations in the ξ-direction. As in the case of

intermediate surfaces we get
1

λ

∂V

∂τ

Å
ξ,

1

λ
τ

ã
=

1

λ

∂V

∂τ

Å
λξ,

1

λ
τ

ã
=
∂V

∂τ
(ξ, τ).

Iterating this relation and using the continuity of ∂V∂τ on {ξ = const.} we obtain
∂V

∂τ

Å
ξ,

1

λn
τ

ã
= λn

∂V

∂τ
(ξ, τ)

which forces ∂V
∂τ to vanish. Similarly ∂V

∂τ̄ = 0. Thus V is constant on the leaves
{ξ = const.}.

Returning now to the coordinates (ζ, ω) on C2 we shall show that V only
depends on Re ζ and Reω. The function V is doubly periodic in Im ζ, Imω
since V = u◦E. FixRe ζ andReω and look at a leaf {αζ+βω = const.}. Under
this restriction the imaginary parts must satisfy some relation αIm ζ+βImω =

const. which describes a dense subset in the “torus of the imaginary parts”
R2/(2πZ)2 since α/β is irrational. On this subset V is constant and by semi-
continuity it must be constant on the whole torus.
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Switching once more to coordinates (ξ, τ) we see that V depends on Re ξ
alone. We have reduced ourselves in this way to the search of continuous
functions v : R<0 → R subject to the conditions

v(λt) = v(t)− log λ, ∀t ∈ R<0,

v′′ ≥ 0.

Remark that the continuity of v can be deduced as in Theorem 11 after first
restricting u to the line {z = w}.

Take now h : R → R<0, h(s) = − exp(s) and ψ = −v ◦ h − h. Then the
conditions on v translate into ψ ∈ Klog λ. Thus u = − log(−φ) − ψ(log(−φ))

and the proof is finished.

Finally, the first part of Theorem 1 is a direct consequence of the description
of Pbdy(X) given in [8] and in the above Theorems. For the second part it
suffices to apply Remark 8 and to notice that the only case of a curve on a
“known” non-Kählerian surface, which is not invariant under a holomorphic
foliation, is that of the elliptic curve on a parabolic Inoue surface.
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