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Abstract. — Fix K a p-adic field and denote by GK its absolute Galois group. Let
K∞ be the extension of K obtained by adding pn-th roots of a fixed uniformizer, and
G∞ ⊂ GK its absolute Galois group. In this article, we define a class of p-adic torsion
representations of G∞, called quasi-semi-stable. We prove that these representations
are “explicitly” described by a certain category of linear algebraic objects. The results
of this note should be considered as a first step in the understanding of the structure
of quotient of two lattices in a crystalline (resp. semi-stable) Galois representation.

Résumé (Représentations quasi-semi-stables). — Soient K un corps p-adique et GK

son groupe de Galois absolu. Soit K∞ l’extension de K obtenue en ajoutant les racines
pn-ièmes d’une uniformisante fixée. Notons G∞ ⊂ GK le groupe de Galois absolu de
K∞. Dans cet article, on définit une classe de représentations p-adiques de torsion du
groupe G∞, que l’on appelle quasi-semi-stables. Nous montrons que ces représentations
sont « explicitement » décrites via une certaine catégories d’objets d’algèbre linéaire.
Les résultats dans cette note doivent être considérés comme une première étape dans
l’étude de la structure des représentations qui apparaissent comme quotients de deux
réseaux d’une représentation galoisienne cristalline (resp. semi-stable).
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186 X. CARUSO & T. LIU

Introduction

Let p be a prime number and k a perfect field of characteristic p. Put
W = W (k), the ring of Witt vectors with coefficients in k, and K0 = Frac W .
Denote by σ the Frobenius on k, W and K0. Let K be a totally ramified
extension of K0 of degree e and OK its ring of integers. Fix π an uniformizer
of OK . We denote by K̄ an algebraic closure of K, by OK̄ its ring of integers
and by GK its absolute Galois group. Fix a sequence (πn) of elements of K̄
satisfying π0 = π and πp

n+1 = πn. Put Kn = K(πn), K∞ =
�

n∈N Kn and
denote by G∞ ⊂ GK the absolute Galois group of K∞.

We wish to study representations which can be written as a quotient of two
lattices in a crystalline or semi-stable representation. For technical reasons we
have to make an assumption on Hodge-Tate weights, namely, they all belong
to {0, . . . , r} for a nonnegative integer r < p− 1. The theory of Breuil modules
then gives a description of these lattices in term of linear algebra: there exists
a category Mod

r,φ,N
/S that is dually equivalent to the category whose objects are

these lattices. By mimicking the definition of Mod
r,φ,N
/S , one can construct a

category of torsion objects Mod
r,φ,N
/S∞

equipped with a contravariant functor, Tst,
which takes values in the category of Galois representations. When er < p− 1,
we can prove that Mod

r,φ,N
/S∞

is an abelian category and Tst is fully faithful
(see [7]). However, these assertions are false if the assumption er < p − 1

is removed. In this article, we draw a picture of this structure in a slightly
different situation. More precisely, we remove the operator N (that appears in
the subscript Mod

r,φ,N
/S ) and study a new category Mod

r,φ
/S . It is endowed with

a functor Tqst with values in a certain category of G∞-representations, that
we call quasi-semi-stable. We define a full subcategory Max

r,φ
/S∞

and a functor
Max

r
: Mod

r,φ
/S∞

→ Max
r,φ
/S∞

, which is a retraction (and a left adjoint) of the
natural inclusion Max

r,φ
/S∞

�→ Mod
r,φ
/S∞

and which commutes with Tqst. We
then prove the following (see Theorem 3.7.1 for a more complete statement).

Theorem 1. — The category Max
r,φ
/S∞

is abelian and artinian. Moreover, the
restriction of Tqst to Max

r,φ
/S∞

is exact and fully faithful.

Of course, using duality, we can define the category Min
r,φ
/S∞

and the functor
Min

r
: Mod

r,φ
/S∞

→ Max
r,φ
/S∞

; they satisfy analogous properties as those stated
in Theorem 1. In § 3.6, assuming k to be algebraically closed, we also provide a
complete description of simple objects of Max

r,φ
/S∞

, and by duality of Min
r,φ
/S∞

.

If r = 1, quasi-semi-stable representations are linked with geometry. In this
case, the category Mod

r,φ
/S∞

is dually equivalent to the category of finite flat
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QUASI-SEMI-STABLE REPRESENTATIONS 187

group schemes over OK killed by a power of p (see [3]). Under this equivalence,
the functor Min

r (resp. Max
r) corresponds to the maximal (resp. minimal)

models defined by Raynaud in [15]. The following result is then a direct con-
sequence of Theorem 1.

Theorem 2. — The category of minimal (resp. maximal) finite flat group
schemes over OK killed by a power of p is abelian.

Finally, in the case r = 1, we can derive from our results a new proof of the
following theorem.

Theorem 3. — Let G and G� be two finite flat group schemes over OK killed
by a power of p. Put T = G(K̄), T � = G�(K̄) and consider f : T → T � a
G∞-equivariant map. Then f is GK-equivariant.

Unfortunately, if r > 1, quasi-semi-stable representations no longer have a
geometric interpretation. Then it is difficult to derive concrete results from
Theorem 1 in general. Actually, Theorem 1 should be seen as a preliminary
study of the more interesting category Mod

r,φ,N
/S∞

; a first part of this work is
achieved in [8].

Now, we detail the content of the article. First, we recall definitions of cat-
egories of Breuil modules. This allows us to explain more precisely and more
clearly our motivations and results. In the second section, we introduce the cat-
egory Mod

r,φ
/S∞

and we prove that it is equivalent to the category Mod
r,φ
/S∞

. This
result is interesting because it will be easier to work with objects of Mod

r,φ
/S∞

.
Section 3 is devoted to the study of the structure of Mod

r,φ
/S∞

= Mod
r,φ
/S∞

: es-
sentially we give a proof of Theorem 1. Then, we assume r = 1 and show
how the previous results easily imply Theorem 3. The paper ends with some
perspectives and open questions.

1. Motivations and settings

In the rest of the paper, we will make an intensive use of Breuil modules, so
we gather below all basic definitions about it. The reader may skip it in a first
time and come back after when objects are really used.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



188 X. CARUSO & T. LIU

1.1. Breuil modules. — Fix a nonnegative integer r < p − 1. Recall that π is
a fixed uniformizer. Denote by S the p-adic completion of the PD-envelope
of W [u] with respect to the kernel of the surjection W [u] → OK , u �→ π
(and compatible with the canonical divided powers on pW [u]). This ideal is
principal generated by E(u), the minimal polynomial of π over K0. The ring
S is endowed with the canonical filtration associated to the PD-envelope and
with two endomorphisms:

– a Frobenius φ: it is the unique continuous map σ-semi-linear which sends
u to up

– a monodromy operator N : it is the unique continuous map W -linear that
sends u to −u and satisfies N(xy) = N(x)y + xN(y) for all x and y in S
(Leibniz rule).

They satisfy Nφ = pφN . We have φ(Fil
rS) ⊂ prS (recall r < p − 1) and we

define φr =
φ
pr : Fil

rS → S. Set c = φ1(E(u)): it is a unit in S.
First, we define a “big” category �

Mod
r,φ,N
/S whose objects are the following

data:
1. a S-module M;
2. a submodule Fil

r
M⊂M such that Fil

rSM⊂ Fil
r
M;

3. a φ-semi-linear map φr : Fil
r
M→M;

4. a W -linear map N : M→M such that:
– (Leibniz condition) N(sx) = sN(x) + N(s)x for all s ∈ S, x ∈M

– (Griffiths transversality) E(u)N(Fil
r
M) ⊂ Fil

r
M

– the following diagram is commutative:

Fil
r
M

φr ��

E(u)N

��

M

cN

��
Fil

r
M

φr ��M

Morphisms in �
Mod

r,φ,N
/S are S-linear maps compatible with Fil

r, φr and N .
There exists in �

Mod
r,φ,N
/S a notion of exact sequence: a sequence 0 → M� →

M→M�� → 0 is said exact if both sequences 0 →M� →M→M�� → 0 and
0 → Fil

r
M� → Fil

r
M→ Fil

r
M�� → 0 are exact as sequences of S-modules.

Now, we are ready to define full subcategories of �
Mod

r,φ,N
/S . The first one is

the category of strongly divisible modules, denoted by Mod
r,φ,N
/S : it consists of

objects M∈ �
Mod

r,φ,N
/S satisfying the following conditions:

– the module M is free of finite rank over S;
– the quotient M/Fil

r
M has no p-torsion;

– the image of φr generates M (as an S-module).
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The second category is Mod
r,φ,N
/S1

: these objects are the M ∈ �
Mod

r,φ,N
/S such

that
– the module M is free of finite rank over S1 = S/pS;
– the image of φr generates M (as an S-module).

Finally, let Mod
r,φ,N
/S∞

be the smallest subcategory of �
Mod

r,φ,N
/S containing

Mod
r,φ,N
/S1

and stable under extensions (i.e. if 0 → M� → M → M�� → 0

is an exact sequence in �
Mod

r,φ,N
/S and if M� and M�� are objects of Mod

r,φ,N
/S∞

,
then M is also).

The three former categories are equipped with a contravariant functor Tst

which takes values in the category of Zp-representations of GK . On Mod
r,φ,N
/S ,

it is defined by the formula

Tst(M) = Hom�Modr,φ,N
/S

(M, Âst)

where Âst is a certain period ring, object of �
Mod

r,φ,N
/S endowed with an action

of GK . We refer to [1], § 3.1.1 for the precise definition of Âst. On the category
Mod

r,φ,N
/S∞

it is defined by

Tst(M) = Hom�Modr,φ,N
/S

(M, Âst ⊗Zp Qp/Zp).

We define similarly �
Mod

r,φ
/S , Mod

r,φ
/S , Mod

r,φ
/S1

and Mod
r,φ
/S∞

by forgetting
the operator N . The three latest categories are equipped with a functor Tqst

with values in the category of Zp-representations of G∞ (1) (defined in the
introduction): definitions are obtained by replacing the period ring Âst by
Acris. We have a collection of forgetful functors, and if M is an object of
Mod

r,φ,N
/S (resp. Mod

r,φ,N
/S∞

), there is a canonical and functorial G∞-equivariant
isomorphism

(1) Tst(M) � Tqst(M)

(see Lemma 2.3.1.1 of [2]).

1.2. Aim of the paper. — Semi-stable Qp-representations of GK are classified
by (weakly) admissible filtered (ϕ, N)-modules (see [10]). Our motivation is
to find a description of quotients of two lattices in such representations, in
term of some linear algebraic data. If Hodge-Tate weights of the semi-stable
representations are in {0, . . . , r}, such a description exists for lattices (stable
by GK):

(1) Tqst(M) is not endowed with an action of GK since this group does not act trivially on
u ∈ Acris.
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190 X. CARUSO & T. LIU

Theorem 1.2.1 (Liu, [14]). — The functor Tst from Mod
r,φ,N
/S to the category

of lattices in semi-stable representations with Hodge-Tate weights in {0, . . . , r}
is an anti-equivalence.

Furthermore, we have the following lemma:

Lemma 1.2.2. — Let M� ⊂ M be two strongly divisible modules such that
M� ⊗Zp Qp � M⊗Zp Qp and Fil

r
M� ⊗Zp Qp � Fil

r
M⊗Zp Qp. Then M/M�

is an object of �
Mod

r,φ,N
/S and the following sequence of GK-representations:

0 → Tst(M) → Tst(M
�
) → Hom�Modr,φ,N

/S
(M/M�, Âst ⊗Zp Qp/Zp) → 0

is exact.

Proof. — The argument is the same as in Lemma V.4.2.4 of [6].

Based on the above results, we can draw a plan to study our representations:

1. recognize objects in �
Mod

r,φ,N
/S that can be written as a quotient of two

divisible modules as in Lemma 1.2.2;
2. study the functor Hom�Modr,φ,N

/S
(—, Âst ⊗Zp Qp/Zp) on this subcategory.

The aim of this article is to explain how the previous plan can be achieved for
categories �

Mod
r,φ
/S and Mod

r,φ
/S (instead of �

Mod
r,φ,N
/S and Mod

r,φ,N
/S ). Precisely

we prove that the category of torsion quotients of two objects of Mod
r,φ
/S is

exactly the category Mod
r,φ
/S∞

, and then Theorem 1.

We can imagine that a representation arising from an object of Mod
r,φ
/S should

be just a lattice in a crystalline representation, but unfortunately the situation
is much more complicated. Lattices in crystalline representations correspond to
objects of Mod

r,φ,N
/S for which N(M) ⊂ (uS + Fil

1S)M. Let’s call Mod
r,φ,(N)
/S

their subcategory. One can easily prove that a N satisfying the above condition
is necessary unique. However, the following lemma shows that it does not exist
in general.

Lemma 1.2.3. — Assume r � 2 and consider M the object of Mod
r,φ
/S defined

by the following equations:

1. M = Se1 ⊕ Se2 ;
2. Fil

r
M = E(u)

r−2e1S + E(u)
re2S + Fil

pS M ;
3. φ(e1) = p2

(e1 + ue2) and φ(e2) = ue1 + e2.

Then it is impossible to equip M with a monodromy operator N .
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Proof. — For simplicity, we assume e > 1 (the proof is little more technical
when e = 1 and is left to the reader in this case). Assume by contradiction that
such an N : M → M exists. Put x1 = N(e1) and x2 = N(e2). The relation
Nφ = pφN implies the following equalities:

(S) :

�
px1 + pux2 = φ(x1) + pue2

ux1 + x2 = pφ(x2) + ue1.

For all integer n, denote by Jn the topological closure of the ideal of S generated
by all ui

q(i)! for i � n. Here q(i) is the quotient in the Euclidean division of i by e.
The first equation of (S) implies φ(x1) ≡ px1 (mod J1). Since S/J1 � W , this
congruence proves that x1 ∈ J1M and then φ(x1) ∈ φ(J1) ⊂ Jp. By the same
way, it follows from the second equation of (S) that x2 ≡ pφ(x2) (mod J1),
and then φ(x2) ∈ Jp. Resolving (S), we get:

x1 ≡ −
u2

1− u2
e1 +

u

1− u2
e2 (mod JpM)

which gives φ(x1) ≡ upe2 (mod Jp+1M). Hence, φ(x1) is not divisible by p in
S (here, we use e > 1). But, on the other hand, the first equation of (S) shows
directly that φ(x1) have to be divisible by p. This is a contradiction.

Briefly, we have an inclusion Mod
r,φ,(N)
/S ⊂ Mod

r,φ
/S but it is always strict if

r > 1. We call G∞-representations arising from objects of Mod
r,φ
/S quasi-semi-

stable representations. Note that if V is a lattice in a semi-stable representation
of GK , its restriction to G∞ is quasi-semi-stable (2).

2. The category Mod
r,φ
/S∞

The case of quasi-semi-stable representations is simpler because we may use
an alternative category (defined by Breuil and studied by Kisin) to describe
them. In this section, we give definitions and basic properties of this category
and we prove that it is equivalent to the category of Breuil modules.

2.1. Definitions and basic properties. — When dealing with Mod
r,φ
/S∞

, we may
relax the condition r < p− 1 and assume only r ∈ {0, 1, 2, 3, . . . ,∞}. So, from
now on, except if the contrary is explicitely mentionned, we work in this more
general setting.

(2) The converse is not true in general. In fact, there exists a full subcategory of Modr,φ
/S

,
whose objects are called quasi-strongly divisible lattices, which is anti-equivalent to the cat-
egory of G∞-lattices in semi-stable representations. See [14] for details.
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192 X. CARUSO & T. LIU

Linear algebraic objects. — Set S = W [[u]] and endow it with a Frobenius
φ : S→ S defined by:

φ

�
∞�

n=0

anun

�
=

∞�

n=0

σ(an)upn.

Put S1 = S/pS = k[[u]]. As in § 1.1, we define some categories of modules
over S. First, the “big” category �

Mod
r,φ
/S: if r is finite, its objects are the

S-modules M equipped with a φ-semi-linear endomorphism φ :M →M such
that

(2) E(u)
rM ⊂ �im φ�

where �im φ� denotes the S-submodule of M generated by the image of φ. If
φ�M = S⊗(φ),SM, the previous condition is equivalent to ask the cokernel of
id⊗ φ : φ�M→M to be killed by E(u)

r. If r = ∞, we ask condition (2) for a
non fixed integer r: in this way, �

Mod
∞,φ
/S is just the union (in an obvious sense)

of all categories �
Mod

r,φ
/S for r finite. Morphisms in �

Mod
r,φ
/S are just S-linear

morphisms commuting with Frobenius.
Now, we define full subcategories of �

Mod
r,φ
/S. The category Mod

r,φ
/S (resp.

Mod
r,φ
/S1

) gathers all objects M ∈ �
Mod

r,φ
/S free of finite rank over S (resp.

over S1), whereas Mod
r,φ
/S∞

is the smallest subcategory of �
Mod

r,φ
/S containing

Mod
r,φ
/S1

and stable under extensions (3). For simplicity, we also define the
category �

Mod
r,φ
/S∞

as the full subcategory of �
Mod

r,φ
/S gathering all objects killed

by a power of p. Obviously Mod
r,φ
/S∞

⊂ �
Mod

r,φ
/S∞

. The following proposition
summarizes basic properties of these modules.

Proposition 2.1.1. — (i) Let M ∈ Mod
r,φ
/S∞

. Then id⊗ φ : φ�M →M is
injective.

(ii) Let M be an object of �
Mod

r,φ
/S. Then M is in Mod

r,φ
/S∞

if and only if it
is of finite type over S, it has no u-torsion and it is killed by a power of
p.

(iii) The category Mod
r,φ
/S∞

is stable under kernels and images.

Proof. — See [13], § 2.3.

The relation between Mod
r,φ
/S∞

and �
Mod

r,φ
/S is given by the functor MS∞ :

Mod
r,φ
/S∞

→ �
Mod

r,φ
/S defined as follows. Let M be an object of Mod

r,φ
/S∞

. As
an S-module, MS∞(M) = S ⊗(φ),SM where the subscript “(φ)” means that
S is considered as a S-module via the composite S → S → S, the first map

(3) An sequence of objects of �Modr,φ
/S

is said exact if it is exact as a sequence of S-modules.
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being the canonical map and the second the Frobenius φ. The Frobenius onM
induces a S-linear map id⊗ φ : M→ S ⊗SM. We then define Fil

r
M by the

formula

Fil
r
M = {x ∈M, (id⊗ φ)(x) ∈ Fil

rS ⊗SM ⊂ S ⊗SM)} .

The map φr is given by the following composite:

Fil
r
M

id⊗φ �� Fil
rS ⊗SM

φr⊗id ��M.

Identical constructions give rise to an other functor MS : Mod
r,φ
/S →

�
Mod

r,φ
/S .

Proposition 2.1.2. — The functor MS∞ (resp. MS) takes values in
Mod

r,φ
/S∞

(resp. Mod
r,φ
/S ). Moreover, both functors are exact and fully faithful.

Proof. — The case r = 1 is done in proposition 1.1.11 of [12]. The same proof
works for any r.

Proposition 2.1.3. — Let M� ⊂ M be two objects of Mod
r,φ
/S such that

M� ⊗Zp Qp � M ⊗Zp Qp. Then the quotient M��
= M/M� is an object of

Mod
r,φ
/S∞

. Moreover, the sequence

0 → MS(M�
) → MS(M) → MS∞(M��

) → 0

is exact.

Proof. — The first statement is proved in Proposition 2.3.2 of [13]. For the
second one, the proof is the same as for the exactness of MS∞ .

Functors to Galois representations. — We recall the construction of the func-
tor �TS∞ from �

Mod
r,φ
/S∞

to the category of Zp-representations of G∞. First,
we define several rings. Put R = lim

←−
OK̄/p where the transition maps are given

by Frobenius. There is a unique surjective map θ : W (R) → �OK̄ to the p-adic
completion �OK̄ of OK̄ , which lifts the projection R → OK̄/p onto the first
factor. Recall that we have fixed a sequence (πn)n�0 of compatible pn-th root
of π. It defines an element of R and we denote by [π] its Teichmüller represen-
tative. We have an embedding S → W (R), u �→ [π] which is compatible with
Frobenius.

Let OE be the p-adic completion of S[1/u]. It is a discrete valuation ring
with residue field k((u)). Put E = FracOE . The embeddingS→ W (R) extends
to an embedding E → W (FracR). Let Eur be the maximal unramified extension
of E included in W (Frac R)[1/p] and OEur its ring of integers. Since Frac R is
algebraically closed (see [9], § A.3.1.6), the residue field OEur/p is isomorphic
to k((u))

sep, a separable closure of k((u)). We will consider the tensor product
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194 X. CARUSO & T. LIU

OEur⊗Zp Qp/Zp = Eur/OEur . It is an object of �
Mod

r,φ
/S endowed with an action

of G∞.

Finally, the functor �TS∞ is defined by the formula

�TS∞(M) = Hom�Modr,φ
/S

(M,OEur ⊗Zp Qp/Zp)

for each M ∈ �
Mod

r,φ
/S∞

. The restriction of �TS∞ to the subcategory Mod
r,φ
/S∞

is denoted by TS∞ . IfM ∈ Mod
r,φ
/S1

, the formula for TS∞(M) can be simplified
as follows:

TS∞(M) = Hom�Modr,φ
/S

(M,OEur/p) = Hom�Modr,φ
/S

(M, k((u))
sep

).

Proposition 2.1.4. — The composite Tqst ◦MS∞ is TS∞ and it is an exact
functor.

If M ∈ Mod
r,φ
/S1

is free of rank d over S1, then TS∞(M) is a vector space
of dimension d over Fp.

Proof. — It has been proved in § B.1.8.4 and § A.1.2 in [9].

Lemma 2.1.5. — Let M ∈ Mod
r,φ
/S∞

. Then
�

f∈TS∞ (M) ker f = 0.

Proof. — First, we show the lemma forM ∈ Mod
r,φ
/S1

. Put K =
�

f∈TS∞ (M) kerf .
Since u in invertible in k((u))

sep, the quotient M/K has no u-torsion and by
proposition 2.1.1 (ii), it is an object of Mod

r,φ
/S1

. Furthermore, by definition
of K, the map M → M/K induces a bijection TS∞(M/K) → TS∞(M). By
proposition 2.1.4, modules M/K and M have same rank and hence K = 0 as
required.

It remains to prove that if 0 →M� →M→M�� → 0 is an exact sequence in
Mod

r,φ
/S∞

and if the conclusion is correct forM� andM��, then it is also correct
for M. Let x ∈ M such that f(x) = 0 for all f ∈ TS∞(M). If y ∈ M�� is
the image of x, we have g(y) = 0 for all g ∈ TS∞(M). Thus by assumption
y = 0, and hence x ∈M�. Let g ∈ TS∞(M�

). By exactness of TS∞ (proposition
2.1.4), g can be extended to a map f ∈ TS∞(M). We certainly have g(x) = 0.
Then, using the assumption on M�, we finally get x = 0.

Corollary 2.1.6. — The functor TS∞ is faithful.
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2.2. An equivalence of categories. — The aim of this subsection is to prove the
following theorem.

Theorem 2.2.1. — Assume r < p − 1. The functor MS : Mod
r,φ
/S → Mod

r,φ
/S

is an equivalence of categories.

The full faithfulness was already seen (Proposition 2.1.2). Hence it remains
to prove the essential surjectivity. Let M ∈ Mod

r,φ
/S and denote by d its rank

over S. The heart of the proof is the following technical lemma.

Lemma 2.2.2. — With previous notations, there exists α1, . . . , αd ∈ Fil
r
M

and a basis e1, . . . , ed of M such that ei =
1
cr φr(αi), (α1, . . . , αd) =

(e1, . . . , ed)B with B a d× d matrix with coefficients in S and

(3) Fil
r
M =

d�

i=1

Sαi + Fil
pSM.

Proof. — If R is a ring, we denote by Md(R) the algebra of d×d matrices with
coefficients in R.

We first show that we can inductively construct (α(n)
1 , . . . , α(n)

d ) ∈ Fil
r
M

such that
1. (e(n)

1 , . . . , e(n)
d ) = c−rφr(α

(n)
1 , . . . , α(n)

d ) is a basis of M;
2. there exist matrices B(n) ∈ Md(S) and C(n) ∈ Md(pn

Fil
n+pS) such that

(α(n)
1 , . . . , α(n)

d ) = (e(n)
1 , . . . , e(n)

d )(B(n)
+ C(n)

).
For n = 0, the result is a consequence of (the easy part of) Lemma 4.1.1 of [14].
Note also that Property (3) is satisfied with α(0)

i instead of αi. Now, assume
that the α(n)

i ’s are build. We put

(4) (α(n+1)
1 , . . . , α(n+1)

d ) = (e(n)
1 , . . . , e(n)

d )B(n).

First remark that

(e(n+1)
1 , . . . , e(n+1)

d ) = c−rφr(α
(n+1)
1 , . . . , α(n+1)

d )

= c−rφr((α
(n)
1 , . . . , α(n)

d )− (e(n)
1 , . . . , e(n)

d )C(n)
))

= (e(n)
1 , . . . , e(n)

d )(I −D(n)
)

where c−rφr((e
(n)
1 , . . . , e(n)

d )C(n)
) = (e(n)

1 , . . . , e(n)
d )D(n). We claim that pλn+n

divides D(n) with λn = n+p−r−[
n+p
p−1 ]. Recall that for all s ∈ Fil

rS and x ∈M

we have φr(sx) = c−rφr(s)φr(E(u)
rx). Moreover, by assumption, C(n) ∈

Md(pn
Fil

n+pS). So to prove the claim it suffices to show that vp(φr(s)) � λn

for all s ∈ Fil
n+pS. Since s can be always represented by

s =

∞�

m=n+p

am(u)
E(u)

m

m!
, am(u) ∈ W [u], am(u) → 0 p-adically
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and φ(E(u)) = pc, we reduce the proof to show that

m− vp(m!)− r > n + p− r −
n + p

p− 1
for any m � n + p

which is clear, using vp(m!) < m
p−1 .

It is easy to check λn � 1. Since pλn+n|D(n), (I − D(n)
) is invertible and

(e(n+1)
1 , . . . , e(n+1)

d ) is a basis of M. Now by (4), we have

(α(n+1)
1 , . . . , α(n+1)

d ) = (e(n)
1 , . . . , e(n)

d )B(n)
= (e(n+1)

1 , . . . , e(n+1)
d )(I−D(n)

)
−1B(n).

Put A = (I − D(n)
)
−1B(n). To achieve the induction, it remains to write

A = B(n+1)
+C(n+1) with B(n+1) ∈ Md(S) and C(n+1) ∈ Md(pn+1

Fil
n+1+pS).

For that, write D(n)
= pλn+nE(n) and

E(n)
=

n+p�

i=0

bi(u)
E(u)

i

i!
+

∞�

i=n+p+1

bi(u)
E(u)

i

i!
= E(n)

1 + E(n)
2

with bi(u) ∈ W [u]. A simple computation on valuation gives pλn+n

i! ∈ Zp for
all i � n + p. Thus D(n)

1 = pλn+nE(n)
1 ∈ Md(S). The conclusion then follows

by expanding the series

A =

∞�

i=0

(D(n)
1 + D(n)

2 )
iB(n)

where D(n)
2 = pλn+nE(n)

2 ∈ Md(pn+1
Fil

n+1+pS).

To complete the proof of the lemma, remark that (4) implies

(5) (α(n+1)
1 , . . . , α(n+1)

d )− (α(n)
1 , . . . , α(n)

d ) = −(e(n)
1 , . . . , e(n)

d )C(n).

Hence all sequences (α(n)
i )n converge (recall that pn divides C(n)). The con-

vergence of all e(n)
i and then those of matrices B(n) follows. If αi (resp. B)

is the limit of α(n)
i (resp. B(n)), we have φr(α1, . . . , αd) = c−r

(e1, . . . , ed) and
(α1, . . . , αd) = (e1, . . . , ed)B with B ∈ Md(S). It remains to check property
(3). For that, we can reduce modulo p and noting αi ≡ α(0)

i (mod p), we are
done.

Now, it is more or less easy to achieve the proof of theorem 2.2.1. First,
we show that there exists A ∈ Md(S) such that BA = E(u)

rI. Indeed, since
E(u)

rei ∈ Fil
r
M for all i, Condition (3) implies that there exist matrices A�, C �

such that BA�+C � = E(u)
rI and C � ∈ Md(Fil

pS). Writing A� = A�0 +A�1 with
A�0 ∈ Md(W [u]) and A�1 ∈ Md(Fil

pS), we may assume A� ∈ Md(W [u]). Then
C � = E(u)

rI−BA� has coefficients in S∩Fil
pS. Therefore, C � = E(u)

pC with
C ∈ Md(S). Now BA� = E(u)

r
(I−E(u)

p−rC) and A = A�(I−E(u)
p−rC)

−1 ∈

Md(S) is appropriate. Finally, we definedM = Sf1⊕· · ·⊕Sfd and we endow
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it with φ given by φ(f1, . . . , fd) = (f1, . . . , fd)A. It is then an easy exercise left
to the reader to check that MS(M) = M as desired.

2.3. Consequences. — The first consequence is the extension of the equivalence
on torsion objects.

Theorem 2.3.1. — Assume r < p − 1. The functor MS∞ : Mod
r,φ
/S∞

→

Mod
r,φ
/S∞

is an equivalence of categories.

Proof. — It remains to show the essential surjectivity. Let M be an object
of Mod

r,φ
/S∞

. By Theorem V.2.a of [6], there exist two objects M̂ and M̂�

in Mod
r,φ
/S∞

, together with an exact sequence 0 → M̂� → M̂ → M → 0

in �
Mod

r,φ
/S . Now, by Theorem 2.2.1, one can lift the canonical inclusion ι :

M̂� → M̂ at Mod
r,φ
/S∞

-level: there exist M̂, M̂� in Mod
r,φ
/S∞

and f : M̂� → M̂

a morphism in this category such that MS(f) = ι. The map F = TS(f)

is an injective application between two free Zp-modules of same (finite) rank.
Consequently, there exists G : TS(M̂�

) → TS(M̂) (necessarily G∞-equivariant)
such that F ◦ G = G ◦ F = pn

id for an integer n. By full faithfulness of TS,
there exists a map g : M̂→ M̂� satisfying f ◦ g = g ◦ f = pn

id. It follows that
f ⊗Zp Qp is bijective. Then we can apply Proposition 2.1.3: M = M̂/M̂� is in
Mod

r,φ
/S∞

and MS∞(M) = M.

Proposition 2.3.2. — Assume r < p− 1 and choose MS∞ a quasi-inverse of
MS∞ . If f : M→M� is an injective (resp. surjective) morphism in Mod

r,φ
/S∞

,
then MS∞(f) is also. Moreover, the functor MS∞ is exact.

Proof. — Let f : M→M� be a morphism in Mod
r,φ
/S∞

. Put M = MS∞(M),
M�

= MS∞(M�
) and g = MS∞(f).

Assume f injective and denote by K the kernel of g. By Proposition 2.1.1
(iii), we have K ∈ Mod

r,φ
/S∞

. Put K = MS∞(K). Let h : K →M be the image
under MS∞ of the inclusion K → M. The composite f ◦ h is zero and since
f is injective, h = 0. By faithfulness, the morphism K → M vanishes, and
consequently K = 0 and g is injective.

Now suppose f surjective and denote by C the cokernel of g. We have
S⊗(φ),S C = 0. Reducing modulo p, we get S1⊗(φ),S1

C/pC = 0. Since C/pC is
a module of finite type over the principal ring k[[u]], it is a direct sum of some
k[[u]] or k[[u]]/un for suitable integers n. By computing the tensor product,
it follows that the only solution is C/pC = 0, i.e C = pC. Since C is finitely
generated, Nakayama’s lemma gives C = 0 as required.

For the exactness, take 0 → M� → M → M�� → 0 an exact sequence
in Mod

r,φ
/S∞

. We know that MS∞(M) → MS∞(M��
) is surjective. Call K its
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kernel: it is an object of Mod
r,φ
/S∞

and we have an exact sequence 0 → K →

MS∞(M) → MS∞(M��
) → 0. Applying the exact functor MS∞ , we see that

MS∞(K) is the kernel of M→M��. Hence, it is isomorphic to M� and we are
done.

Remark. — Although the functor MS∞ is exact, the implication (f injective)
⇒ (MS∞(f) injective) is not true if er � p − 1. Here is a counter-example.
Take M = S1 with φ(1) = 1, M�

= S1 with φ(1) = up−1 and f : M� → M,
1 �→ u. It is injective. However, M = MS∞ is just S1 endowed with Fil

rS1

and the canonical φr. On the other hand, M�
= S1, Fil

r
M�

= uer−p+1M� and
φr(uer−p+1

) = (−1)
r. The map MS∞(f) is the multiplication by up and sends

u(e−1)p to 0; hence it is not injective.

Corollary 2.3.3. — Assume r < p − 1. Functors Tqst on Mod
r,φ
/S∞

and Tst

on Mod
r,φ,N
/S∞

are faithful.

Proof. — For Tqst, it is a direct consequence of Corollary 2.1.6 and Theorem
2.3.1. Let f : M → M� be a morphism in Mod

r,φ,N
/S∞

. It can be seen as a
morphism in Mod

r,φ
/S∞

and we have Tqst(f) = Tst(f). If this morphism vanishes,
then f have also to vanish thanks to the faithfulness of Tqst. This proves the
corollary.

Theorem 2.3.4. — Assume r < p−1. Let M� ⊂M be two objects of Mod
r,φ
/S

such that M� ⊗Zp Qp � M ⊗Zp Qp and Fil
r
M� ⊗Zp Qp � Fil

r
M ⊗Zp Qp.

Then the quotient M/M� is an object of Mod
r,φ
/S∞

. Furthermore every object
of Mod

r,φ
/S∞

can be written in this way.

Proof. — For the first part of the theorem, we use a similar argument as in
the proof of Theorem 2.3.1. Let M� → M be an antecedent of the inclusion
M� → M. We first show that M� ⊗Zp Qp � M ⊗Zp Qp, and then by using
proposition 2.1.3, we get MS∞(M/M�

) = M/M�.

The second part is again Theorem V.2.a of [6].

Remark. — The condition Fil
r
M� ⊗Zp Qp � Fil

r
M⊗Zp Qp is equivalent to

Fil
r
M�

= M� ∩ Fil
r
M. Indeed, if x ∈M� ∩ Fil

r
M then x ∈ Fil

r
M� ⊗Zp Qp =

Fil
r
M⊗Zp Qp and pnx ∈ Fil

r
M� for a suitable integer n. Since, by definition,

M�/Fil
r
M� has no p-torsion, we must have x ∈ Fil

r
M�. The converse is easy.
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2.4. Duality. — In [13], § 3.1, it is defined a duality on Mod
r,φ
/S∞

for all r < ∞.
For M ∈ Mod

r,φ
/S∞

, we put M∨
= HomS(M,S ⊗Zp Qp/Zp). We then have a

natural pairing:
�·, ·� :M×M∨

→ S⊗Zp Qp/Zp

which allows us to defined φ∨ on M∨ by

�φ(x), φ∨(y)� = c−r
0 E(u)

rφ(�x, y�)

(for all x ∈ M and y ∈ M∨) where c0 =
E(0)

p ∈ W � and the latest φ is given
by the usual operator on S. Here are main properties of the duality. We have
a natural isomorphism (M∨

)
∨ �M, and a compatibility between duality and

TS∞ given by the following functorial isomorphism:

(6) TS∞(M∨
) � TS∞(M)

∨
(r).

where “(r)” is for the Tate twist.

If r < p−1, we can also find in the literature (see [6], Chapter V) a definition
of a duality on Mod

r,φ
/S∞

. In a few words, if M is an object of this category,
we put M∨

= HomS(M, S ⊗Zp Qp/Zp), Fil
r
M∨

= {f ∈ M∨, f(Fil
r
M) ⊂

Fil
rS ⊗Zp Qp/Zp} and if f ∈ Fil

r
M∨, φ∨r (f) is defined as the unique map

making commutative the following diagram:

Fil
r
M

φr ��

f

��

M

φ∨r (f)

��
Fil

rS ⊗Zp Qp/Zp
φr �� S ⊗Zp Qp/Zp

We wish to compare these two constructions if r < p− 1. For that, we put

λ =

∞�

n=1

φn

Å
E(u)

pc0

ã
∈ S.

Now, strating from M ∈ Mod
r,φ
/S∞

, we can define a natural map

MS∞(M∨
) → MS∞(M)

∨, s⊗ f �→
1

λr
sf.

A direct calculation gives φ(λ) =
c

φ(c0)
λ, which implies that the previous iso-

morphism is compatible with φ, and hence a morphism in Mod
r,φ
/S∞

. Hence,
dualities on Mod

r,φ
/S∞

and Mod
r,φ
/S∞

are compatible under the equivalence MS∞ .

Corollary 2.4.1. — Assume r < p− 1. For any M∈ Mod
r,φ
/S∞

, there exists
a natural isomorphism M→ (M∨

)
∨ and a natural isomorphism:

Tqst(M
∨
) � Tqst(M)

∨
(r).
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Remarks. — Corollary 2.4.1 is proved (with different methods) in [6] under
the assumption er < p− 1 or r = 1.

In loc. cit., definition of duality is extended to Mod
r,φ,N
/S∞

: the operator N∨

on M∨ is defined by the formula N∨
(f) = N ◦ f − f ◦ N (where N is the

given operator on M). Using isomorphism (1), we directly obtain a version of
Corollary 2.4.1 in this new situation.

3. A construction on Mod
r,φ
/S∞

In this section, we construct the functor Max
r discussed in the introduction

and then prove Theorem 1.

The main ingredient of the proof is Theorem 2.3.1, together with a result of
Fontaine (recalled in § 3.1) that claimed an equivalence between the category of
torsion Zp-representations of G∞ and a certain category of torsion φ-modules
over OE . Indeed, under these identifications, the functor Tqst just corresponds
to the scalar extension from S∞ to E/OE . Our first step, which is achieved in
§ 3.2, is then a somehow careful study of lattices in some OE -modules equipped
with a Frobenius endomorphism: we essentially investigate their behaviour
under sums and intersections, prove some finiteness properties and conclude
to the existence of a maximal lattice among those corresponding to objects of
Mod

r,φ
/S∞

. This allows us finally to define Max
r by associating to each M ∈

Mod
r,φ
/S∞

the maximal lattice in M⊗S∞ E/OE (see Definition 3.3.1). In § 3.3,
we enumerate several pleasant properties of Max

r and, in particular, we prove
that its essential image is an abelian category on which the functor Tqst is
fully faithful. In § 3.4, we develop the dual version of the theory by regarding
minimal lattices (instead of maximal ones) and defining a functor Min

r. Again,
we prove that its essential image is abelian and the restriction of Tqst to this
subcategory is fully faithful. We then go back to the study of maximal objects:
in § 3.5, we prove a certain reciprocity formula which computes Max

r
(M) from

Tqst(M). In § 3.6, we give a classification of simple objects of Max
r
(Mod

r,φ
/S∞

)

(recall that it is an abelian category) when the residue field k is algebraically
closed. Finally in § 3.7, we summarize all our results and translate them in
term of category Mod

r,φ
/S∞

.

3.1. The category
�
Mod

φ
/OE

. — Let’s recall classical results about the classifica-
tion of Zp-representations of G∞. Denote by �

Mod
φ
/OE

the category of torsion
étale φ-modules over OE . By definition, an object of �

Mod
φ
/OE

is an OE -module
M killed by a power of p and equipped with a Frobenius φ : M → M that
induces a bijection id⊗ φ : φ�M → M (where φ�M = OE ⊗(φ),OE M).
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Remark. — Since we are only interested in p-torsion modules, the definition
does not change if we substitute the ring S[1/u] to OE (in other words, we do
not need to complete p-adically). In the sequel, we will just work with S[1/u].

We have a functor �TOE :
�
Mod

φ
/OE

→ RepZp
(G∞) defined by

�TOE (M) = Hom�Modφ
/OE

(M,OEur ⊗Zp Qp/Zp).

Theorem 3.1.1. — The functor �TOE is exact and fully faithful.

Proof. — See [9], § A.1.2.

Furthermore �TS∞ factors through �TOE as follows: if �MOE : Mod
r,φ
/S∞

→

�
Mod

φ
/OE

is defined by �MOE (M) = M ⊗S OE = M ⊗S S[1/u] (since E(u) is
invertible in OE , the map id ⊗ φ : φ�

[
�MOE (M)] → �MOE (M) is bijective), the

equality �TS∞ =
�TOE ◦

�MOE holds. In a slightly different situation, �MOE is the
functor j� of [9]. From now on, we will use the notation M[1/u] for �MOE (M).
In [9], Fontaine defines an adjoint j� to his functor j�. In the sequel, we will
adapt his construction to our settings.

3.2. The ordered set F r
S(M). — In this subsection, we fix M ∈ �

Mod
φ
/OE

. Our
aim is to study the structure of the “set” of previous images of M under �MOE .
We begin by the following definition:

Definition 3.2.1. — Let Fr
S(M) be the category whose objects are couples

(M, f) where M is an object of Mod
r,φ
/S∞

and f : M[1/u] → M is an isomor-
phism. Morphisms in Fr

S(M) are morphisms in Mod
r,φ
/S∞

that are compatible
with f .

Let F r
S(M) be the (partially) ordered set (by inclusion) of M ∈ Mod

r,φ
/S∞

contained in M such that M[1/u] = M .

The following lemma is easy:

Lemma 3.2.2. — The category Fr
S(M) is equivalent to (the category associ-

ated to) the ordered set F r
S(M).
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Supremum and infimum.
Proposition 3.2.3. — The ordered set F r

S(M) has finite supremum and finite
infimum.

Proof. — Obviously, it suffices to prove that for any M� and M�� in F r
S(M),

sup(M�,M��
) and inf(M�,M��

) exist.
For the supremum, it is enough to show thatM =M�

+M�� (where the sum
is computed in M) is an object of Mod

r,φ
/S∞

(it is obvious that M[1/u] = M).
For this, remark thatM satisfies Condition (2) defined page 192 (sinceM� and
M�� satisfy it). The conclusion then follows from Proposition 2.1.1 (ii).

In the same way, for the infimum, we want to prove that M = M� ∩M��

satisfies M[1/u] = M and is in Mod
r,φ
/S∞

. Since M� is finitely generated, there
exists an integer s such that usM� ⊂ M�� and the first point is clear. Now,
let x ∈ M. Because M� and M�� are in Mod

r,φ
/S∞

, there exists x� ∈ φ�M� and
x�� ∈ φ�M�� such that E(u)

rx = id ⊗ φ(x�) = id ⊗ φ(x��) (if r = ∞, it must
be replaced by a sufficiently large integer). By definition, id⊗ φ is injective on
φ�M . It follows that x� = x�� ∈ φ�M. Consequently, Condition (2) holds forM.
Moreover, since S in noetherian,M ⊂M� is finitely generated over S. Finally,
it is obviously killed by a power of p, and without u-torsion. Proposition 2.1.1
ends the proof.

Some finiteness property.
Lemma 3.2.4. — Fix M ∈ F r

S(M). There exists an integer � (depending only
on M) such that lgS(M�/M) � � for any M� ∈ F r

S(M) with M ⊂M�.

Proof. — First, we prove by dévissage that it is sufficient to consider the case
where M is killed by p. Denote by M(p) (resp. M�

(p)) the kernel of the
multiplication by p on M (resp. M�). We have the following commutative
diagram:

0 ��M(p) ��

��

M ��

��

M/M(p) ��

��

0

0 ��M�
(p) ��M� ��M�/M�

(p) �� 0

where both horizontal sequences are exact, and all vertical arrows are injective.
Snake lemma then shows that the sequence 0 →

M�(p)
M(p) →

M�

M →
M�/M(p)
M�/M(p) → 0

remains exact, and we are done.
If M is killed by p, the argument is the following. Since id⊗φ : φ�M→M is

injective (Proposition 2.1.1 (i)), the mapM/uM→ �im φ� /u �im φ� induced by
φ is also injective. By definition, there exists an integer s such that E(u)

sM ⊂

�im φ�. (If r is finite, one can choose s = r.) We then have the implication

(7) (x �∈ uM) =⇒ (φ(x) �∈ ues+1M).

tome 137 – 2009 – no 2



QUASI-SEMI-STABLE REPRESENTATIONS 203

Furthermore, there exists an integer n such that unM� ⊂M. Choose n minimal
(not necessary positive). Then we can find x ∈ M� such that un−1x �∈ M.
Therefore unx ∈M but unx �∈ uM. Applying Implication (7), we get φ(unx) �∈

ues+1M, that is to say unφ(x) �∈ u1+es−(p−1)nM. On the other hand, unφ(x) ∈

unM� ⊂ M. It follows 1 + es − (p − 1)n � 0. Thus n � t = E(
es+1
p−1 ) (here E

denotes the integer part). From unM� ⊂M, we get utM� ⊂M and Lemma is
proved (with � = t dimk((u)) M).

Lemma 3.2.5. — Assume r < ∞. There exists an integer � (depending only
on M) such that lgS(M�/M) � � for any M and M� in F r

S(M) with M ⊂M�.

Proof. — The proof of Lemma 3.2.4 shows that � can be chosen equal to
lgOE

(M)× E(
er+1
p−1 ), which depends only on M .

Corollary 3.2.6. — The ordered set F r
S(M) always has a greatest element.

Furthermore, if r < ∞, F r
S(M) has a smallest element.

Remark. — The proof of Lemma 3.2.4 gives an upper bound for the length
of any chain in F r

S(M), that is:

1 + lgOE
(M)× E

Å
er + 1

p− 1

ã
.

In particular, if er < p− 1, the set F r
S(M) contains at most one element. This

latest assertion will be used several times in the sequel.

Functoriality. — In view of possible generalizations, we would like to rephrase
quickly previous properties in a more categorical and functorial way.

Proposition 3.2.7. — The category FS(M) has finite (direct) sums and fi-
nite products.

Proposition 3.2.8. — The category FS(M) is noetherian in the following
sense: if

M1
f1 ��M2

f2 �� · · ·
fn−1 ��Mn

fn �� · · ·

is an infinite sequence of morphisms, all fn are isomorphisms for n big enough.
If r is finite, the category FS(M) is artinian in the following sense: if

M1 M2
f1�� · · ·

f2�� is an infinite sequence of morphisms, all fn are isomor-
phisms for n big enough.
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Proposition 3.2.9. — Let M1, . . . ,Mn (resp. M�
1, . . . ,M

�
n) be objects of

FS(M) (resp. FS(M �
)). Let fi : Mi → M�

i be morphisms in Mod
r,φ
/S∞

.
Put M = sup(M1, . . . ,Mn) and M�

= sup(M�
1, . . . ,M

�
n). Then there exists

a unique map f :M→M� making commutative all diagrams

Mi

��

fi ��M�
i

��
M

f ��M�

We put f = sup(f1, . . . , fn).
Furthermore, the association (f1, . . . , fn) �→ sup(f1, . . . , fn) is functorial in

an obvious sense.

Remark. — Of course, the analogous statement with inf is also true.

Important remark. — Since �TOE is fully faithful, the functor �MOE can be
replaced by TS in definition 3.2.1. Hence, it is possible to define supremum
and infimum without reference to the auxiliary category �

Mod
φ
/OE

.

3.3. Maximal objects. — In this subsection, we give (and prove) some pleasant
properties of objects arising as the greatest element of one set FS(M).

The functor Max
r

Definition 3.3.1. — LetM ∈ Mod
r,φ
/S∞

. We define Max
r
(M) to be the great-

est element of F r
S(M[1/u]). It is endowed with an homomorphism ιMmax :M→

Max
r
(M) in the category Mod

r,φ
/S∞

.
An object M of Mod

r,φ
/S∞

is said maximal (in Mod
r,φ
/S∞

) (4) if the map ιMmax

is an isomorphism.

Remarks. — By § B.1.5.3 of [9], a φ-module over S killed by a power of p
satisfies Condition (2) with r = ∞, if and only if id⊗ φ : φ�M[1/u] →M[1/u]

is bijective. It follows that for any M ∈ Mod
∞,φ
/S∞

, Max
∞

(M) = j�(M[1/u])

where j� is the functor defined in § B.1.4 of loc. cit.

In general, Max
r
(M) and Max

r+1
(M) does not coincide. For instance, take

r such that er � p and considerM = Se1 ⊕Se2 with φ(e1) = ue1 + uere2 and
φ(e2) = upe1. Then M is maximal in Mod

r,φ
/S∞

but not in Mod
r+1,φ
/S∞

since the
submodule of M[1/u] generated by e1 and e2

u is in F r+1
S (M[1/u]).

Proposition 3.3.2. — The previous definition gives rise to a functor Max
r

:

Mod
r,φ
/S∞

→ Mod
r,φ
/S∞

.

(4) When the value of r is clear by the context, we just say maximal.
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Proof. — We have to prove that any map f : M → M� induces a map
Max

r
(M) → Max

r
(M�

). Let g = f ⊗S S[1/u]. By proposition 2.1.1 (iii),
g(Max

r
(M)) is in Mod

r,φ
/S∞

. Hence g(Max
r
(M)) ⊂ Max

r
(M�

) and we are
done.

Remark. — The collection of homomorphisms (ιMmax) defines a natural trans-
formation between the identity functor and Max

r.

We now show several properties of Max
r.

Proposition 3.3.3. — The functor Max
r is a projection, that is Max

r
◦

Max
r

= Max
r. In particular, for any M ∈ Mod

r,φ
/S∞

, the object Max
r
(M) is

maximal.

Proof. — Just remark that Max
r
(M)[1/u] =M[1/u].

Proposition 3.3.4. — The functor Max
r is left exact.

Proof. — Let 0 →M� →M→M�� → 0 be an exact sequence in Mod
r,φ
/S∞

. We
have the following commutative diagram:

0 ��M� ��

ιM
�

max

��

M ��

ιMmax

��

M��

ιM
��

max

��

�� 0

0 �� Max
r
(M�

) ��
� �

��

Max
r
(M) ��
� �

��

Max
r
(M��

)� �

��
0 ��M�

[1/u] ��M[1/u] ��M��
[1/u] �� 0

where the first line is exact by assumption and the last one is also exact because
of the flatness of S[1/u] over S. We have to show that the middle line is exact.
Injectivity is obvious.

Let’s prove Max
r
(M�

) = Max
r
(M) ∩M�

[1/u]. The inclusion ⊂ is clear.
Now, remark that M�

max = Max
r
(M) ∩M�

[1/u] is a S-submodule of M�
[1/u]

of finite type, which is stable under φ. Let x ∈ M�
max. Then there exists

y ∈ φ�
Max

r
(M) and z ∈ φ�M�

[1/u] such that E(u)
rx = id⊗ φ(y) = id⊗ φ(z)

(if r = ∞, it must be replaced by a sufficiently large integer). Since id ⊗ φ :

φ�M[1/u] →M[1/u] is injective, we have y = z ∈ φ�M�
max. Hence M�

max is an
object of �

Mod
r,φ
/S and the claimed equality is indeed true. This gives directly

the exactness at middle.
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Remark. — Unfortunately, Max
r is not right exact (even on Mod

r,φ
/S1

) if er �
p − 1. For instance, consider M = S1e1 ⊕ S1e2 equipped with φ defined by
φ(e1) = e1 and φ(e2) = ue1 + up−1e2. Denote by M� the submodule of M
generated by e1. We can easily see that M and M� are both maximal objects
of Mod

r,φ
/S1

. However, M/M� is isomorphic to S1 with φ(1) = up−1. It is not
maximal since 1

uS1 is finitely generated and stable under φ.

Proposition 3.3.5. — Let M ∈ Mod
r,φ
/S∞

. The couple (Max
r
(M), ιMmax) is

characterized by the following universal property:

– the morphism TS∞(ιMmax) is an isomorphism;
– for each couple (M�, f) whereM� ∈ Mod

r,φ
/S∞

and f :M→M� becomes an
isomorphism under TS∞ , there exists a unique map g :M� → Max

r
(M)

such that g ◦ f = ιMmax.

Proof. — The first point is clear.
Take (M�, f) as in the proposition. Since the quotientM/Max

r
(M) is killed

by a power of u, the map g is uniquely determined. On the other hand, by full
faithfulness of �TOE , f induces an isomorphism f̃ :M[1/u] →M�

[1/u]. Denote
by g the restriction of f̃−1 toM�. SinceM� is finitely generated over S, g(M�

)

is also and hence g(M�
) ⊂ Max

r
(M) (by definition of Max

r). In other words,
g induces a map M� → Max

r
(M) and it is easy to check that g ◦ f = ιMmax.

It remains to prove that the universal property characterizes Max
r
(M). But

if M� satisfies also the universal property, we get two maps M� → Max
r
(M)

and Max
r
(M) →M� whose composites in both direction must be identity.

The category Max
r,φ
/S∞

Definition 3.3.6. — We put Max
r,φ
/S∞

= Max
r
(Mod

r,φ
/S∞

). It is a full subcat-
egory of Mod

r,φ
/S∞

.

We now show several pleasant properties of this category.

Proposition 3.3.7. — The functor Max
r

: Mod
r,φ
/S∞

→ Max
r,φ
/S∞

is a left
adjoint to the inclusion functor Max

r,φ
/S∞

→ Mod
r,φ
/S∞

.

Proof. — Let f :M→M� be a morphism in Mod
r,φ
/S∞

and assume that M� is
maximal. We have to prove that there exists a unique map f̃ : Max

r
(M) →M�

such that f̃ ◦ ιMmax = f . The uniqueness is implied by the following observation:
M� has no u-torsion, and Max

r
(M)/M is canceled by a power of u. For the

existence, just remark that f̃ = Max
r
(f) is appropriate.
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Theorem 3.3.8. — The category Max
r,φ
/S∞

is abelian. More precisely, if f :

M→M� is a morphism in Max
r,φ
/S∞

– the kernel of f in the usual sense is an object of Max
r,φ
/S∞

and is the kernel
of f in the abelian category Max

r,φ
/S∞

;
– the cokernel of f in the usual sense, coker f , is an object of �

Mod
r,φ
/S∞

and Max
r
(

coker f
u-torsion

) is the cokernel of f in the abelian category Max
r,φ
/S∞

;
moreover if f is injective, then coker f has no u-torsion ;

– the image (resp. coimage) of f in the usual sense is an object of Mod
r,φ
/S∞

and its image under the functor Max
r is the image (resp. coimage) of f

in the abelian category Max
r,φ
/S∞

.

Proof. — Let f : M → M� be a morphism in Max
r,φ
/S∞

. By Proposition 2.1.1
(iii), K = kerf is an object of Mod

r,φ
/S∞

. It remains to prove that it is maximal.
Denote by Mmax the S-submodule of M[1/u] generated by Max

r
(K) and M.

It satisfies Condition (2) (because Max
r
(K) and M satisfy it) and hence, by

Proposition 2.1.1 (ii), it is an object of Mod
r,φ
/S∞

included in M[1/u]. Since
M is assumed to be maximal, we get Mmax ⊂ M and then Max

r
(K) ⊂ M.

It follows Max
r
(K) ⊂ M ∩ K[1/u] ⊂ K (for the last inclusion, use K[1/u] =

ker (f ⊗S S[1/u])), and Max
r
(K) = K.

With Proposition 3.3.7, it is easy to prove that Max
r
(

coker f
u-torsion

) is the cokernel
of f in Max

r,φ
/S∞

. The implication (f injective)⇒ (cokerf ∈ Mod
r,φ
/S∞

) is showed
as in Proposition 3.3.4.

We have already seen that the usual image of f , say im f , is an object of
Mod

r,φ
/S∞

(Proposition 2.1.1 (iii)). Let g : im f →M� be the natural inclusion.
We have coker g = coker f . On the other hand, since Max

r
(g) is an injective

morphism between two maximal objects, its cokernel has no u-torsion. To-
gether with g ⊗S S[1/u] = Max

r
(g) ⊗S S[1/u], it implies coker Max

r
(g) =

coker f
u-torsion

. Now, applying the left-exact functor Max
r (see Proposition 3.3.4)

to the exact sequence 0 → Max
r
(im f) → M� →

coker f
u-torsion

→ 0, we get
Max

r
(im f) = ker (M� → C) where C = Max

r
(

coker f
u-torsion

). Statement about
image is then proved.

Finally, by definition, the usual coimage (resp. coimage in Max
r,φ
/S∞

) of f

is the usual cokernel (resp. cokernel in Max
r,φ
/S∞

) of the inclusion ker f →M.
The announced property about coimages follows and then also the identification
between image and coimage.

Lemma 3.3.9. — Let α : M� → M and β : M → M�� be morphisms in
Max

r,φ
/S∞

such that β ◦ α = 0. The sequence 0 → M� → M → M�� → 0
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is exact in (the abelian category) Max
r,φ
/S∞

if and only if the sequence 0 →

M�
[1/u] →M[1/u] →M��

[1/u] → 0 is exact.
Moreover, the functor �MOE : Max

r,φ
/S∞

→ Mod
r,φ
/OE

is fully faithful.

Remark. — The reader should be very careful with the following point. There
are two different notions of exact sequences in Max

r,φ
/S∞

. The first one is given
by the structure of abelian category whereas the second one is just the “restric-
tion” of the notion of exact sequence in Mod

r,φ
/S∞

. From now on, we will only
consider the first one. This is for instance the reason why Corollary 3.3.11 is
not in contradiction with the counter-example given after Proposition 3.3.4.

Proof. — By description of kernels and cokernels given in Theorem 3.3.8, we
have the following: the sequence 0 →M� →M→M�� → 0 is exact in Max

r,φ
/S∞

if and only if 0 →M� →M→M�� is exact (as a sequence of S-modules) and
coker(M→M��

) is killed by a power of u. The first part of lemma then follows.
Since for allM ∈ Max

r,φ
/S∞

, we haveM ⊂M[1/u], the functor �MOE is clearly
faithful. LetM andM� be two objects of Max

r,φ
/S∞

and f :M[1/u] →M�
[1/u].

We have to show that f sends M to M�. Using Proposition 2.1.1 (iii), we
have f(M) ∈ Mod

r,φ
/S∞

and by the proof of Proposition 3.2.3, f(M) + M�

(computed inM�
[1/u]) is in Mod

r,φ
/S∞

. Hence, by definition of maximal objects
f(M) +M� ⊂M�, and then f(M) ⊂M� as required.

Corollary 3.3.10. — The functor TS∞ defined on Max
r,φ
/S∞

is exact and
fully faithful.

Corollary 3.3.11. — The functor Max
r

: Mod
r,φ
/S∞

→ Max
r,φ
/S∞

is exact.

Theorem 3.3.12. — The functor Max
r

: Mod
r,φ
/S∞

→ Max
r,φ
/S∞

realizes the
localization of Mod

r,φ
/S∞

with respect to morphisms f such that TS∞(f) is an
isomorphism.

Proof. — Take C a category and F : Mod
r,φ
/S∞

→ C a functor that satisfies the
following implication: if TS∞(f) is an isomorphism, then F (f) too. We have
to show that there exists a unique functor G making the following diagram
commutative:

Mod
r,φ
/S∞

F ��

Maxr ��◆
◆◆◆

C

Max
r,φ
/S∞

G

��

IfM is in Max
r,φ
/S∞

, we must have G(M) = F ◦Max
r
(M) = F (M). This proves

the uniqueness and gives a candidate for G. Finally, we only have to check that
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for allM ∈ Mod
r,φ
/S∞

, there exists a canonical isomorphism between F (M) and
G(Max

r
(M)) = F (Max

r
(M)). It is given by F (ιMmax).

How to recognize maximal objects?— It seems to be difficult to find a criteria
to recognize maximal objects among objects of Mod

r,φ
/S∞

. Nevertheless, we have
the following stability property.

Proposition 3.3.13. — The category Max
r,φ
/S∞

is stable under extensions in
Mod

r,φ
/S∞

.

Remark. — The proposition means that if 0 → M� → M → M�� → 0 is an
exact sequence in Mod

r,φ
/S∞

(and not in Max
r,φ
/S∞

— that does not make sense)
and if M� and M�� are maximal, then M is also. Hence, the proposition does
not imply that Max

r,φ
/S∞

is the smallest full subcategory of Mod
r,φ
/S∞

containing
simple objects described in § 3.6.

Proof. — Assume that 0 → M� → M → M�� → 0 is an exact sequence in
Mod

r,φ
/S∞

and M� and M�� are maximal. We have the following diagram:

0 ��M� ��M ��
� �

��

M�� ��

f

��

0

0 ��M� �� Max
r
(M) �� C �� 0

where C is defined as the cokernel of M� → Max
r
(M). A diagram chase shows

that f is injective. Moreover by Theorem 3.3.8, C ∈ Mod
r,φ
/S∞

and it is easy to
check that M��

[1/u] = C[1/u]. Since M�� is maximal, we must have M��
= C,

i.e. f bijective. It follows that M = Max
r
(M) as required.

Then we have a sufficient condition to be maximal.

Lemma 3.3.14. — Let M ∈ Mod
r,φ
/S1

. If coker (id ⊗ φ) is killed by up−2 then
M is maximal.

Proof. — It follows from the proof of Lemma 3.2.4.

Corollary 3.3.15. — If er < p− 1, then Max
r,φ
/S∞

= Mod
r,φ
/S∞

.

3.4. Minimal objects. — In this section, we develop a dual notion of maximal
objects (called minimal objects), that satisfies analogous properties. According
to Corollary 3.2.6, we need to assume r < ∞.
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The functor Min
r.

Definition 3.4.1. — Let M ∈ Mod
r,φ
/S∞

. The object Min
r
(M) is defined as

the smallest element of F r
S(M[1/u]). It is endowed with an homomorphism

ιMmin : Min
r
(M) →M in the category Mod

r,φ
/S∞

.

An objectM of Mod
r,φ
/S∞

is said minimal (in Mod
r,φ
/S∞

) if ιMmin is an isomor-
phism.

Proposition 3.4.2. — The previous definition gives rise to a functor Min
r

:

Mod
r,φ
/S∞

→ Mod
r,φ
/S∞

. Moreover, the collection of map (ιMmin) defines a natural
transformation between Min

r and the identity functor.

Proof. — Consider f : M1 → M2 a map in Mod
r,φ
/S∞

. In order to prove that
Min

r is a functor, we have to show that f(Min
r
(M1)) ⊂ Min

r
(M2). Since

Mod
r,φ
/S∞

is stable under images (Proposition 2.1.1 (iii)), we can assume suc-
cessively that f is surjective, then injective.

Assume first f is surjective. Put F = f⊗SS[1/u] andM�
1 = F−1

(Min
r
(M2)).

From the surjectivity of f and (Min
rM2)[1/u] = M2[1/u], we deduce

M�
1[1/u] = M1[1/u]. Moreover, if K = ker f , we have the following commuta-

tive diagram:

0 �� φ�K[1/u] ��

id⊗φ ∼

��

φ�M�
1

��

id⊗φ�1
��

φ�
Min

r
(M2)

��

id⊗φ2

��

0

0 �� K[1/u] ��M�
1

�� Min
r
(M2)

�� 0

Hence coker (id⊗φ�1) can be seen as a submodule of coker (id⊗φ�2) and so it is
killed by E(u)

r (if r = ∞, it must be replaced by a sufficiently large integer).
Therefore, by Proposition 2.1.1 (ii), M�

1 ∈ F r
S(M1[1/u]) and Min

r
(M1) ⊂M�

1.
The conclusion follows.

Now, assume f is injective and considerM1 as a subobject ofM2. PutM�
1 =

M1[1/u] ∩Min
r
(M2). Since (Min

rM2)[1/u] = M2[1/u], we have M�
1[1/u] =

M1[1/u]. Let x ∈M�
1. There exists y ∈ φ�M1[1/u] and z ∈ φ�

Min
r
(M2) such

that x = id⊗ φ(y) = id⊗ φ(z). Since id⊗ φ is injective on M2[1/u], we must
have y = z ∈ M�

1. So, by Proposition 2.1.1 (ii), M�
1 ∈ F r

S(M1[1/u]). Hence
Min

r
(M1) ⊂M�

1, and we are done.
The last statement of the proposition is then obvious.

Proposition 3.4.3. — The functor Min
r is a projection, that is Min

r
◦

Min
r

= Min
r.

Proof. — Just use Min
r
(M)[1/u] =M[1/u].
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Lemma 3.4.4. — Let f : M → M� be a morphism in Mod
r,φ
/S∞

. Then
f(Min

r
(M)) = Min

r
(f(M)).

Proof. — First note that f(M) is an object of Mod
r,φ
/S∞

(Proposition 2.1.1 (iii))
and consequently the formula Min

r
(f(M)) makes sense.

The inclusion ⊂ has been proved in Proposition 3.4.2. Put M��
=

f(Min(M)). By Proposition 2.1.1 (iii), it is an object of Mod
r,φ
/S∞

such
that M��

[1/u] = f(M)[1/u]. Hence Min(f(M)) ⊂M�� as required.

Corollary 3.4.5. — Let f : M → M� be a morphism in Mod
r,φ
/S∞

. If f is
injective (resp. surjective), then Min

r
(f) is also.

Remark. — Dualizing the example given after Proposition 3.3.4, we see that
Min

r is not “middle-exact”.

Proposition 3.4.6. — Let M ∈ Mod
r,φ
/S∞

. The couple (Min(M), ιMmin) is
characterized by the following universal property:

– the morphism TS∞(ιMmin) is an isomorphism;
– for each couple (M�, f) where M� ∈ Mod

r,φ
/S∞

and f : M� → M becomes
an isomorphism under TS∞ , there exists a unique map g : Min(M) →M�

such that f ◦ g = ιMmax.

Proof. — The first point is clear. Take (M�, f) as in the proposition. Since
TS∞(f) is an isomorphism, f induces an isomorphism M�

[1/u] →M[1/u] (by
full faithfulness of �TOE ). Hence, f is injective, and we can consider M� as a
subobject of M. It is then sufficient to prove that Min

r
(M) ⊂ M� but this

follows from the definition of Min
r.

The category Min
r,φ
/S∞

.

Definition 3.4.7. — We put Min
r,φ
/S∞

= Min
r
(Mod

r,φ
/S∞

). It is a full subcat-
egory of Mod

r,φ
/S∞

.

Proposition 3.4.8. — The functor Min
r

: Mod
r,φ
/S∞

→ Min
r,φ
/S∞

is a right
adjoint of the inclusion functor Min

r,φ
/S∞

→ Mod
r,φ
/S∞

.

Proof. — We have to prove that if f :M →M� is any morphism in Mod
r,φ
/S∞

with M minimal, then f factors through ιM
�

min. This is a direct consequence of
Proposition 3.4.2.

Theorem 3.4.9. — The category Min
r,φ
/S∞

is abelian. More precisely, if f :

M→M� is a morphism in Min
r,φ
/S∞
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– the kernel of f in the usual sense is an object of Mod
r,φ
/S∞

whose image
under Min

r is a kernel of f in the abelian category Min
r,φ
/S∞

– the cokernel of f in the usual sense, cokerf , may have u-torsion; however
coker f

u-torsion is an object of Min
r,φ
/S∞

which is a cokernel of f in the abelian
category Min

r,φ
/S∞

– the image (resp. coimage) of f in the usual sense is an object of Min
r,φ
/S∞

and is the image (resp. coimage) of f in the abelian category Min
r,φ
/S∞

.

Proof. — During the proof, we will denote by ker f , coker f , im f and coim f
the objects computed in the usual sense.

The assertion about kernels results from Propositions 2.1.1 (iii) and 3.4.8.
Let’s prove the assertion about cokernels. Denote by C the quotient of coker f
by its u-torsion. Obviously C has no u-torsion. Moreover, it satisfies Condition
(2), it is finitely generated and it is killed by a power of p (since it is a quotient
of M�). Hence, by Proposition 2.1.1 (ii), C ∈ Mod

r,φ
/S∞

. Lemma 3.4.4 applied
to the surjective morphism M� → C then shows that C is minimal.

By definition, the image (in Min
r,φ
/S∞

) of f , called I, is the kernel (in Min
r,φ
/S∞

)
of M� → C. Hence im f ⊂ I and the quotient I/im f is killed by a power of
u. It follows that Min

r
(im f) = Min

r
(I) = I. But, by Lemma 3.4.4, im f is

already minimal. Thus I = im f as required. The argument is quite similar for
coimage (remark that since coimf is isomorphic to imf , it is also minimal).

Lemma 3.4.10. — Let α : M� → M and β : M� → M�� be morphisms in
Min

r,φ
/S∞

such that β ◦ α = 0. The sequence 0 →M� →M→M�� → 0 is exact
(in the abelian category) Min

r,φ
/S∞

if and only if the sequence 0 → M�
[1/u] →

M[1/u] →M��
[1/u] → 0 is exact.

Moreover, the functor �MOE : Min
r,φ
/S∞

→ Mod
r,φ
/S∞

is fully faithful.

Proof. — The first part of lemma follows from the description of kernels and
cokernels given above.

Since for all M ∈ Min
r,φ
/S∞

, we have M ⊂ M[1/u], the functor is clearly
faithful. Let M and M� be two objects of Min

r,φ
/S∞

and f :M[1/u] →M�
[1/u].

We have to show that f sendsM toM�. The proof is the same as in Proposition
3.4.2.

Corollary 3.4.11. — The functor TS∞ defined on Min
r,φ
/S∞

is exact and fully
faithful.

Corollary 3.4.12. — The functor Min
r

: Mod
r,φ
/S∞

→ Min
r,φ
/S∞

is exact.
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Link with duality.

Proposition 3.4.13. — Assume r finite. For all M ∈ Mod
r,φ
/S∞

, we have
natural isomorphisms

Min
r
(M∨

) � Max
r
(M)

∨ and Max
r
(M∨

) � Min
r
(M)

∨.

In particular, duality permutes subcategories Min
r,φ
/S∞

and Max
r,φ
/S∞

.

Proof. — Formula (6) implies that, given a morphism f in the category
Mod

r,φ
/S∞

, TS∞(f) is an isomorphism if and only if TS∞(f∨) is. Then the
proposition is a formal (and easy) consequence of the universal properties
defining Max

r (Proposition 3.3.5) and Min
r (Proposition 3.4.6) on the one

hand, and the full faithfulness of TS∞ on Max
r,φ
/S∞

(Corollary 3.3.10) and
Min

r,φ
/S∞

(Corollary 3.4.11) on the other hand.

3.5. A reciprocity formula. — In this subsection, we will use the functor j� of
Fontaine defined in § B.1.4 of [9]. For M ∈ �

Mod
φ
/OE

, define the ordered set
GS(M) as the set of S-submodules M ⊂ M such that M is of finite type over
S, stable under φ and id ⊗ φ : φ�M[1/u] → M[1/u] is bijective. Recall that,
by definition:

j�M =

�

M∈GS(M)

M.

In the same way, we put for any r ∈ {0, 1, . . . ,∞}:

jr
�M =

�

M∈Gr
S

(M)

M

where Gr
S(M) is the ordered set of all M ∈ Mod

r,φ
/S∞

with M ⊂ M (we do
not ask M[1/u] to be equal to M). By § B.1.5.3 of [9], the equality GS(M) =

G∞S (M) holds. Moreover, ifM is an object of Mod
r,φ
/S∞

, (the proof of) Proposi-
tion 3.2.3 shows that greatest elements of F r

S(M) and Gr
S(M) coincide. Hence

Max
r
(M) = jr

�(M[1/u]).
Following [13], we define for r ∈ {0, 1, . . . ,∞}:

Sf,r
n = jr

�(OEur/pn
OEur) ⊂ OEur/pn

OEur and Sf,r
= lim
←−
n

Sf,r
n ⊂ OEur .

For all integer n, Sf,r
n is an object of �

Mod
r,φ
/S∞

, and obviously Sf,∞
n =

�
r∈NS

f,r
n . By Proposition 2.5.1 of loc. cit., they are stable under φ and the

action of G∞. Furthermore, this proposition implies that Sf,∞ is the period
ring Sur traditionally used in this context (for instance in [11], [14], [13]).
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Finally, if M ∈ Mod
r,φ
/S∞

is canceled by pn, the formula for TS∞(M) can be
“simplified” as follows:

TS∞(M) = Hom�Modr,φ
/S

(M,Sf,r
n ).

(To prove this, it is enough to show that the image of any f ∈ TS∞(M) is an
object of Mod

r,φ
/S∞

, which follows from Proposition 2.1.1.)

Here is the main theorem of this subsection:

Theorem 3.5.1. — Let M ∈ Mod
r,φ
/S∞

killed by pn. Then Max
r
(M) =

HomZp[G∞](TS∞(M),Sf,r
n ).

Remark. — It seems that such a formula does not exist with Min
r (instead

of Max
r). Indeed, it would probably imply the left-exactness of Min

r, which is
known to be false (see remark after Corollary 3.4.5).

Proof. — Put M̃ = HomZp[G∞](TS∞(M),Sf,r
n ). It is endowed with a Frobe-

nius φ (given by the Frobenius on Sf,r
n ). Moreover, biduality gives a natural

map compatible with Frobenius:

ι : Max
r
(M) → HomZp[G∞](TS∞(Max

r
(M)),Sf,r

n ) � M̃.

By Remark A.1.2.7.(a) of [9], the composite

M[1/u]
ι⊗SS[1/u]

�� M̃[1/u]
� � �� HomZp[G∞](TS∞(Max

r
(M)),OEur/pnOEur)

= HomZp[G∞](
�TOE (M[1/u]),OEur/pnOEur)

is bijective. Hence, ι ⊗S S[1/u] is also a bijection. We want to prove that ι
itself is an isomorphism. Injectivity is clear since Max

r
(M) has no u-torsion.

Since Max
r
(M) = jr

�(M[1/u]), surjectivity will follow from the statement “ev-
ery f ∈ M̃ is contained in an object N ∈ Gr

S(M[1/u])”. Let us prove the
claim. Consider e1, . . . , ed a generating family of M and put xi = f(ei).
By definition of Sf,r

n , there exists Ni ⊂ OEur/pnOEur with Ni ∈ Mod
r,φ
/S∞

and xi ∈ Ni. Then, as usual using Proposition 2.1.1, we can check that
N = HomZp[G∞](TS∞(Max

r
(M)),

�d
i=1Ni) answers the question.

3.6. Simple objects. — For simplicity, we assume in this subsection c0 = 1

(recall that c0 =
E(0)

p ). Of course, it is not crucial but assuming this will allow
us to simplify several formulas and several definitions of objects.

We fix an element r ∈ {0, 1, 2, . . . ,∞}.

tome 137 – 2009 – no 2



QUASI-SEMI-STABLE REPRESENTATIONS 215

3.6.1. Definitions and basic properties.
Definition 3.6.1. — Let S � be the set of sequences of integers between 0 and
er that are periodic (from the start). To a sequence (ni) ∈ S �, we associate
several numeric invariants:

– its dimension d: it is the smallest period of (ni);
– for i ∈ Z/dZ, the integer si = nipd−1

+ ni+1pd−2
+ · · ·+ ni+d−1;

– for i ∈ Z/dZ, ti =
si

pd−1 ∈ Q/Z and t = t0.

We also associate an object M(ni) ∈ Mod
r,φ
/S1

defined as follows:

– as a S1-module, M(ni) =

�

i∈Z/dZ
ei S1;

– for all i ∈ Z/dZ, φ(ei) = uniei+1.
Let S be the subset of S � consisting of all sequences (ni) for which the elements
t0, . . . , td−1 are pairwise distinct (in Q/Z).

Proposition 3.6.2. — Assume r < ∞. Let (ni) and (mi) be two sequences in
S �. If ni + mi = er for all i, then duality permutes objects M(ni) and M(mi).

Proof. — Easy computation.

Lemma 3.6.3. — Let (ni) ∈ S and s be a non negative integer. Let (E) be the
equation φd

(x) = usx in variable x ∈M(ni) (resp. x ∈M(ni)[1/u]). Then (E)

has a non zero solution if and only if there exists i ∈ Z/dZ (necessarily unique)
and v a non negative integer (resp. an integer) such that s − si = v(pd − 1).
In this case, the set of solutions is {αuvei, α ∈ k ∩ Fpd}.

Proof. — First, remark that if pd − 1 divides s− si and s− sj , we get si ≡ sj

(mod pd − 1) and then ti ≡ tj (mod Z). Hence, by assumption, i = j (in
Z/dZ). This justifies the uniqueness of i.

An easy computation gives φd
(ei) = usiei for all i. Write x = x0e0 + · · · +

xd−1ed−1 with xi ∈ S1 = k[[u]] (resp xi ∈ S[1/u]). Then (E) becomes the
system usixpd

i = usxi, and the lemma follows.

Proposition 3.6.4. — Let (ni) and (n�i) be in S. The objects M(ni) and
M(n�i) are isomorphic if and only if there exists an integer b such that n�i+b = ni

for all i.

Proof. — The condition is obviously sufficient. Now, take (ni), d and si, etc.
as in Definition 3.6.1. We have to show that knowing M = M(ni), we can
recover the sequence (ni) up to a shift. Since d is the dimension of M, it is
clearly determined. By Lemma 3.6.3, integers si are exactly integers s such
that there exists x ∈ M, x �∈ uM such that φd

(x) = usx. So, their set is also
determined. Moreover if xi is a non zero solution of φd

(xi) = usixi, we can
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write xi = αiei with αi ∈ k. It follows that φ maps xiS1 to xi+1S1 and then
that the sequence (si) is determined up to circular permutation. It remains to
prove that the knowledge of (si) determines the sequence (ni). But we have an
equality à

s0

s1

...
sd−1

í

= M

à
nd−1

n0

...
nd−2

í

where M is a matrix with integer coefficients whose reduction modulo p is
identity. Hence it is invertible and proposition follows.

3.6.2. Maximum and minimum objects. — Here, we compute functors Min
r

and Max
r on objects M(ni). We first define several subsets of S �.

Definition 3.6.5. — Put m = min{er, p− 1}.
Let Smax ⊂ S � be the set of sequences of integers between 0 and m that are

periodic except that the constant sequence with value p − 1 is removed from
Smax (if necessary).

If r < ∞, define Smin ⊂ S � as the set of sequences of integers between
er −m and er that are periodic except that the constant sequence with value
er − (p− 1) is removed from Smin (if necessary).

Lemma 3.6.6. — We have Smax ⊂ S and Smin ⊂ S (if r is finite).

Proof. — Exercise. (For Max, one may consider expansion of ti’s in p-basis.)

Until the end of this subsection, the assumption r < ∞ will always be
implicit when dealing with minimal objects.

Proposition 3.6.7. — Let (ni) ∈ Smax (resp (ni) ∈ Smin). Then M(ni) is
maximal (resp. minimal).

Proof. — By duality, we only have to prove the statement with Max. By
examining the proof of Lemma 3.2.4, we see that Max(M(ni)) ⊂

1
uM(ni).

Assume by contradiction, that there exists an element x ∈ Max(M(ni)), x �∈
M(ni) and write ux = x0e0 + · · · + xd−1ed−1 with xi ∈ S1 and xj �∈ uS1 for
one index j. A computation gives:

φ(x) =
φ(x0)

up−n0
e1 + · · ·+

φ(xd−2)

up−nd−2
ed−1 +

φ(xd−1)

up−nd−1
e0.

This element have to lie in Max(M(ni)). Therefore p−nj � 1, i.e. nj � p− 1.
So nj = p − 1. Repeating the argument with φ(x) instead of x, we obtain
nj+1 = p− 1, and so on. Finally, ni = p− 1 for all i and (ni) �∈ Smax.
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Proposition 3.6.8. — For any (ni) ∈ S, there exists a sequence (mi) ∈ Smax

(resp. (mi) ∈ Smin) such that Max(M(ni)) = M(mi) (resp. Min(M(ni)) =

M(mi)).

Proof. — By duality, we only have to prove the statement with Max. Denote
by s�i the unique integer in [0, pd− 1[ congruent to si modulo pd− 1, and define
mi to be the quotient in the Euclidean division of s�i by p. It is easy to see
that the mi’s (0 � i � d− 1) are digits in p-basis of s�0, and that this property
implies (mi) ∈ Smax. Now, put qi =

si−s�i
pd−1 : it is the quotient in the Euclidean

division of si by p. These numbers are non negative integers and they satisfy
the relation pqi + mi = qi+1 + ni for all i ∈ Z/dZ.

Denote by M� the submodule of M[1/u] generated by e�i =
1

uqi
ei. A di-

rect computation gives φ(e�i) = umie�i+1, and then M� � M(mi). Moreover
Proposition 3.6.7 shows that M� is maximal. The conclusion follows.

Remark. — If (ni) is in S � but not in S, almost all arguments of the proof are
still correct. The only problem is that the sequence (mi) obtained is periodic
with period less than d.

Corollary 3.6.9. — Let (ni) ∈ S. If M(ni) is maximal (resp. minimal)
then (ni) is in Smax (resp. Smin).

Proof. — By Proposition 3.6.8, we can find a sequence (mi) ∈ Smax such that
M(ni) = Max(M(ni)) �M(mi). By Proposition 3.6.4, there exists an integer
b such that ni = mi+b for all i, and then (ni) ∈ Smax.

Corollary 3.6.10. — Let (ni) and (n�i) be in S. Objects Max(M(ni)) and
Max(M(n�i)) (resp. Min(M(ni))) and Min(M(n�i))) are isomorphic if and only
if there exists an integer b such that t ≡ pbt� (mod Z) (with obvious notations).

Proof. — Easy after Proposition 3.6.4 and proof of Proposition 3.6.8.

3.6.2.1. Classification. — With notations of [16], § 1, an easy computation
gives the following theorem.

Theorem 3.6.11. — Let (ni) ∈ Smax. Then TS∞(M(ni)) is an irreducible
representation of G∞ whose tame inertia weights are exactly the ni’s.

Remark. — For (ni) ∈ Smin, tame inertia weights of TS∞(M(ni)) are not
simply linked with the ni’s. Precisely, to make the computation, the method
is to write the rational number ti in p-basis and then to read its digits.

Proposition 3.6.12. — We assume k to be algebraically closed. Let (ni) ∈

S. The object Max(M(ni)) (resp. Min(M(ni))) is simple in Max
r,φ
/S∞

(resp.
Min

r,φ
/S∞

). All simple objects can be written in this form.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



218 X. CARUSO & T. LIU

Proof. — If er < p− 1, the proposition was already proved in § 4 of [7]. From
now on, we assume er � p− 1. Moreover, it suffices, using duality, to show the
proposition with Max.

By the exactness and the full faithfulness of TS∞ on Max
r,φ
/S∞

(Corollary
3.3.10), in order to show that Max(M(ni)) is simple, it is enough to justify
that TS∞(Max(M(ni))) is an irreducible representation, which is a direct con-
sequence of the previous theorem. Now, consider M ∈ Max

r,φ
/S∞

a simple
object. By the previous theorem and the classification of irreducible represen-
tations given in § 1.5 and § 1.6 of [16] (5), there exists a quotient of TS∞(M)

isomorphic to TS∞(M(ni)) for some sequence (ni) ∈ Smax. Since er � p − 1,
we have M(ni) ∈ Mod

r,φ
/S∞

and M(ni) = Max
r
(M(ni)) (since (ni) is in Smax).

Finally, full faithfulness of TS∞ on Max
r,φ
/S∞

gives a non-vanishing morphism
M(ni) →M, and the proposition follows.

Corollary 3.6.13. — Assume that k is algebraically closed. Then, for any
r, the essential closure of the category TS∞(Mod

r,φ
/S∞

) is stable under quotients
and subobjects.

Proof. — Noting that TS∞(Mod
r,φ
/S∞

) = TS∞(Max
r,φ
/S∞

), the corollary is a
direct consequence of Theorem 3.6.11, Proposition 3.6.12 and Property 6.4.2
of [7].

3.7. Reformulation with Mod
r,φ
/S∞

. — Under the equivalence of Theorem 2.3.1,
almost all results proved in previous subsections can be translated into state-
ments about Mod

r,φ
/S∞

. Here is a quite long theorem that summarizes what one
obtains.

Theorem 3.7.1. — Assume r < p− 1.

– (cf. Proposition 3.3.5) For each M ∈ Mod
r,φ
/S∞

, there exists a unique
couple (Max

r
(M), ιMmax : M→ Max

r
(M)) (where Max

r
(M) is an objects

of Mod
r,φ
/S∞

and ιMmax a morphism in this category) such that:
• the morphism Tqst(ιMmax) is an isomorphism;
• for any M� ∈ Mod

r,φ
/S∞

endowed with a morphism f : M → M�

such that Tqst(f) is an isomorphism, there exists a unique g : M� →

Max
r
(M) such that g ◦ f = ιMmax.

This construction gives rise to a functor Max
r

: Mod
r,φ
/S∞

→ Mod
r,φ
/S∞

together with a natural transformation ιmax : idM → Max
r.

(5) In this reference, the classification is made for GK -representations, but it is easily seen
that the same arguments works with G∞-representations.
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– (cf. Proposition 3.3.3) The function Max
r is a projection, that is Max

r
◦

Max
r

= Max
r.

– (cf. Proposition 3.3.7 and Theorem 3.3.12) The functor Max
r

:

Mod
r,φ
/S∞

→ Max
r,φ
/S∞

is a left adjoint to the inclusion Max
r,φ
/S∞

→ Mod
r,φ
/S∞

and realizes the localization of Mod
r,φ
/S∞

with respect to morphisms f such
that Tqst(f) is an isomorphism.

– (cf. Theorem 3.3.8) The essential image of Max
r, called Max

r,φ
/S∞

, is an
abelian category.

– (cf. Corollary 3.3.10) The restriction of Tqst on Max
r,φ
/S∞

is exact and fully
faithful.

Of course, we also have a dual version of this theorem with minimal objects.
It gives rise to a function Min

r
: Mod

r,φ
/S∞

→ Mod
r,φ
/S∞

whose essential image
is denoted by Min

r,φ
/S∞

. It is clear that duality on Mod
r,φ
/S∞

discussed in § 2.4
permutes functors Max

r and Min
r and categories Max

r,φ
/S∞

and Min
r,φ
/S∞

.

Furthermore, if k is algebraically close, we can give a classification of simple
objects of Max

r,φ
/S∞

and Min
r,φ
/S∞

. For any sequence (ni) ∈ S (see Definition
3.6.1) put M(ni) = MS∞(M(ni)). It is described as follows:

– M(ni) =

�

i∈Z/dZ
fi S1;

– Fil
r
M(ni) =

�

i∈Z/dZ
uer−nifi S1;

– for all i ∈ Z/dZ, φr(uer−nifi) = (−1)
rfi+1.

Theorem 3.7.2. — Assume the residue field k algebraically closed, and r <
p− 1.

For all sequence (ni) ∈ Smax (resp. (ni) ∈ Smin), the object M(ni) is
simple in Max

r,φ
/S∞

(resp. in Min
r,φ
/S∞

). Every simple object of Max
r,φ
/S∞

(resp.
of Min

r,φ
/S∞

) is isomorphic to M(ni) for a certain sequence (ni) ∈ Smax (resp.
(ni) ∈ Smin). Moreover, two objects M(ni) and M(mi) are isomorphic if and
only if there exists an integer b such that ni = mi+b for all i.

The G∞-representation Tqst(M(ni)) is irreducible and its tame inertia
weights are exactly the ni’s.

4. The case r = 1

We assume r = 1. The forgetful functor Mod
1,φ,(N)
/S∞

→ Mod
1,φ
/S∞

is an equiv-
alence of categories (see Lemma 5.1.2 of [5]), and therefore, quasi-semi-stable
representations are exactly restrictions to G∞ of quotients of two lattices in a
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crystalline representation with Hodge-Tate weights in {0, 1}. Moreover, they
are also (restrictions to G∞ of) representations of the form G(K̄) where G is
a finite flat group scheme over OK killed by a power of p. Let denote by
Rep

[0,1]
∞ (GK) (resp. Rep

[0,1]
∞ (G∞)) their category. We have the following com-

mutative diagram

Mod
1,φ,(N)
/S∞

∼

��

Tst ��
Rep

[0,1]
∞ (GK)

��
Mod

1,φ
/S∞

Max1
�� Max

1,φ
/S∞

Tqst ��
Rep

[0,1]
∞ (G∞)

where vertical arrows represent forgetful functors.

Proposition 4.0.1. — The functor Tst factors through Max
1,φ
/S∞

.

Proof. — By the last statement of Theorem 3.7.1, it is sufficient to prove that if
Tqst(f) is an isomorphism, then Tst(f) is also (where f in any map in Max

1,φ
/S∞

).
But it is obvious since Tqst(f) = Tst(f).

Corollary 4.0.2. — The functor Rep
[0,1]
∞ (GK) → Rep

[0,1]
∞ (G∞) is fully

faithful. In other words, if F : T → T � is a G∞-equivariant map between two
objects of Rep

[0,1]
∞ (GK), then it is GK-equivariant.

Moreover, Tst : Max
1,φ
/S∞

→ Rep
[0,1]
∞ (GK) is fully faithful.

Proof. — If M and M� are objects of Max
1,φ
/S∞

, the composite

HomMax1,φ
/S∞

(M,M�
) → Hom

Rep[0,1]
∞ (GK)

(Tst(M
�
), Tst(M))

→ Hom
Rep[0,1]

∞ (G∞)
(Tqst(M

�
), Tqst(M))

is bijective (by full faithfulness of Tqst) whereas the second map is obviously
injective. This implies that both maps are bijective. Since Tst : Max

1,φ
/S∞

→

Rep
[0,1]
∞ (GK) is essentially surjective (by definition of Rep

[0,1]
∞ (GK)), the corol-

lary follows.

Remark. — The first part of corollary was already known (Theorem 3.4.3 of
[4]). However, the proof given here is slightly different.
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5. Perspectives and questions

The semi-stable and crystalline case. — Of course, one may ask if the previous
theory can be extended to the semi-stable case. Precisely:

Question 1. — Can we find a simple criteria to recognize an object of
Mod

r,φ,N
/S∞

that can be written as a quotient of two strongly divisible modules?

Question 2. — Are Theorems 3.7.1 and 3.7.2 (with N(fi) = 0) still true if
we replace Mod

r,φ
/S∞

by Mod
r,φ,N
/S∞

(Max
r,φ
/S∞

by Max
r,φ,N
/S∞

, and Tqst by Tst)?

It seems quite difficult to find a satisfying answer to question 1. For the
moment, the authors do not know if any object can be written such as a
quotient, although they conjecture it is false. On the other hand, Question
2 seems more accessible and is actually partially answered in [8].

Finally note that links between crystalline and semi-stable torsion theory
seem to be more complicated than it looks. Denote by Mod

r,φ,(N)
/S∞

the full sub-
category of Mod

r,φ,N
/S∞

gathering objects M satisfying N(M) ⊂ (uS +Fil
1S)M.

If r = 1, we saw that the forgetful functor Mod
r,φ,(N)
/S∞

→ Mod
r,φ
/S∞

is an equiv-

alence and then one can identify Mod
r,φ,(N)
/S∞

and Mod
r,φ
/S∞

. However, if r > 1,
this functor is not anymore fully faithful and consequently one can not identify
Mod

r,φ,(N)
/S∞

as a subcategory of Mod
r,φ
/S∞

.

Here is a counter-example. Assume e � p−1
r−1 . Assume also that there exists

λ ∈ S1 such that λp−1 ≡ c (mod p). Put M = e1S1 ⊕ e2S1, and let Fil
r
M

be the submodule of M generated by e1, ue+p−1e2 and Fil
pS1M. Equip M

with a Frobenius by putting φr(e1) = e1 and φr(ue+p−1e2) = e2. Then it is
possible to define on M two monodromy operators N1 and N2 by the formulas
N1(e1) = N2(e1) = 0, N2(e1) = λupe2, N2(e2) = 0. These operators give
rise to two objects M1 and M2 of Mod

r,φ,(N)
/S∞

. They are not isomorphic since
N ◦ φr vanishes on Fil

r
M1 but not on Fil

r
M2. Moreover, one can prove that

associated Galois representations (via the functor Tst) are not isomorphic.
Going further, we can evaluate what should be Min(M1) and Min(M2). For

simplicity, assume e < p − 1. Define M�
= e�1S1 ⊕ e�2S1 endowed with Fil

r
M�

generated by e�1, uee�2 and Fil
pSM�. Put φr(e�1) = e�1 and φr(uee�2) = e�2.

Again, we can equip M� with two monodromy operators N1 and N2 defined
by N1(e�1) = N1(e�2) = 0, N2(e�1) = λe�2 and N2(e�2) = 0. Call M�

1 and M�
2

the corresponding objects of Mod
r,φ,N
/S∞

. For i ∈ {1, 2}, we have a morphism
M�

i →Mi (in Mod
r,φ,N
/S∞

) and we can check that it induces an isomorphism via
Tst. Moreover, since e � p − 2, M�

1 and M�
2 should be minimal. Therefore

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



222 X. CARUSO & T. LIU

Min
r
(Mi) should be equal to M�

i and the implication (M ∈ Mod
r,φ,(N)
/S∞

) ⇒

(Min(M) ∈ Mod
r,φ,(N)
/S∞

) should (surprisingly) be false.

A point of view with sheaves. — Proposition 3.3.7 and Theorem 3.3.8 show
that the situation is quite similar to what happens with presheaves and sheaves.
More concretely we may ask the following question:

Question 3. — Is it possible to see objects of Mod
r,φ
/S∞

(resp. Max
r,φ
/S∞

) as
global sections of some presheaves (resp. sheaves) on a certain site, in such a
way that the functor Max corresponds to the functor “associated sheaf”?

Is it possible to find such presheaves and sheaves in certain cohomology
groups of certain varieties?

In order to precise the latest question, assume r = 1. Consider G a finite
flat group scheme killed by a power of p over OK . In [3], Breuil manages to
associate to G an object M ∈ Mod

r,φ
/S∞

using geometric construction. We can
ask the following:

Question 4. — Is it possible to find an only geometric recipe that associates
to G the object Max(M)? For instance, can we obtain this recipe by sheafifying
(in a certain way) the construction of Breuil?
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