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by Jean-Marc Bouclet

Abstract. — For certain non compact Riemannian manifolds with ends which may
or may not satisfy the doubling condition on the volume of geodesic balls, we ob-
tain Littlewood-Paley type estimates on (weighted) Lp spaces, using the usual square
function defined by a dyadic partition.

Résumé (Décomposition Littlewood-Paley des variétés à bouts). — Pour certaines
variétés riemanniennes à bouts, satisfaisant ou non la condition de doublement de
volume des boules géodésiques, nous obtenons des décompositions de Littlewood-Paley
sur des espaces Lp (à poids), en utilisant la fonction carrée usuelle définie via une
partition dyadique.

1. Introduction

1.1. Motivation and description of the results. — Let (M, g) be a Riemannian
manifold, ∆g be the Laplacian on functions and dg be the Riemannian measure.
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2 J.-M. BOUCLET

Consider a dyadic partition of unit, namely choose ϕ0 ∈ C∞0 (R) and ϕ ∈
C∞0 (0,+∞) such that

(1.1) 1 = ϕ0(λ) +
�

k≥0

ϕ(2−kλ), λ ≥ 0.

The existence of such a partition is standard. In this paper, we are basically
interested in getting estimates of ||u||Lp( M,dg) in terms of ϕ(−2−k∆g)u, either
through the following square function

(1.2) S−∆gu(x) :=

Ñ
|ϕ0(−∆g)u(x)|2 +

�

k≥0

|ϕ(−2−k∆g)u(x)|2
é1/2

, x ∈ M,

or, at least, through
Ñ

�

k≥0

||ϕ(−2k∆g)u||2Lp( M,dg)

é1/2

,

and a certain remainder term. For the latter, we have typically in mind esti-
mates of the form

(1.3) ||u||Lp( M,dg) �

Ñ
�

k≥0

||ϕ(−2k∆g)u||2Lp( M,dg)

é1/2

+ ||u||L2( M,dg),

for p ≥ 2. In the best possible cases, we want to obtain the equivalence of
norms

(1.4) ||S−∆gu||Lp( M,dg) ≈ ||u||Lp( M,dg),

which is well known, for 1 < p < ∞, if M = Rn and g is the Euclidean metric
(see for instance [12, 13, 15]).

Such inequalities are typically of interest to localize at high frequencies the
solutions (and the initial data) of partial differential equations involving the
Laplacian such as the Schrödinger equation i∂tu = ∆gu or the wave equation
∂2

t u = ∆gu, using that ϕ(−h2∆g) commutes with ∆g. For instance, estimates
of the form (1.3) have been successfully used in [5] to prove Strichartz esti-
mates for the Schrödinger equation on compact manifolds. The article [5] was
the first source of inspiration of the present paper, a part which is to prove
(1.3) for non compact manifolds. Another motivation came from the fact that,
rather surprisingly, we were unable to find in the literature a reference for the
equivalence (1.4) in reasonable cases such as asymptotically conical manifolds
(the latter is certainly clear to specialists).

We point out that the equivalence (1.4) actually holds on compact manifolds,
but (1.3) is sufficient to get Strichartz estimates. Moreover (1.3) is rather
robust and still holds in many cases where (1.4) does not. For instance, on
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LITTLEWOOD-PALEY DECOMPOSITIONS ON MANIFOLDS WITH ENDS 3

asymptotically hyperbolic manifolds where the volume of geodesic balls grows
exponentially (with respect to their radii), (1.4) is not expected to hold, but,
as a consequence of the results of the present paper, we have nevertheless (1.3).
We will briefly recall the application of (1.3) to Strichartz estimates, and more
precisely a spatially localized version thereof, after Theorem 1.7.

Littlewood-Paley inequalities on Riemannian manifolds are subjects of in-
tensive studies. There is a vast literature in harmonic analysis studying con-
tinuous analogues of the square function (1.2), the so-called Littlewood-Paley-
Stein functions defined via integrals involving the Poisson and heat semigroups
[13]. An important point is to prove Lp → Lp bounds related to these square
functions (see for instance [8] and [6]). However, as explained above, weaker
estimates of the form (1.3) are often highly sufficient for applications to PDEs.
Moreover, square functions of the form (1.2) are particularly convenient in
microlocal analysis since they involve compactly supported functions of the
Laplacian, rather than fast decaying ones. To illustrate heuristically this point,
we consider the linear Schrödinger equation i∂tu = ∆gu: if the initial data is
spectrally localized at frequency 2k/2, i.e. ϕ(−2−k∆g)u(0, .) = u(0, .), there
is microlocal finite propagation speed stating that the microlocal support (or
wavefront set) of u(t, .) is obtained by shifting the one of u(0, .) along the
geodesic flow at speed ≈ 2k/2. This property, which is very useful in the appli-
cations, fails if ϕ is not compactly supported (away from 0). Another similar
interest of compactly supported spectral cutoffs for the Schrödinger equation
is that high frequency asymptotics like the geometric optics approximation are
much easier to obtain for spectrally localized data.

As far as dyadic decompositions associated to non constant coefficients op-
erators are concerned, we have already mentioned [5]. We also have to quote
the papers [7] and [10]. In [7], the authors develop a dyadic Littlewood-Paley
theory for tensors on compact surfaces with limited regularity (but in low di-
mension) which is of great interest for nonlinear applications. In [10], the Lp

equivalence of norms for dyadic square functions (including small frequencies)
associated to Schrödinger operators are proved for a restricted range of p. See
also the recent survey [9] for Schrödinger operators on Rn.

In the present paper, we shall use the analysis of ϕ(−h2∆g) for h ∈ (0, 1],
obtained in [1], to derive Littlewood-Paley inequalities on manifolds with ends.
We can summarize our results in a model case as follows (see Definition 1.1
for the general manifolds considered here). Assume for simplicity that a neigh-
borhood of infinity of (M, g) is isometric to

�
(R,∞)× S, dr2 + dθ2/w(r)2

�
,

with (S, dθ2) a compact manifold and w(r) > 0 a smooth bounded posi-
tive function. For instance w(r) = r−1 corresponds to conical ends, and
w(r) = e−r to hyperbolic ends. We first show that by considering the modi-
fied measure �dg = w(r)1−ndg ≈ drdθ and the associated modified Laplacian
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4 J.-M. BOUCLET

‹∆g = w(r)(1−n)/2∆gw(r)(n−1)/2, we always have the equivalence of norms

||S−�∆g
u||

Lp( M,‹dg)
≈ ||u||

Lp( M,‹dg)
,

for 1 < p < ∞, the square function S−�∆g
being defined by changing ∆g into ‹∆g

in (1.2). By giving weighted version of this equivalence, we recover (1.4) when
w−1 is of polynomial growth. Nevertheless, we emphasize that (1.4) can not
hold in general for it implies that ϕ(−∆g) is bounded on Lp(M, dg) which may
fail for instance in the hyperbolic case (see [14]). Secondly, we prove that more
robust estimates of the form (1.3) always hold and can be spatially localized
(see Theorem 1.7).

Here are the results.

Definition 1.1. — The manifold (M, g) is called almost asymptotic if there
exist a compact set K � M, a real number R, a compact manifold S, a func-
tion r ∈ C∞(M, R) and a function w ∈ C∞(R, (0,+∞)) with the following
properties:

1. r is a coordinate near M \ K and

r(x) → +∞, x →∞,

2. for some rK > 0, there is a diffeomorphism

(1.5) M \ K → (rK ,+∞)× S,

through which the metric reads in local coordinates

g = Gunif

�
r, θ, dr, w(r)−1dθ

�
(1.6)

with

Gunif(r, θ, V ) :=
�

1≤j,k≤n

Gjk(r, θ)VjVk, V = (V1, . . . , Vn) ∈ Rn,

if θ = (θ1, . . . , θn−1) are local coordinates on S.
3. The symmetric matrix (Gjk(r, θ))1≤j,k≤n has smooth coefficients such

that, locally uniformly with respect to θ,
��∂j

r∂α
θ Gjk(r, θ)

�� � 1, r > rK ,(1.7)

and is uniformly positive definite in the sense that, locally uniformly in θ,

Gunif(r, θ, V ) ≈ |V |2, r > rK , V ∈ Rn.(1.8)

4. The function w is smooth and satisfies, for all k ∈ N,

w(r) � 1,(1.9)
w(r)/w(r�) ≈ 1, if |r − r�| ≤ 1(1.10) ���dkw(r)/drk

��� � w(r),(1.11)
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LITTLEWOOD-PALEY DECOMPOSITIONS ON MANIFOLDS WITH ENDS 5

for r, r� ∈ R.

Typical examples are given by asymptotically conical manifolds for which
w(r) = r−1 (near infinity) or asymptotically hyperbolic ones for which w(r) =
e−r. We note that (1.10) is equivalent to the fact that, for some C > 0,

(1.12) C−1e−C|r−r�| ≤ w(r)

w(r�)
≤ CeC|r−r�|, r, r� ∈ R.

In particular, this implies that w(r) � e−Cr.
We recall that, if θ = (θ1, . . . , θn−1) are local coordinates on S and (r, θ) are

the corresponding ones on M \ K , the Riemannian measure takes the following
form near infinity

(1.13) dg = w(r)1−nb(r, θ)drdθ1 · · · dθn−1

with b(r, θ) bounded from above and from below for r � 1, locally uniformly
with respect to θ. We also define the density

(1.14) �dg = w(r)n−1dg

and the operator

(1.15) ‹∆g = w(r)(1−n)/2∆gw(r)(n−1)/2.

The multiplication by w(r)(n−1)/2 is a unitary isomorphism between L2(M, �dg)

and L2(M, dg) so the operators ∆g and ‹∆g, which are respectively essentially
self-adjoint on L2(M, dg) and L2(M, �dg), are unitarily equivalent.

Let us denote by P either −∆g or −‹∆g. For u ∈ C∞0 (M), we define the
square function SP u related to the partition of unit (1.1) by

(1.16) SP u(x) :=

Ñ
|ϕ0(P )u(x)|2 +

�

k≥0

|ϕ(2−kP )u(x)|2
é1/2

, x ∈ M.

Our first result is the following one.

Theorem 1.2. — For all 1 < p < ∞, the following equivalence of norms holds

||u||
Lp( M,‹dg)

≈ ||S−�∆g
u||

Lp( M,‹dg)
.

This theorem implies in particular that ϕ0(−‹∆g) and ϕ(−2k‹∆g) are bounded
on Lp(M, �dg). For the Laplacian itself, it is known that compactly supported
functions of ∆g are in general not bounded on Lp(M, dg) (see [15]) so we can
not hope to get the same property. We however have the following result.

Theorem 1.3. — For all 2 ≤ p < ∞ and all M ≥ 0,

||u||Lp( M,dg) � ||S−∆gu||Lp( M,dg) + ||(1−∆g)
−Mu||L2( M,dg).
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6 J.-M. BOUCLET

Using the fact that, for p ≥ 2, ||(
�

k |uk|2)1/2||Lp ≤ (
�

k ||uk||2Lp)1/2, we
obtain in particular:

Corollary 1.4. — For all p ∈ [2,∞),

||u||
Lp( M,‹dg)

�

Ñ
�

k≥0

||ϕ(−2k‹∆g)u||2
Lp( M,‹dg)

é1/2

+ ||ϕ0(−‹∆g)u||Lp( M,‹dg)
,

(1.17)

||u||Lp( M,dg) �

Ñ
�

k≥0

||ϕ(−2k∆g)u||2Lp( M,dg)

é1/2

+ ||u||L2( M,dg).

(1.18)

Note the two different situations. In (1.18), we have an L2 remainder which
comes essentially from the Sobolev injection

(1.19) (1−∆g)
−n/2−� : L2(M, dg) → L∞(M).

The translation of (1.19) in terms of ‹∆g is that w(r)(n−1)/2(1 −›∆g)−n/2−� is
bounded from L2(M, �dg) to L∞(M) which of course doesn’t imply in general
that (1−›∆g)−n/2−� is bounded from L2(M, �dg) to L∞(M). In particular, one
can not clearly replace the last term of (1.17) by ||u||

L2( M,‹dg)
. We may however

notice that, by the results of [1], C∞0 functions of ‹∆g are bounded on Lp(M, �dg),
for 1 < p < ∞.

Actually, we have a result which is more general than Theorem 1.2. Consider
a temperate weight W : R → (0,+∞), that is a positive function such that, for
some C, M > 0,

(1.20) W (r�) ≤ CW (r)(1 + |r − r�|)M , r, r� ∈ R.

Theorem 1.5. — For all 1 < p < ∞, we have the equivalence of norms

||W (r)u||
Lp( M,‹dg)

≈ ||W (r)S−�∆g
u||

Lp( M,‹dg)
.

This is a weighted version of Theorem 1.2. Then, using that

(1.21) Lp(M, dg) = w(r)
n−1

p Lp(M, �dg), p ∈ [1,∞),

and that products or (real) powers of weight functions are weight functions, we
deduce the following result.

Corollary 1.6. — If w is a temperate weight, then for all 1 < p < ∞, we
have the equivalence of norms

||W (r)u||Lp( M,dg) ≈ ||W (r)S−∆gu||Lp( M,dg).
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Naturally, this result holds with W = 1 and we obtain (1.4) if w is a tem-
perate weight. In particular, in the case of asymptotically euclidean manifolds,
this provides a justification of Lemma 3.1 of [4].

As noted previously, Theorems 1.2 and 1.3 are interesting to localize some
PDEs in frequency. In practice, it is often interesting to localize the datas
both spatially and spectrally. For the latter, one requires additional knowledge
on the spectral cutoffs, typically commutator estimates. Such estimates are
rather straightforward consequences of the analysis of [1] and allow to prove
the following localization property.

Theorem 1.7. — Let χ ∈ C∞(M) be constant outside a compact set (typically
χ or 1− χ compactly supported). Assume that p ∈ [2,∞) and that

(1.22) 0 ≤ n

2
− n

p
≤ 1.

Then

(1.23) ||χu||Lp( M,dg) �

Ñ
�

k≥0

||χϕ(−2k∆g)u||2Lp( M,dg)

é1/2

+ ||u||L2( M,dg).

This theorem could be generalized by considering for instance more general
cutoffs, or even differential operators. We give only this simple version, which
will be used in [2] to prove Strichartz estimates at infinity using semi-classical
methods in the spirit of [3]. To make such applications of Theorem 1.7 clearer,
we recall very briefly the interest of the estimate (1.23) for the proof of (spa-
tially localized) Strichartz estimates. We follow [5]. If u(t) = eit∆gu0 is the
solution to the homogeneous linear Schrödinger equation with initial condition
u0 ∈ L2(M, dg), and if (p1, p2) �= (2,∞) is a Schrödinger admissible pair of
exponents, i.e. such that

2

p1
+

n

p2
=

n

2
, p1 ≥ 2, p2 ≥ 2,

then p2 satisfies (1.22) and (1.23) gives
(1.24)

||χeit∆gu0||Lp2 ( M,dg) �

Ñ
�

k≥0

||χeit∆gϕ(−2k∆g)u0||2Lp2 ( M,dg)

é1/2

+ ||u0||L2( M,dg).

If we are able to prove Strichartz estimates for spectrally localized data, ie

(1.25)
Ç� 1

0
||χeit∆gϕ(−2k∆g)u0||p1

Lp2 ( M,dg)dt

å1/p1

≤ C||u0||L2( M,dg),

with C independent of k (and u0 of course), then we can assume that the term
u0 is spectrally localized too, by applying a spectral cutoff ϕ̃(−2−k∆g) with
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8 J.-M. BOUCLET

ϕ̃ϕ = ϕ. Proving (1.25) is a different topic, but we point out that the spectral
localization simplifies significantly the analysis. We then automatically obtain
the non spectrally localized version

Ç� 1

0
||χeit∆gu0||p1

Lp2 ( M,dg)dt

å1/p1

≤ C||u0||L2( M,dg),

by squaring (1.25) with a spectrally localized right hand side, and summing over
k; the L2 norms in the right hand side can be summed by almost orthogonality,
and for the left hand side, one uses (1.24) to get
Ç� 1

0
||χeit∆gu0||

2
p1
2

Lp2 ( M,dg)dt

å 2
p1

�
�

k

Ç� 1

0
||χeit∆gϕ(−2k∆g)u0||

2
p1
2

Lp2 ( M,dg)dt

å 2
p1

+ ||u0||2L2( M,dg),

since p1 ≥ 2 and where the sum converges since each term is controlled by
||�ϕ(−2k∆g)u0||2L2 , using (1.25).

1.2. Outline of the proofs. — In this subsection, we summarize the analysis of
the next sections by giving the main tools leading to our Littlewood-Paley
estimates and, as an illustration, by proving Theorem 1.3 and Corollary 1.6, in
the slightly simpler situation where W = 1. The first tool relies on the results
of [1] and the second one is the core of the present paper.

For simplicity, we denote by Ak the operators

(1.26) A0 = ϕ0(P ), Ak = ϕ(21−kP ), k ≥ 1,

and by
fk : [0, 1] → {−1, 1}, k ≥ 0,

the usual Rademacher sequence (see Section 5).

1st tool. Parametrix of the Ak. — It consists in getting a decomposition of the
operators Ak of the form

(1.27) Ak = Ψk + Rk, k ≥ 0,

where Ψk is a properly supported pseudo-differential operator (with kernel sup-
ported close to the diagonal) and Rk is a remainder satisfying good properties.
More explicitly, we will use the following properties of the sequence (Rk)k≥0:

1. If w is a temperate weight, then for all p1 ∈ (1, 2]

(1.28)
�

k

||Rk||Lp1 ( M,dg)→Lp1 ( M,dg) < ∞.

This actually holds for all 1 < p1 < ∞ but we shall not need this property
for p1 > 2.
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2. In the general case, if w is not necessarily temperate, then for all M ≥ 0,

(1.29)
�

k

||(1−∆g)
MRk(1−∆g)

M ||L2( M,dg)→L2( M,dg) < ∞.

This means more precisely that, for all M ≥ 0, we can split Ak according
to (1.27) with Ψk = Ψk(M) and Rk = Rk(M) both depending on M with
(Rk(M))k≥0 satisfying (1.29).

This description is sufficient here. In Section 2, we will recall more precisely
the results of [1] that will be used in this paper.

2nd tool: Singular integral estimates on the diagonal term. — Using the precise
description of the operators Ψk, we will show that, for all p1 ∈ (1, 2],

(1.30) ||
k�

k=0

fk(t)Ψk||Lp1 ( M,dg)→Lp1 ( M,dg) �p1 1, t ∈ [0, 1], k ∈ N.

As usual, this will come from an interpolation between a trivial L2 bound
and a non trivial weak L1 bound. The L2 bound, i.e. (1.30) with p1 = 2, is
obtained by writing Ψk = Ak−Rk and by using the almost orthogonality of the
operators Ak and the L2 summability of the Rk (i.e. (1.29) with M = 0). The
weak L1 estimate will use a suitable Calderón-Zygmund decomposition which
we now describe.

We first explain how to transfer the analysis to an open subset of Rn of the
form

(1.31) Ω = (rK ,+∞)r × Rn−1
θ ,

equipped with the measure

ν = w(r)1−ndrdθ,

where dθ is the Lebesgue measure on Rn−1. We simply use that M can be
covered by finitely many coordinate patches Uι such that

Ψk =
�

ι

Ψk,ι,

where each Ψk,ι has a Schwartz kernel supported in Uι × Uι. Thus, for each
ι, the operators

�
k≤k fk(t)Ψk,ι are fully described in the single chart Uι and,

using local coordinates, we are left with operators acting on Ω and with kernels
supported on Ω × Ω. The measure ν is the expression of dg in coordinates,
up to factor bounded from above and below (see (1.13)). Note that this kind
of local charts are typically relevant in the neighborhood of infinity of M but
compactly supported charts, and the expression of dg therein, can be artificially
put under this form too.
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10 J.-M. BOUCLET

Our Calderón-Zygmund decomposition for a function u ∈ L1(Ω, dν) will be
of the form u = ũ +

�
j uj where ũ ∈ L∞(Ω, dν) ∩ L1(Ω, dν) is the good part,

and the uj form the bad parts which will be supported either in ‘small balls’
of the form

(1.32) B(r0, θ0, t0) =

ß
(r, θ) | |r − r0| +

|θ − θ0|
w(r0)

≤ t0

™
,

with t0 ≤ 1, or in ‘large cylinders’ of the form

(1.33) C(r0, θ0, t0) =

ß
(r, θ) | |r − r0| ≤ 1 and

|θ − θ0|
w(r0)

≤ t0

™
,

with t0 > 1. The reason for considering those sets is that the measure dν is non
doubling in general, in the sense that ν(B(r0, θ0, Dt0)) can not be estimated
by Dmν(B(r0, θ0, t0)) (for some m) uniformly with respect to (r0, θ0, t0) if we
allow large t0. This is easily seen when w(r) = e−r for instance. We shall
however exploit that, if we set

B∗D(r0, θ0, t0) =

ß
(r, θ) | |r − r0| +

|θ − θ0|
w(r0)

≤ Dt0

™
,(1.34)

C∗D(r0, θ0, t0) =

ß
(r, θ) | |r − r0| ≤ 2 and

|θ − θ0|
w(r0)

≤ Dt0

™
,(1.35)

we have the doubling property on the sets of small balls and large cylinders ie
(1.36)

Q := {B(r, θ, t) | (r, θ) ∈ Ω, 0 < t ≤ 1} ∪ { C(r, θ, t) | (r, θ) ∈ Ω, t > 1} .

This is the meaning of the following proposition.

Proposition 1.8. — For all ’doubling’ parameter D > 1, there exists C =
C(n, w,D) such that

ν(Q∗D) ≤ C(n, w,D)ν(Q), Q ∈ Q,

where Q∗D = B∗D(r0, θ0, t0) if Q = B(r0, θ0, t0) or C∗D(r0, θ0, t0) if Q =
C(r0, θ0, t0).

Proof. — Consider a cylinder Q = C(r0, θ0, t0). If ωn−1 is the volume of the
unit euclidean ball on Rn−1, then
(1.37)

ν(Q) =

� r0+1

r0−1
w(r)1−ndr

�

|θ−θ0|≤t0w(r0)
dθ = ωn−1t

n−1
0

� r0+1

r0−1

Å
w(r0)

w(r)

ãn−1

dr

and, similarly,

ν(Q∗D) = ωn−1D
n−1tn−1

0

� r0+2

r0−2

Å
w(r0)

w(r)

ãn−1

dr.
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LITTLEWOOD-PALEY DECOMPOSITIONS ON MANIFOLDS WITH ENDS 11

The result in this case follows from the fact that, by (1.12), w(r0)/w(r) is
bounded from above and below, uniformly with respect to r0 and r ∈ [r0 −
2, r0 + 2]. The case of balls is similar : if Q = B(r0, θ0, t0) with t0 ≤ 1, then

ν(Q) =

� �

|r−r0|+|θ−θ0|/w(r0)≤t0

w(r)1−ndrdθ(1.38)

=

� �

|s|+|α|≤t0

Å
w(r0)

w(r0 + s)

ãn−1

drdα,

and

ν(Q∗D) = Dn

��

|s|+|α|≤t0

Å
w(r0)

w(r0 + Ds)

ãn−1

drdα.

The result comes again from (1.12) which shows that w(r0)/w(r0 + sD) and
w(r0)/w(r0 + s) are uniformly bounded from above and below, with respect to
|s| ≤ t0 ≤ 1 and r0 ∈ R.

That the elements of Q will be enough for our purpose relies strongly on the
proper support property of the operators.

We shall then obtain the weak L1 estimate by adapting suitably the usual
proof whose crucial point is the following. Let us denote by K = Kk,t the
expression in local coordinates of the kernel of

�
k≤k fk(t)Ψk,ι, with respect to

dν. If, for each Q ∈ Q centered at (r0, θ0), we define by Ψ Q the operator with
kernel K(r, θ, r�, θ�) − K(r, θ, r0, θ0), then we will see that, at least for some
D > 1,

(1.39) sup
Q∈ Q

||
Ä
1− χQ∗D

ä
ΨQχQ||L1(Ω,dν)→L1(Ω,dν) < ∞,

where χE denotes the characteristic function of the set E. More precisely this
supremum will also be uniformly bounded with respect to the parameters k
and t of (1.30).

We now explain the simple derivation of Theorem 1.3 and Corollary 1.6
from (1.28)/(1.29) and (1.30) above. For a sequence of operators B = (Bk)k≥0

(typically (Ak), (Ψk) and (Rk)), it will be convenient to denote

SBu :=
� �

k≥0

|Bku|2
�1/2

,

say for u ∈ C∞0 (M). For instance, SA is exactly the square function S−∆g in
(1.2).

Proof of Corollary 1.6. — Using (1.28) and (1.30), we get

(1.40) ||
k�

k=0

fk(t)Ak||Lp1 ( M,dg)→Lp1 ( M,dg) �p1 1, t ∈ [0, 1], k ∈ N,
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12 J.-M. BOUCLET

first for all p1 ∈ (1, 2] and then automatically for all p1 ∈ (1,∞) by taking the
adjoint, since

�
k≤k fk(t)Ak is selfadjoint. Once we have (1.40), the proof goes

exactly as the usual one on Rn. We recall this proof to emphasize the difference
with Theorem 1.3. By Khinchine’s inequality, (1.40) implies that

(1.41) ||SAu||Lp( M,dg) �p ||u||Lp( M,dg),

for all p ∈ (1,∞), which is the expected upper bound on S−∆g . To get the
lower bound, one writes

(1.42) (u1, u2) :=

�

M
u1u2dg =

�

k1,k2≥0
|k1−k2|≤1

�
Ak1u1 Ak2u2 dg,

using the partition of unity
�

k Ak = 1 and its almost orthogonality, ie
Ak1Ak2 = 0 for |k1− k2| ≥ 2. Then, if p1, p2 ∈ (1,∞) are conjugate exponents,
Hölder’s inequality in (1.42) and the upper bound (1.41) give

|(u1, u2)| ≤ 3||SAu1||Lp1 ( M,dg)||SAu2||Lp2 ( M,dg)

�p1 ||u1||Lp1 ( M,dg)||SAu2||Lp2 ( M,dg),

from which one clearly deduces the lower bound

||u2||Lp2 ( M,dg) �p2 ||SAu2||Lp2 ( M,dg).

Proof of Theorem 1.3. — Using (1.30) and Khinchine’s inequality, we get for
all p1 ∈ (1, 2]

(1.43) ||SΨu||Lp1 ( M,dg) �p1 ||u||Lp1 ( M,dg).

Denote by p2 ∈ [2,∞) the conjugate exponent of p1. For u1, u2 ∈ C∞0 (M), we
expand Akj uj = (Ψkj + Rkj )uj into the right hand side of (1.42) and using
again the Hölder inequality, we obtain

|(u1, u2)| ≤ 3||SΨu1||Lp1 ( M,dg)

�
||SΨu2||Lp2 ( M,dg) + ||SRu2||Lp2 ( M,dg)

�

+ ||u1||Lp1 ( M,dg)

Ñ
�

|k1−k2|≤1

||R∗k1
Ψk2u2||Lp2 ( M,dg) + ||R∗k1

Rk2u2||Lp2 ( M,dg)

é
.

By writing R∗k1
Ψk2 = R∗k1

Ak2 − R∗k1
Rk2 , where Ak2 commutes with ∆g, and

combining the Sobolev injection (1.19) with (1.29) (which of course holds also
for R∗k) with M large enough, we have

�

|k1−k2|≤1

||R∗k1
Ψk2u2||Lp2 ( M,dg) + ||R∗k1

Rk2u2||Lp2 ( M,dg) �p2 ||(1−∆g)
−Mu2||L2( M,dg).

We also note that (1.19) and (1.29) give

||SRu2||Lp2 ( M,dg) �p2 ||(1−∆g)
−Mu2||L2( M,dg).
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Now, since

||SΨu2||Lp2 ( M,dg) ≤ ||S−∆gu2||Lp2 ( M,dg) + ||SRu2||Lp2 ( M,dg),

and using the upper bound (1.43), all this implies that

|(u1, u2)| �p2 ||u1||Lp1 ( M,dg)

�
||S−∆gu2||Lp2 ( M,dg) + ||(1−∆g)

−Mu2||L2( M,dg)

�
,

which yields

||u2||Lp2 ( M,dg) �p2 ||S−∆gu2||Lp2 ( M,dg) + ||(1−∆g)
−Mu2||L2( M,dg).

2. Functional calculus

In this short section, we recall some results from [1] that will be used later
in the paper. It will also serve as a motivation for the introduction of the
operators studied in Sections 3 and 4.

We fix φ ∈ C∞0 (R) and consider a semiclassical parameter h ∈ (0, 1]. In the
applications φ will be either ϕ0 or ϕ and h2 will be of the form 2−k (if φ = ϕ0

we shall only consider h = 1).
In the following theorem, P will denote either −∆g or −‹∆g when similar

statements hold for both operators (this notation is already used in (1.16)).
Otherwise we will give separate statements for each operator.

We recall that Sm = Sm(Rd×Rd) denotes the space of symbols of order m,
i.e. functions a such that |∂α

x ∂β
ξ a(x, ξ)| � �ξ�m−|β|, and that S−∞ = ∩mSm.

Theorem 2.1. — [1] For all N ∈ N, φ(h2P ) can be decomposed into

φ(h2P ) =
�

j<N

hjΦj(P, h) + hN RN (P, h),

where

– each Φj(P, h) is a finite sum (1) of operators whose kernels (with respect
to w(r)1−ndrdθ) are, in local coordinates, of the form

(2.1) h−n�a
Å

r, θ,
r − r�

h
,
θ − θ�

hw(r)

ã
ζ(r − r�, θ − θ�)

where ζ ∈ C∞0 (Rd) is supported in the unit ball and �a is the Fourier
transform with respect to ξ of a symbol a(r, θ, ξ) ∈ S−∞(Rn

r,θ×Rn
ξ ) which

is compactly supported with respect to ξ and furthermore such that

(2.2) 0 /∈ supp(φ) ⇒ supp(a) ⊂ Rd × {c ≤ |ξ| ≤ C},

(1) the number of terms is simply the one of a finite cover of the manifold by coordinate
charts
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14 J.-M. BOUCLET

for some C > c > 0. Furthermore, for each j < N and p ∈ [2,∞], we
have

||Φj(−∆g, h)||Lp( M,dg)→Lp( M,dg) � 1,(2.3)

||Φj(−∆g, h)||L2( M,dg)→Lp( M,dg) � h
n
p−

n
2 ,(2.4)

for h ∈ (0, 1].
– The remainder RN (P, h) satisfies

1. if P = −∆g: for all p ∈ [2,∞] and all M ≥ 0,
(2.5)����(1−∆g)

M RN (−∆g, h)(1−∆g)
M

����
L2( M,dg)→Lp( M,dg)

� h−n( 1
2−

1
p )−4M ,

2. if P = −‹∆g: for all temperate weight W (see (1.20)) and all 1 <
p < ∞,

(2.6)
���
���W (r)−1 RN (−‹∆g, h)W (r)

���
���
Lp( M,‹dg)→Lp( M,‹dg)

� 1,

for all h ∈ (0, 1].

Operators with kernels of the form (2.1), and sums of such kernels, will play
a great role in the sequel. We shall study some of their elementary properties
in Section 4.

3. A Calderón-Zygmund type theorem

An important consequence of the usual Calderón-Zygmund theorem is that
pseudo-differential operators of order 0 are bounded on Lp(Rn), for all 1 < p <
∞ (see for instance [12, 13, 15]). The purpose of this section is to show a similar
result for pseudo-differential operators with symbols of the form aw(r, θ, ρ, η) =
a(r, θ, ρ, w(r)η), with a ∈ S0, and with kernel cutoff outside a neighborhood
of the diagonal to be properly supported. Recall that w may not be bounded
from below (see Definition 1.1) so aw doesn’t belong to S0 in general.

We use the same notation as in Subsection 1.2, namely

Ω = (rK ,+∞)× Rn−1, ν = w(r)1−ndrdθ,

and recall that ν (or dν) is essentially the expression of dg in charts near
infinity, i.e. they coincide up to a positive factor which is bounded from above
and below and thus irrelevant for Lp estimates. For convenience and with no
loss of generality, we assume that rK ∈ N (see Appendix A).

The following proposition is a version of the Calderón-Zygmund cov-
ering lemma adapted to the measure dν (and to the underlying metric
dr2 + w(r)−2dθ2). We will use the balls B(r, θ, t) and the cylinders C(r, θ, t)
introduced in Subsection 1.2.
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Proposition 3.1. — There exists C0 = C0(n, w) such that, for all λ > 0, any
u ∈ L1(Ω, dν) can be decomposed as

(3.1) u = ũ +
�

j∈N
uj ,

for some ũ ∈ L1(Ω, dν) ∩ L∞(Ω, dν) and some sequence (uj)j∈N of L1(Ω, dν)
such that

||ũ||L1(Ω,dν) +
�

j

||uj ||L1(Ω,dν) ≤ C0||u||L1(Ω,dν),(3.2)

||ũ||L∞(Ω) ≤ C0λ,(3.3)

and such that, for some sequence of subsets (Qj)j∈N of Ω of the form

Qj =






B(rj , θj , tj) with tj < 1,

or
C(rj , θj , tj) with tj ≥ 1,

for some (rj , θj) ∈ Ω,(3.4)

we also have �
ujdν = 0, supp(uj) ⊂ Qj ,(3.5)

�

j

ν(Qj) ≤ C0λ
−1||u||L1(Ω,dν).(3.6)

Proof. — See Appendix A .

Consider next a smooth function K of the form

K(r, θ, r�, θ�) = κ

Å
r, θ, r − r�,

θ − θ�

w(r)

ã

with κ smooth on R2d and satisfying
���∂ξ̂κ(r, θ, ξ̂)

��� ≤ |ξ̂|−1−n, (r, θ) ∈ Ω, ξ̂ ∈ Rn \ {0},(3.7)

supp(κ) ⊂ Ω× {|ξ̂| < 1}.(3.8)

We then define the operator Ψ by

(3.9) (Ψu)(r, θ) =

�

Ω
K(r, θ, r�, θ�)u(r�, θ�)dν(r�, θ�).

The assumption (3.8) states that this operator is properly supported. Using
the notation of Theorem 2.1 with h = 2−k/2, we shall see that kernels of the
form
(3.10)

Kk,t(r, θ, r
�, θ�) =

k�

k=0

fk(t)2kn/2�a
Å

r, θ, 2k/2(r − r�), 2k/2 θ − θ�

w(r)

ã
ζ

Å
r − r�,

θ − θ�

w(r)

ã
,
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16 J.-M. BOUCLET

satisfy the conditions (3.7) and (3.8) uniformly with respect to k and t. This
will be checked in Section 4. We will also see that the kernel (3.10) is very close
to the expression in local coordinates of the kernel of

�
k≤k fk(t)Ψk (see (1.27)

for Ψk).
In the rest of the present section, we consider the problem of the boundedness

of Ψ on Lp(Ω, dν).

Theorem 3.2. — There exists C such that, for all Ψ as above satisfying the
additional condition

(3.11) ||Ψ||L2(Ω,dν)→L2(Ω,dν) ≤ 1,

we have: for all u ∈ L1(Ω, dν) and all λ > 0

ν ({|Ψu| > λ}) ≤ Cλ−1||u||L1(Ω,dν).

In other words, B is of weak type (1, 1) relatively to dν. The proof is very
close to the usual one for singular integrals on Rn and rests on Proposition 3.4
below (which was already stated in (1.39)). The main difference with the case
of Rn is that the sets Q do not need to describe the whole set of dyadic cubes
of arbitrary sides, but only the set Q of small balls and large cylinders defined
in (1.36).

We first need to recall the following well known lemma on singular integrals.

Lemma 3.3. — There exists a constant cn such that, for all t > 0, for all
K̃ ∈ C1(R2n) satisfying

(3.12) |∂yK̃(x, y)| ≤ |x− y|−n−1, x �= y, x, y ∈ Rn,

and for all continuous function

Y : {|x| > 2t} → {|y| < t},

we have

(3.13)
�

|x|>2t
|K̃(x, Y (x))− K̃(x, 0)|dx ≤ cn.

Note that, in the usual form of this lemma, the function Y is simply given
by Y (x) = y with |y| < t independent of x. Of course, if (3.12) is replaced by
|∂yK̃(x, y)| ≤ C|x− y|−n−1 one has to replace cn by cnC in the final estimate.
For completeness, we recall the simple proof.

Proof. — By the Taylor formula and (3.12), the left hand side of (3.13) is
bounded by

�

|x|>2t
t||x| − t|−n−1dx = vol(Sn−1)

� ∞

2t
trn−1(r − t)−n−1dr

tome 138 – 2010 – no 1



LITTLEWOOD-PALEY DECOMPOSITIONS ON MANIFOLDS WITH ENDS 17

where the change of variable r̃ = r/t shows that the last integral is finite and
independent of t.

If Q = B(r0, θ0, t0) or C(r0, θ0, t0), we define the operator ΨQ by

(ΨQu)(r, θ) =

�
(K(r, θ, r�, θ�)−K(r, θ, r0, θ0)) u(r�, θ�)dν(r�, θ�).

We have the following result.

Proposition 3.4. — There exists D(n, w) > 1 such that, for all D ≥ D(n, w)
and for all operator Ψ of the form (3.9),

sup
Q∈ Q

||(1− χQ∗D
)ΨQχQ||L1(Ω,dν)→L1(Ω,dν) ≤ cn,

with the same cn as in Lemma 3.3.

The following lemma states that large cylinders do not contribute to the
supremum.

Lemma 3.5. — There exists D�(n, w) > 1 such that, for all D ≥ D�(n, w) and
all Q of the form C(r0, θ0, t0) with t0 > 1,

(1− χQ∗D
)ΨχQ = (1− χQ∗D

)ΨQχQ = 0.

Proof. — It is sufficient to show that, if D is large enough,

(1− χQ∗D
)(r, θ)K(r, θ, r�, θ�)χQ(r�, θ�) = 0.

This will give the statement for Ψ and then automatically for ΨQ since
χQ(r0, θ0) = 1. If (r, θ, r�, θ�) ∈ supp(K) with (r�, θ�) ∈ Q, we have
|r − r0| ≤ |r − r�| + |r� − r0| ≤ 2. Therefore, if we consider (r, θ) /∈ Q∗D,
we necessarily have

|θ − θ0|
w(r0)

> Dt0,

so that |θ − θ�| > (D − 1)t0w(r0). Since |r − r0| ≤ 2, there exists C depending
only on w and n such that |θ−θ�| > C(D−1)t0w(r). Thus |θ−θ�|

w(r) > C(D−1)t0 >
1 if D is large enough so that K must actually vanish and we get the result.

Proof of Proposition 3.4. — By Lemma 3.5, we only have to consider Q =
B(r0, θ0, t0) with t0 ≤ 1. For D > 1, let us set

IQ,D(r�, θ�) =

�

Ω\Q∗D

|K(r, θ, r�, θ�)−K(r, θ, r0, θ0)| dν(r, θ),

so that the Schur Lemma yields the estimate

||(1− χQ∗D
)ΨQχQ||L1(Ω,dν)→L1(Ω,dν) ≤ sup

(r�,θ�)∈Q
IQ,D(r�, θ�).
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18 J.-M. BOUCLET

Using the change of variables

(r, θ) �→ (r̃, θ̃) =

Å
r − r0,

θ − θ0

w(r)

ã
,

we have

IQ,D(r�, θ�) =

�

|r̃|+ w(r0+r̃)
w(r0) |θ̃|>Dt0

����Kr0,θ0

Å
r̃, θ̃, r� − r0,

θ� − θ0

w(r̃ + r0)

ã
−Kr0,θ0(r̃, θ̃, 0, 0)

���� dr̃dθ̃,

with

Kr0,θ0(r̃, θ̃, r
�, θ�) = κ

Ä
r̃ + r0, w(r̃ + r0)θ̃ + θ0, r̃ − r�, θ̃ − θ�

ä
.

Now observe that for any (r�, θ�) ∈ B(r0, θ0, t0) and (r̃, θ̃) ∈ Rd, we have

Kr0,θ0

Å
r̃, θ̃, r� − r0,

θ� − θ0

w(r̃ + r0)

ã
�= 0 ⇒ |r̃| ≤ |r̃ − (r� − r0)| + |r� − r0| ≤ 2.

In particular, we have w(r0+r̃)
w(r0)

≈ 1 so there exists C1 ≥ 1, depending only on n
and w, such that

IQ,D(r�, θ�) ≤
�

|r̃|+|θ̃|> D
C1

t0

����Kr0,θ0

Å
r̃, θ̃, r� − r0,

θ� − θ0

w(r̃ + r0)

ã
−Kr0,θ0(r̃, θ̃, 0, 0)

���� dr̃dθ̃.

Similarly, there exists C2 depending only on n and w such that

|r� − r0| +
|θ� − θ0|
w(r̃ + r0)

≤ |r� − r0| + C2
|θ� − θ0|
w(r0)

≤ C2t0,

thus, if D ≥ 2C1C2, (3.7) and Lemma 3.3 show that, for all (r�, θ�) ∈
B(r0, θ0, t0),

IQ,D(r�, θ�) ≤ cn,

and the result follows.

Proof of Theorem 3.2. — We use the decomposition (3.1) and set v =
�

j uj .
We have

ν ({|Ψu| > λ}) ≤ ν ({|Ψũ| > λ/2}) + ν ({|Ψv| > λ/2}) .

Since
||Ψũ||2L2(Ω,dν) ≤ ||ũ||2L2(Ω,dν) ≤ C2

0λ||u||L1(Ω,dν),

the second inequality being due to (3.3) and (3.2), the Tchebychev inequality
yields

ν ({|Ψũ| > λ/2}) ≤ 4λ−2||Ψũ||2L2(Ω,dν) ≤ 4C2
0λ−1||u||L1(Ω,dν).

We now consider v by studying the contribution of each function uj . Using the
notation of Propositions 3.4, we fix D > D(n, w). Since uj has zero mean and
is supported in Qj = B(rj , θj , tj) or C(rj , θj , tj) , we have

Ψuj = ΨQj uj ,
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which implies, by Proposition 3.4, that
(3.14)����Ψuj

����
L1(Ω\(Qj)∗D,dν)

=
����(1− χ(Qj)∗D

)ΨQj uj

����
L1(Ω,dν)

≤ cn||uj ||L1(Ω,dν).

Now, if we set
O = ∪j(Qj)

∗
D,

then Proposition 1.8 and (3.6) show that

(3.15) ν( O) ≤ C(n, w,D)C0λ
−1||u||L1(Ω),dν .

On the other hand, (3.14) implies that ||Ψuj ||L1(Ω\ O,dν) ≤ cn||uj ||L1(Ω,dν) so,
using (3.2), we get

(3.16) ||Ψv||L1(Ω\ O,dν) ≤ cnC0||u||L1(Ω,dν),

and then

ν ({|Ψv| > λ/2}) ≤ ν( O) + ν
�
{|χΩ\ OΨv| > λ/2}

�

≤ Cλ−1||u||L1(Ω,dν),

using (3.15) and (3.16). This completes the proof.

The boundedness on Lp is then a classical consequence of the Marcinkiewicz
interpolation theorem (see for instance [13, 15]) and we obtain the following
corollary.

Corollary 3.6. — For all p ∈ (1, 2], there exists Cp such that, for all Ψ of
the form (3.9), with κ satisfying (3.7) and (3.8), such that (3.11) holds, we
have

||Ψ||Lp(Ω,dν)→Lp(Ω,dν) ≤ Cp.

4. Pseudo-differential operators

In this part, we study elementary properties of certain properly supported
pseudo-differential operators. The main goal is to prove that kernels of the
form (3.10) satisfy the assumptions (3.7) and (3.8). We will also see that
the associated operator is bounded on L2(Ω, dν) and hence on Lp(Ω, dν) for
1 < p ≤ 2 by Corollary 3.6. We shall even see that this remains true on
weighted spaces.

To put it in a slightly more general framework, we consider a bounded
sequence (ak)k∈N in S−∞, namely such that for all j ∈ N, α ∈ Nn−1, β ∈ Nn

and all m > 0,

(4.17)
���∂j

r∂α
θ ∂β

ξ ak(r, θ, ξ)
��� ≤ Cjαβm(1 + |ξ|)−m,
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with a constant independent of k. Assume that these symbols are supported in
Ω×Rn where Ω is given by (1.31). We also use a cutoff ζ ∈ C∞0 (Rn), supported
in the unit ball, and such that ζ ≡ 1 near 0.

For all k ≥ 0, consider the kernel

(4.18) K(k)(r, θ, r
�, θ�) =

�

h2=2−k

0≤k≤k

h−nâk

Å
r, θ,

r − r�

h
,
θ − θ�

hw(r)

ã
ζ(r − r�, θ − θ�),

where âk is the partial Fourier transform of a with respect to ξ. Notice that
(3.10) is not exactly of this form, due to the form of the cutoff near the diagonal.
Lemma 4.2 below will prove that this makes essentially no difference, as far as
the Lp boundedness is concerned.

Example. — The typical example of operator with kernel of the form (4.18)
is given by

�
k≤k fk(t)Ψk, using (1.27). This follows clearly from Theorem 2.1

since we have to consider ak of the form fk(t)a with a as in Theorem 2.1 (with
h = 2−k/2).

Consider next the associated operator

(4.19) (Ψ(k)u)(r, θ) =

�

Ω
K(k)(r, θ, r

�, θ�)u(r�, θ�)dν(r�, θ�).

Throughout this section, we fix a positive function W defined on R such that,
for some C > 0,

(4.20) W (r) ≤ CW (r�), for all r, r� ∈ R such that |r − r�| ≤ 1.

Temperate weights satisfy clearly this condition but also powers of w, although
w may not be a temperate weight.

The section is devoted to the proof of the following result.

Proposition 4.1. — Let (ak)k∈N be a family of symbols supported in Ω×Rn

satisfying (4.17). If moreover there exists C > 0 such that, for all k ≥ C,

(4.21) (r, θ, ρ, η) = (r, θ, ξ) ∈ supp(ak) ⇒ C−1 ≤ |ρ| + |η| ≤ C,

then, for all positive function W satisfying (4.20) and all p ∈ (1, 2],

||W (r)Ψ(k)W (r)−1||Lp(Ω,dν)→Lp(Ω,dν) � 1, k ∈ N.

The proof is divided into the next four lemmas.
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Lemma 4.2. — Denote by � the function

�(r, θ, r�, θ�) = ζ(r − r�, θ − θ�)− ζ

Å
r − r�,

θ − θ�

w(r)

ã

and by Jk the function

Jk(r, θ, r�, θ�) = 2kn/2âk

Å
r, θ, 2k/2(r − r�), 2k/2 θ − θ�

w(r)

ã
�(r, θ, r�, θ�).

Define the operator Γk by

Γku(r, θ) =

�

Ω
Jk(r, θ, r�, θ�)u(r�, θ�)dν(r�, θ�).

Then, for all p ∈ [1,∞],

(4.22)
�

k≥0

����W (r)ΓkW (r)−1
����

Lp(Ω,dν)→Lp(Ω,dν)
< ∞.

Note that (4.22) can be written equivalently as

(4.23)
�

k≥0

���
���W (r)w(r)

1−n
p ΓkW (r)−1w(r)

n−1
p

���
���
Lp(Ω,drdθ)→Lp(Ω,drdθ)

< ∞.

using the Lebesgue measure drdθ (with the convention that (n − 1)/p = 0 if
p = ∞).

Proof. — Let us prove (4.23). For all γ ∈ R, (1.10) implies that Wwγ also
satisfies an estimate of the form (4.20). We may therefore replace Ww(1−n)/p

by W with no loss of generality. Then

(W (r)ΓkW (r)−1u)(r, θ) =

��
�Jk(r, θ, r�, θ�)u(r�, θ�)dr�dθ�

with
�Jk(r, θ, r�, θ�) = w(r)1−nJk(r, θ, r�, θ�)× W (r)

W (r�)
.

Since ζ ≡ 1 near 0 and w is bounded, there exists c > 0 such that,

(4.24) |r − r�| + |θ − θ�|
w(r)

≥ c, on the support of �.

Integrating by part in the integral defining âk, one sees that, for all N ≥ 0, Jk

takes the following form

(−1)N2−(2N−n)k/2 ’∆N
ρ,ηa

k

Å
r, θ, 2k/2(r − r�), 2k/2 θ − θ�

w(r)

ãÅ
|r − r�|2 +

|θ − θ�|2

w(r)2

ã−N

�(r, θ, r�, θ�).

By the uniform estimates in k (4.17), (4.20) and (4.24), this implies that, for
all N , there exists CN such that

| �Jk(r, θ, r�, θ�)| ≤ CN2−Nkw(r)1−n

Å
1 + |r − r�| + |θ − θ�|

w(r)

ã−N
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for all (r, θ), (r�, θ�) ∈ Ω and all k ∈ N. The result follows then from the usual
Schur Lemma.

By Lemma 4.2, the Lp boundedness of W (r)Ψ(k)W (r)−1 is thus equivalent
to the one of W (r)‹Ψ(k)W (r)−1 with ‹Ψ(k) defined similarly to (4.19) by the
kernel

‹K(k)(r, θ, r
�, θ�) =

k�

k=0

2kn/2âk

Å
r, θ, 2k/2(r − r�), 2k/2 θ − θ�

w(r)

ã
ζ

Å
r − r�,

θ − θ�

w(r)

ã
.

We can then write
Ä
W (r)‹Ψ(k)W (r)−1u

ä
(r, θ) =

�

Ω
�κ(k)

Å
r, θ, r − r�,

θ − θ�

w(r)

ã
u(r�, θ�)dν(r�, θ�)

where �κ(k) is defined by

�κ(k)(r, θ, ρ̂, η̂) =
�

k≤M

2kn/2âk(r, θ, 2k/2ρ̂, 2k/2η̂)ζ(ρ̂, η̂)× W (r)

W (r − ρ̂)
.

To interpret this operator as an operator of the form (3.9), with a symbol
satisfying (3.7), we need W to be smooth. We thus assume for a while that,
for all j ≥ 0,

(4.25) |djW (r)/drj | � W (r).

We shall see further on that this smoothness condition can be removed.

Lemma 4.3. — Assume (4.20) and (4.25). There exists C > 0 such that, for
all k ≥ 0,

(4.26) |∂ρ̂,η̂�κ(k)(r, θ, ρ̂, η̂)| ≤ C(|ρ̂| + |η̂|)−n−1.

Proof. — It is standard. We recall it for completeness. Thanks to the cutoff ζ,
it is sufficient to consider the region where |ρ̂| + |η̂| < 1. By (4.17), âk(r, θ, ., .)
is bounded in the Schwartz space as (r, θ) and k vary and, by (1.10), (1.11)
and (4.25), W (r)/W (r − ρ̂) is bounded on the support of ζ together with its
derivatives. Thus, for all N > 0,

|∂ρ̂,η̂κM,W (r, θ, ρ̂, η̂)| ≤ CN

�

k≥0

2
k
2 (n+1)(1 + 2k/2|ρ̂| + 2k/2|η̂|)−N

≤ CN

�

k≤k0

2
k
2 (n+1) + CN

�

k>k0

2
k
2 (n+1)2

(k0−k)
2 N ≈ CN2

k0
2 (n+1)

with k0 = k0(ρ̂, η̂) such that 2−
k0+1

2 ≤ |ρ̂|+ |η̂| < 2−
k0
2 . The result follows.

We next consider the L2 boundedness.
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Lemma 4.4. — Assume (4.20), (4.25) and the existence of C > 1 such that,
for all k ≥ C, we have and (4.21). Then there exists C � > 0 such that, for all
k ≥ 0,

||W (r)Ψ(k)W (r)−1||L2(Ω,dν)→L2(Ω,dν) ≤ C �.(4.27)

Proof. — The uniform boundedness of the family (W (r)Ψ(k)W (r)−1)k≥0 on
L2(Ω, dν) is equivalent to uniform boundedness, on L(L2(Rn, drdθ)), of the
family of pseudo-differential operators with kernels

��
e−i(r−r�)ρ−i(θ−θ�)·η�a(k)(r, r

�, θ, θ�, ρ, η)dρdη

where

�a(k)(r, r
�, θ, θ�, ρ, η) =

W (r)w(r)
n−1

2

W (r�)w(r�)
n−1

2

ζ(r − r�, θ − θ�)
�

k≤k

ak(r, θ, 2−k/2ρ, 2−k/2w(r)η).

The function in front of the sum is smooth and bounded as well as its deriva-
tives, by (1.10), (1.11), (4.20), (4.25) and the compact support of ζ. The result
is then a consequence of the Calderón-Vaillancourt Theorem since all deriva-
tives of ã(k) are bounded, uniformly with respect to k, which is a consequence
of the estimate

|∂α
x ∂β

ξ

�

C<k≤k

ak(x, 2−k/2ξ)| ≤ Cαβ k > 0, (x, ξ) = (r, θ, ρ, η) ∈ R2n.

This follows from the uniform estimates (4.17) and the fact that the above sum
contains a finite number of terms, independent of x, ξ and k since, by (4.21),
2−k/2|ξ| belongs to [C−1, C] (in particular |ξ| � 1) and

2−k/2|ξ| ∈ [C−1, C] ⇒ k/2 ∈
�
ln2 |ξ| − ln2 C, ln2 |ξ| − ln2 C−1

�

where the number of half integer points in the last interval is bounded. The
proof is complete.

The following lemma shows that we can assume that W also satisfies (4.25).

Lemma 4.5. — We can find �W satisfying (4.20), (4.25) and such that, for
some C > 1,

(4.28) W (r)/C ≤ �W (r) ≤ CW (r).

Proof. — Choose a non zero, non negative ω ∈ C∞0 (−1, 1) and set �W (r) =�
W (r − s)ω(s)ds. Since

C−1 ≤ W (r − s)/W (r) ≤ C, s ∈ (−1, 1),
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we obtain (4.28), which implies in turn that (4.20) holds for �W since
�W (r)
�W (r�)

=
�W (r)

W (r)

W (r)

W (r�)

W (r�)
�W (r�)

is bounded if |r − r�| ≤ 1. This implies that

|�W (j)(r)| = |
�

W (r − s)ω(j)(s)ds| � W (r) � �W (r),

which shows that (4.25) holds for �W .

Proof of Proposition 4.1. — By (4.28), the result holds if and only if it holds
with �W instead of W . We may therefore assume that W satisfies (4.25). By
Lemma 4.4, the estimate is true with p = 2. Then, by Lemma 4.2, it is also
true for ‹Ψ(k) with p = 2 . By Lemma 4.3, we can apply Corollary 3.6 to obtain
the estimate for all 1 < p ≤ 2 with ‹Ψ(k) instead of Ψ(k) and we conclude using
again Lemma 4.2.

5. Proofs of the main results

In this section, P and dµ denote either −∆g and dg or −‹∆g and �dg. Using
the partition of unit (1.1), we denote as in Subsection 1.2,

A0 = ϕ0(P ), Ak = ϕ(2−(k−1)P ), k ≥ 1,

so that, in the strong sense on L2(M, dµ), we have

(5.1)
�

k≥0

Ak = 1,

and the square function (1.16) reads

SP u(x) = (
�

k

|Aku(x)|2)1/2, x ∈ M.

In the next subsections, we will use the following classical result of harmonic
analysis. Recall first the definition of the usual Rademacher sequence (fk)k≥0.
For k = 0, f0 is the function given on [0, 1) by

f0(t) =

�
1 if 0 ≤ t ≤ 1/2

−1 if 1/2 < t < 1
,

and then extended on R as a 1 periodic function. If k ≥ 1, fk(t) = f(2kt), for
all t ∈ R. These functions are orthonormal in L2([0, 1]). Given a sequence of
complex numbers (ak)k≥0, if we set

F (t) =
�

k≥0

akfk(t),
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then, for all 1 < p < ∞, the key estimate related to the Rademacher functions
is the following well known Khinchine inequality (see for instance [11, p. 54]
or [13, p. 276]),

(5.2) ||F ||L2([0,1]) =
� �

k≥0

|ak|2
�1/2 ≤ Cp||F ||Lp([0,1]).

As an immediate consequence of (5.2), we have the following result.

Proposition 5.1. — Let (Bk)k≥0 be a family of operators from C∞0 (M) to
Lp(M, dµ), for some 1 < p < ∞. Define the associated square function SBu by

SBu(x) =
� �

k≥0

��(Bku)(x)
��2�1/2

, x ∈ M.

Then we have

(5.3) ||SBu||Lp( M,dµ) ≤ Cp sup
k∈N

sup
t∈[0,1]

����
�

k≤k

fk(t)Bku
����

Lp( M,dµ)
.

In particular, if
����

�

k≤k

fk(t)Bku
����

Lp( M,dµ)
� ||u||Lp( M,dµ), t ∈ [0, 1], u ∈ C∞0 (M), k ≥ 0,

then
||SBu||Lp( M,dµ) � ||u||Lp( M,dµ), u ∈ C∞0 (M).

5.1. Proof of Theorems 1.2 and 1.5. — In this part P = −‹∆g, dµ = �dg and W is
a temperate weight. Using Theorem 2.1, in particular (2.6) for the remainder,
and Proposition 4.1 (see also the Example between (4.18) and (4.19)), we obtain
the following proposition.

Proposition 5.2. — For all N ≥ 0, we can write

Ak = Ψk + Rk,

with Ψk such that, for all 1 < p ≤ 2,
����

�

k≤k

fk(t)W (r)Ψku
����

Lp( M,dµ)
� ||W (r)u||Lp( M,dµ), t ∈ [0, 1], u ∈ C∞0 (M), k ≥ 0,

and Rk such that, for all 1 < p < ∞,
����W (r)RkW (r)−1

����
Lp( M,dµ)→Lp( M,dµ)

� 2−Nk, k ≥ 0.

We can now prove Theorem 1.5 (Theorem 1.2 corresponds to the special
case W ≡ 1). This proof is the standard one to establish the equivalence of
norms of u and SP u for the usual Littlewood-Paley decomposition on Rn (see
for instance [12, 13, 15]). This is a weighted version of the proof of Corollary
1.6 displayed in Subsection 1.2 for W = 1.
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Proof of Theorem 1.5. — Define AW
k = W (r)AkW (r)−1. By Proposition 5.2,

we have
(5.4)����

�

k≤k

fk(t)AW
k u

����
Lp( M,dµ)

� ||u||Lp( M,dµ), k ≥ 0, t ∈ [0, 1], u ∈ C∞0 (M),

first for 1 < p ≤ 2, and then for all 1 < p < ∞ by taking the adjoint in the
above estimate and replacing W by W−1. By Proposition 5.1, this implies that

(5.5) ||W (r)SP u||Lp( M,dµ) � ||W (r)u||Lp( M,dµ), u ∈ C∞0 (M),

for 1 < p < ∞. By the Cauchy-Schwarz inequality in the sum (1.42), Hölder’s
inequality and (5.5) with W−1 instead of W , we obtain

����
�

M
u1u2dµ

���� ≤ 3||W (r)SP u1||Lp( M,dµ)||W (r)−1SP u2||Lp� ( M,dµ)

� ||W (r)SP u1||Lp( M,dµ)||W (r)−1u2||Lp� ( M,dµ)

for 1 < p < ∞, p� being its conjugate exponent. This then yields the lower
bound

||W (r)u1||Lp( M,dµ) � ||W (r)SP u1||Lp( M,dµ), u1 ∈ C∞0 (M),

which completes the proof.

5.2. Proof of Theorem 1.3. — In this part P = −∆g and dµ = dg. We refer
to Subsection 1.2 for the proof of Theorem 1.3 itself and only record here
the following proposition which is a direct consequence of Theorem 2.1 and
Proposition 4.1 (see also the Example between (4.18) and (4.19)) and which
completely justifies the tools used in Subsection 1.2.

Proposition 5.3. — For all N, M ≥ 0, we can write

Ak = Ψk + Rk,

with Ψk satisfying, for all 1 < p ≤ 2,
����

�

k≤k

fk(t)Ψku
����

Lp( M,dµ)
� ||u||Lp( M,dµ), t ∈ [0, 1], u ∈ C∞0 (M), k ≥ 0,

and Rk satisfying, for all 2 ≤ p ≤ ∞,
����(1−∆g)

MRk(1−∆g)
M

����
L2( M,dµ)→L2( M,dµ)

� 2−Nk, k ≥ 0.
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5.3. Proof of Theorem 1.7. — The proof is formally the same as the one of
[3, Prop. 4.5] excepted that it uses the following commutator estimates for
properly supported operators. Fix �ϕ ∈ C∞0 (0,+∞) such that

(5.6) �ϕϕ = ϕ.

By Theorem 2.1, we can write

ϕ(h2P ) = Φ(h) + h2 R(h), �ϕ(h2P ) = �Φ(h) + h2‹R(h),

where Φ(h) and �Φ(h) are finite sums of properly supported pseudo-differential
operators of the form hjΦj(−∆g, h). By (1.22) and (2.5), we may assume that

||R(h)||L2( M,dg)→L2( M,dg) � 1, ||R(h)||L2( M,dg)→Lp( M,dg) � h−1,

and, by (1.22), (2.3) and (2.4),

||Φ(h)||Lq( M,dg)→Lq( M,dg) � 1, ||Φ(h)||L2( M,dg)→Lp( M,dg) � h−1,

for each q ∈ [2,∞]. Of course, the same estimates holds for ‹R(h) and �Φ(h)
respectively. These estimates imply easily that

(5.7) ||[h2 R(h), χ]||L2( M,dg)→Lp( M,dg) � h,

and that
(5.8)���

���
�
�ϕ(−h2∆g),

�
ϕ(−h2∆g), χ

��
−
î
�Φ(h), [Φ(h), χ]

ó���
���
L2( M,dg)→Lp( M,dg)

� h.

We have also the commutator estimates

||[Φ(h), χ]||L2( M,dg)→Lp( M,dg) � 1,(5.9)
���
���
î
�Φ(h), [Φ(h), χ]

ó���
���
L2( M,dg)→Lp( M,dg)

� h,(5.10)

although they don’t obviously follow from Theorem 2.1. We shall prove them
below but show first how they lead to Theorem 1.7.

Proof of Theorem 1.7. — By (1.18) in Corollary 1.4, we have

(5.11) ||χu||Lp( M,dg) �

Ñ
�

k≥0

||ϕ(−2k∆g)χu||2Lp( M,dg)

é1/2

+ ||u||L2( M,dg).

Using (5.6), we can write ϕ(−h2∆g)χ as the sum of the following three terms

Q1(h) = �ϕ(−h2∆g)χϕ(−h2∆g),

Q2(h) =
�
ϕ(−h2∆g), χ

�
�ϕ(−h2∆g),

Q3(h) =
�
�ϕ(−h2∆g),

�
ϕ(−h2∆g), χ

��
.
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Since �ϕ(−h2∆g)χϕ(−h2∆g) = �Φ(h)χϕ(−h2∆g) + h2‹R(h) where �Φ(h) is uni-
formly bounded on Lp(M, dg) and ||h2‹R(h)||L2( M,dg)→Lp( M,dg) � h, we have

(5.12) ||Q1(h)u||Lp( M,dg) � ||χϕ(−h2∆g)||Lp( M,dg) + h||u||L2( M,dg).

Using (5.7) and (5.9), we also have

(5.13) ||Q2(h)u||Lp( M,dg) � ||�ϕ(−h2∆g)u||L2( M,dg),

and, by (5.8) and (5.10),

(5.14) ||Q3(h)u||Lp( M,dg) � h||u||L2( M,dg).

The result then follows from (5.11), (5.12), (5.13), (5.14) and
�

h2=2−k,k∈N
||�ϕ(−h2∆g)u||2L2( M,dg) � ||u||2L2( M,dg)

by almost orthogonality, since �ϕ is supported away from 0, and the Spectral
Theorem.

It remains to prove (5.9) and (5.10).

Proof of (5.9). — By working in local coordinates, the study of Φ(h) is reduced
to operators with kernels of the form (2.1). If χ1(r, θ) is the expression in local
coordinates of χ, the kernel of [Φ(h), χ] is of the form

(2πh)−d (χ1(r, θ)− χ1(r
�, θ�))

��
e

i
h (r−r�)ρ+ i

h (θ−θ�)·ηa(r, θ, ρ, w(r)η)dρdηζ(r − r�, θ − θ�),

which, by expanding χ1(r, θ)− χ1(r�, θ�) according to Taylor’s formula and by
integrating by parts in the integral above, is the sum of

(5.15) h× (2πh)−d

��
e

i
h (r−r�)ρ+ i

h (θ−θ�)·ηa1(r, θ, ρ, w(r)η)dρdη,

and of a remainder of the form

(5.16) h2 × (2πh)−d

��
e

i
h (r−r�)ρ+ i

h (θ−θ�)·ηA2(r, θ, r
�, θ�, ρ, w(r)η)dρdη,

with symbols a1 ∈ S−∞(R2n) and A2 ∈ S−∞(R3n), i.e. such that, for all m > 0,
γ ∈ N2n and Γ ∈ N3n,

|∂γa1(r, θ, ρ, η)| ≤ Cm,γ(1 + |ρ| + |η|)−m,

|∂ΓA2(r, θ, r
�, θ�, ρ, η)| ≤ Cm,Γ(1 + |ρ| + |η|)−m.

These estimates use that all the derivatives of χ1 are bounded, which is clear if χ
is constant outside a compact set but would also holds for many other functions
χ. The estimate (5.9) would therefore follow from the following lemma.
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Lemma 5.4. — Let A ∈ S−∞(R3n) be supported in {r > R, r� > R}. Then,
the operator A(h) with kernel

(2πh)−d

��
e

i
h (r−r�)ρ+ i

h (θ−θ�)·ηA(r, θ, r�, θ�, ρ, w(r)η)dρdηζ(r − r�, θ − θ�),

satisfies

||A(h)||L2((R,∞)×Rn−1,w(r)1−ndrdθ)→Lq((R,∞)×Rn−1,w(r)1−ndrdθ) � h
n
q−

n
2 ,

for each q ≥ 2.

Proof. — It follows by interpolation between the case q = 2 and q = ∞ as in
Lemma 2.3 and Lemma 2.4 of [1].

This lemma implies clearly (5.9) since both a1 and A2, respectively in (5.15)
and (5.16), belong to S−∞(R3n).

Proof of (5.10). — If we denote by h2 A M
2 (h) the pullback on the manifold of

the operator with kernel (5.16), it follows from Lemma 5.4 and the uniform
boundedness of �Φ(h) on L2(M, dg) and Lp(M, dg) that

||[�Φ(h), h2 A M
2 (h)]||L2( M,dg)→Lp( M,dg) � h.

Therefore, to prove (5.10), it remains to show that

(5.17) ||[�Φ(h), hA M
1 (h)]||L2( M,dg)→Lp( M,dg) � h,

with hA M
1 (h) the pullback on the manifold of the operator with kernel (5.15).

In other words, we only have to consider commutators of operators with kernels
of the form (2.1). This is the purpose of what follows.

We recall first a composition formula for properly supported differential oper-
ators. Let B1(h) and B2(h) be properly supported pseudo-differential operators
on Rn defined by the Schwartz kernels

(5.18) Kj(x, y, h) = (2πh)−n

�
e

i
h (x−y)·ξbj(x, ξ)dξχj(x− y), j = 1, 2,

where χj ∈ C∞0 (Rn), χj ≡ 1 near 0 and bj symbols in a class that will be
specified below and which guarantees the convergence of the integrals. The
kernel K(x1, x3, h) of B1(h)B2(h) is

(2πh)−2n

�� �
e

i
h (x1−x2)·ξ1+ i

h (x2−x3)·ξ2b1(x1, ξ1)χ(x1 − x2)b2(x2, ξ2)χ2(x2 − x3)dξ1dξ2dx2,

that is, using the change of variables ξ1 = ξ2 + τ , x2 = x1 + t,

K(x1, x3, h) = (2πh)−n

�
e

i
h (x1−x3)·ξ2b(x1, x3, ξ2, h)dξ2,

with

b(x1, x3, ξ2, h) = (2πh)−n

��
e−

i
h t·τ b1(x1, ξ2 + τ)χ1(−t)b2(x1 + t, ξ2)χ2(x1 + t− x3)dtdτ.
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Since χ1 and χ2 are compactly supported, we can clearly choose χ3 ∈ C∞0 (Rn)
equal to 1 near 0 such that, for all t, x1, x3 ∈ Rn,

χ1(−t)χ2(x1 + t− x3) = χ3(x1 − x3)χ1(−t)χ2(x1 + t− x3),

which shows that

K(x1, x3, h) = K(x1, x3, h)χ3(x1 − x3).

Assume now that the symbols bj(x, ξ) are of the form

(5.19) bj(x, ξ) = aj(r, θ, ρ, w(r)η), aj ∈ S−∞(Rn × Rn),

with x = (r, θ) and ξ = (ρ, η). Writing t = (tr, tθ) and τ = (τρ, τη), we then
have

b1(x1, ξ2 + τ)b2(x1 + t, ξ2) = a1(r1, θ1, ρ2 + τρ, w(r1)(η2 + τη))×
a2(r1 + tr, θ1 + tθ, ρ2, w(r1 + tr)η2)

= A12(r1, θ1, t, τ, ρ2, w(r1)η2)

with

A12(r, θ, t, τ, ρ, η) = a1(r, θ, ρ+τρ, η+w(r)τη)a2

Å
r + tr, θ + tθ, ρ,

w(r + tr)

w(r)
η

ã
.

Setting finally

A(r1, θ1, r3, θ3, t, τ, ρ, η) = A12(r1, θ1, t, τ, ρ, η)χ1(−t)χ2((r1, θ1)− t− (r3, θ3)),

we have proved the main part of the following result.

Lemma 5.5. — Let B1(h), B2(h) be pseudo-differential operators with kernels
of the form (5.18) and with symbols of the form (5.19). Then the kernel of
B1(h)B2(h) is of the form
(5.20)

(2πh)−n

��
e

i
h (r1−r3)ρ+ i

h (θ1−θ3)·ηa(r1, θ1, r3, θ3, ρ, w(r1)η, h)dρdηχ3 ((r1, θ1)− (r3, θ3)) ,

with

a(r1, θ1, r3, θ3, ρ, η, h) = (2πh)−n

��
e−

i
h t·τA(r1, θ1, r3, θ3, t, τ, ρ, η)dtdτ.

Furthermore,
(5.21)
a(r1, θ1, r3, θ3, ρ, η, h) = a1(r1, θ1, ρ, η)a2(r1, θ1, ρ, η)+hãh(r1, θ1, r3, θ3, ρ, η, h),

with ãh bounded in S−∞(R3n).
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Proof. — It remains to prove (5.21) which is standard. We first insert a com-
pactly supported cutoff equal to 1 close to τ = 0 in the integral defining a.
In the remaining integral, corresponding to |τ | � 1, we can use standard non
stationary phase estimates to get integrability with respect to τ as well as ar-
bitrary large powers of h, showing that it is O(h∞) in S−∞(R3n) since A and
all its derivatives are of rapid decay with respect to (ρ, η). For the latter, we
simply use that w(r + tr)/w(r) is bounded from above and below since |t| � 1.
The ’main’ integral, where |τ | ≤ 1, is then clearly in S−∞(R3n) by the decay
of A again. Furthermore, thanks to the compact support with respect to (t, τ),
we can use the stationary phase theorem and this gives (5.21).

As a direct consequence of Lemma 5.5, we obtain that [B1(h), B2(h)] =
hB(h), where B(h) has a kernel as in Lemma 5.4. Therefore, using Lemma
5.4, we have

||[�Φ(h), A M
1 (h)]||L2( M,dg)→Lp( M,dg) � h× h

n
p−

n
2 � 1,

which proves (5.17) and completes the proof of (5.10).

Appendix A

Proof of Proposition 3.1

We first define special families of partitions of Ω. Given n0 ∈ N and k ≥ −n0

an integer, we denote by P(k) a countable partition of Ω, i.e.

P(k) = (P l(k))l∈N, Ω = �l∈N P l(k).

In the sequel, the sets P l(k) will always be measurable and bounded.
Given a family of partitions P := (P(k))k≥−n0 , we shall say that
– P is non increasing if: for all k ≥ 1−n0 and all l ∈ N, there exists l� ∈ N

such that

(A.22) P l(k) ⊂ P l�(k − 1),

– P is locally finite if: for all compact subset K ⊂ Ω there exists a compact
subset K � ⊂ Ω such that, for all k ≥ −n0,

(A.23)
�

l∈N
Pl(k)∩K �=∅

P l(k) ⊂ K �

– P is of vanishing diameter if: there exists a sequence �k → 0 such that,
for all k ≥ −n0 and all l ∈ N there exists xk,l ∈ Ω such that

P l(k) ⊂ {x ∈ Ω | |x− xk,l| ≤ �k}.

The following useful remarks are easy to check.
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Remarks. — 1. If P is non increasing, in (A.22), l� is uniquely defined by l and
k.

2. If P is non increasing, then it is locally finite if and only if for all compact
subset K there exists another compact subset K � such that (A.23) holds for
k = −n0.

3. If P is non increasing, it follows by a simple induction that if P l1(k1) ∩
P l2(k2) �= ∅ for some k2 ≥ k1 ≥ −n0 and l1, l2 ∈ N, then P l2(k2) ⊂ P l1(k1).

Definition A.1. — A family of partitions (P(k))k≥−n0 is admissible if it is
non increasing, locally finite and of vanishing diameter.

The proof of Proposition 3.1 is based on a suitable choice of admissible
partitions which we now describe.

Construction of a family of admissible partitions. — For m = (m1, . . . ,mn−1) ∈
Zn−1, we set

�m = [m1, m1 + 1)× · · · × [mn−1, mn−1 + 1)

and for τ > 0, we set τ�m = {τθ ; θ ∈ �m} so that �m∈Zn−1τ�m = Rn−1 is
a decomposition of Rn−1 into cubes of side τ . Setting k+ = max(0, k), we can
define, for all k ∈ Z,

(A.24) P(i,m)(k) = 2−k+(i, i + 1]× 2−kw([2−k+i])�m

for all i ∈ N∩ [2k+rK ,∞) and m ∈ Zn−1. Here [2−k+i] denotes the integer part
of 2−k+i.

For notational convenience, we then relabel (P(i,m)(k))(i,m)∈N∩[2k+r K ,∞)×Zn−1

as (P l(k))l∈N.
Let us notice that, for k ∈ Z and l ∈ N, we have

ν(P l(k)) = 2−k(n−1)

� 2−k+ (i+1)

2−k+ i

Ç
w([2−k+i])

w(r)

ån−1

dr.

Thus, using (1.10), there exists C2 ≥ 1 such that

C1−n
2 2−k(n−1) ≤ ν(P l(k)) ≤ Cn−1

2 2−k(n−1) if k ≤ 0,(A.25)
C1−n

2 2−kn ≤ ν(P l(k)) ≤ Cn−1
2 2−kn if k ≥ 1.(A.26)

Lemma A.2. — For all n0 ∈ N, (P(k))k≥−n0 ≡
�
(P l(k))l∈N

�
k≥−n0

(defined
by (A.24)) is an admissible family of partitions of Ω. Furthermore, there exists
C3 > 1 independent of n0 such that, for all k ≥ 1− n0 and all l ∈ N,

(A.27) C−1
3 ≤ ν(P l(k))

ν(P l�(k − 1))
≤ C3,

with l� = l�(k, l) the unique integer satisfying (A.22).
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Let us already point out that our family of admissible partitions has been
designed in order to have (A.27) which will be crucial in the proof of Lemma
A.4 below.

Proof. — For each k ≥ −n0, P(k) = (P l(k))l∈N is obviously a partition of
Ω. Since w is bounded, the family P = (P(k))k≥−n0 is of vanishing diameter
(�k ≈ 2−k). Let us prove that P is non increasing. If k ≤ 0, we have

(i, i + 1]× 2−kw(i)�m ⊂ (i�, i� + 1]× 21−kw(i�)�m�

provided i = i� and �m ⊂ 2�m� , which clearly holds for some m� ∈ Zn−1. Thus
(A.22) holds if k ≤ 0. If k ≥ 1, we remark that if

(A.28) 2−k(i, i + 1] ⊂ 21−k(i�, i� + 1]

then [2−ki] = [21−ki�]. This follows easily from the fact that 2−k(i, i+1)∩N =
21−k(i�, i� + 1) ∩ N = ∅. Thus

2−k(i, i + 1]× 2−kw([2−ki])�m ⊂ 21−k(i�, i� + 1]× 21−kw([21−ki�])�m�

with i� such that (A.28) holds and m� such that �m ⊂ 2�m� . Therefore P is
non increasing. Using Remark 2, it is then easy to check that P is locally finite
and hence admissible. The estimate (A.27) follows from (A.25) and (A.26).

We now recall a basic result which is a version of Lebesgue’s Lemma.

Lemma A.3. — Let u ∈ L1(Ω, dν) and P be an admissible family of partitions
of Ω. Assume that A ⊂ Ω is a measurable subset such that there exists C > 0
satisfying: for all k ≥ −n0 and all l ∈ N

(A.29) P l(k) ∩A �= ∅ ⇒ 1

ν(P l(k))

�

Pl(k)
|u(x)| dν(x) ≤ C.

Then |u| ≤ C almost everywhere on A.

Proof. — For all v ∈ L1(Ω, dν), we set

( Ekv)(x) =
�

l∈N

1

ν(P l(k))

�

Pl(k)
v(y)dν(y)χ Pl(k)(x),

χ Pl(k) being the characteristic function of P l(k). We first remark that

(A.30) lim
k→∞

Ekv = v in L1(Ω, dν).

Indeed, since || Ekv||L1(Ω,dν) ≤ ||v||L1(Ω,dν) for all v, we may assume that v is
continuous and compactly supported. Then, denoting by K the support of v,
we have for all k ≥ −n0

|| Ekv − v||L1(Ω,dν) ≤
�

l∈N
Pl(k)∩K �=∅

ν(P l(k)) sup
x,y∈ Pl(k)

|v(y)− v(x)|.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



34 J.-M. BOUCLET

Using the local finiteness of P and the fact that it is of vanishing diameter,
there exists a compact subset K � such that

|| Ekv − v||L1(Ω,dν) ≤ ν(K �) sup
x,y∈K�

|x−y|≤2�k

|v(y)− v(x)| → 0, k →∞,

and (A.30) follows. In particular, χA Ek|u| → χA|u| in L1(Ω, dν) so there exists
a subsequence χA Ekj |u| converging almost everywhere to χA|u|. Using (A.29)
we have

0 ≤
�
χA Ekj |u|

�
(x) ≤ C, x ∈ Ω,

and the result follows.

The next lemma contains half of Proposition 3.1. It is based on the classical
stopping time argument of the usual Calderón-Zygmund covering lemma.

Lemma A.4. — For all u ∈ L1(Ω, dν) and all λ > 0, we can find n0 ∈ N, an
admissible family P of partitions of Ω, a set I ⊂ {(k, l) ∈ Z × N | k ≥ −n0}
and functions (wk,l)(k,l)∈ I and v satisfying

u = v +
�

I

wk,l,(A.31)

|v(x)| ≤ C3λ, a.e.,(A.32) �

Ω
wk,l dν = 0 and supp wk,l ∈ P l(k),(A.33)

�

I

ν(P l(k)) ≤ λ−1||u||L1(Ω,dν),(A.34)

||v||L1(Ω,dν) +
�

I

||wk,l||L1(Ω,dν) ≤ 3||u||L1(Ω,dν).(A.35)

The constant C3 in (A.32) is the one chosen in (A.27).

Proof. — We first choose n0 ∈ N such that C1−n
2 2n0(n−1) > λ−1||u||L1(Ω,dν),

using the same constant C2 as in (A.25), and then consider the admissible
family of partitions P = ((P l(k))l∈N)k≥−n0

defined by (A.24). By (A.25), we
have

(A.36) ν(P l(−n0)) > λ−1||u||L1(Ω,dν),

for all l ∈ N. Next, we define I1−n0 ⊂ N and B1−n0 ⊂ Ω by

I1−n0 =

®
l ∈ N |

�

Pl(1−n0)
|u| dν ≥ λν(P l(1− n0))

´
,

B1−n0 = �l∈I1−n0
P l(1− n0).
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By induction, we then construct Ik and Bk, for k ≥ 2− n0, by

Ik =

®
l ∈ N

��
�

Pl(k)
|u| dν ≥ λν(P l(k)) and P l(k) ∩Bk−1 = ∅

´

Bk = Bk−1 �
�

l∈Ik

P l(k).

Let us set B = ∪k≥1−n0Bk, A = Ω\B and I = ∪k≥1−n0{k}× Ik. We can then
define

v(x) =






u(x) x ∈ A,

�
(k,l)∈ I

1
ν( Pl(k))

�
Pl(k) u dν χ Pl(k)(x), x ∈ B,

(A.37)

and, for each (k, l) ∈ I ,

(A.38) wk,l = (u− v)χ Pl(k).

Let us now check the properties (A.31) to (A.35). First, by construction, we
have

(A.39) B = �(k,l)∈ I P l(k)

and this implies (A.31). To prove (A.32), we start by observing that for all
k ≥ 1− n0 and all l ∈ N

(A.40) P l(k) ∩A �= ∅ ⇒ 1

ν(P l(k))

�

Pl(k)
|u| dν < λ.

Indeed, assume that P l(k) ∩ A �= ∅. Then l /∈ Ik otherwise P l(k) ⊂ Bk ⊂ B.
Furthermore, we have P l(k) ∩ Bk = ∅, otherwise P l(k) should meet Bk−1

and we could find k� ≤ k − 1 and l� ∈ Ik� such that P l(k) ∩ P l�(k�) �= ∅ in
which case we would have P l(k) ⊂ P l�(k�) (since P is non decreasing) and then
P l(k) ⊂ B, which is excluded. Thus, if P l(k) ∩ A �= ∅, then the right hand
side of (A.40) holds by definition of Ik, since l /∈ Ik and, if k ≥ 2 − n0, since
P l(k)∩Bk−1 = ∅ (since Bk−1 ⊂ Bk). Therefore, (A.40) (which is also true for
k = −n0 by (A.36)) and Lemma A.3 show that |u| ≤ λ almost everywhere on
A. Let us now prove that |v| ≤ C3λ almost everywhere on B. Using (A.27), it
is enough to show that, for all (k, l) ∈ I (i.e. l ∈ Ik),

(A.41)
�

Pl� (k−1)
|u| dν < λν(P l�(k − 1)).

If k = 1 − n0, this follows from (A.36). If k ≥ 2 − n0, we first remark that
l� /∈ Ik−1 otherwise l could not belong to Ik since we would have P l(k) ⊂ P l�(k−
1) ⊂ Bk−1. Therefore, by definition of Ik−1, either (A.41) holds or P l�(k−1)∩
Bk−2 �= ∅. The latter is excluded, otherwise Remark 3 (before Definition A.1)
would imply that P l(k) ⊂ P l�(k − 1) ⊂ Bk−2 ⊂ Bk−1 which would prevent l
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to belong to Ik. This completes the proof of (A.32). The property (A.33) is
a straightforward consequence of (A.37) and (A.38) . The estimate (A.34) is
a direct consequence of the definition of the sets Ik, k ≥ 1 − n0, and of the
fact that the sets P l(k)) are disjoint if (l, k) ∈ I . Finally, (A.37) shows that�

|v|dν ≤
�

|u|dν and (A.38) that
�

|wk,l|dν ≤
�

Pl(k) |u|dν +
�

Pl(k) |v|dν , and
these inequalities clearly imply (A.35).

Proof of Proposition 3.1. — We relabel the family (P l(k))(k,l)∈ I obtained in
Lemma A.4 as (P lj (kj))j∈N and define accordingly the functions ũ = v and
uj = wkj ,lj . Using Lemma A.4, (3.1), (3.2), (3.3) and (3.5) are consequences of
(A.31), (A.35), (A.32) and (A.33) respectively. It remains to show that the sets
P lj (kj) are contained in balls or cylinders of the form (3.4) which satisfy (3.6).
Let j ∈ N and consider P lj (kj), which is of the form (A.24) for some i ∈ N and
m ∈ Zn−1. Since any cube of side 2 in Rn−1 is contained in a euclidean ball of
radius (n− 1)1/2, P lj (kj) is contained in the following set of (r, θ)

ß
|r − 2−kj+i| ≤ 2−kj+

and
|θ − 2−kj w([2−kj+i])m|

w(2−kj+i)
≤ 2−kj (n− 1)1/2 w([2−kj+i])

w(2−kj+i)

™
.

Therefore, if we set

rj = 2−kj+i, θj = 2−kj w([2−kj+i])m

and use the fact that w([2−kj+i])/w(2−kj+i) ≤ C, by (1.10), we have P lj (kj) ⊂
B(rj , θj , tj) with

tj = 2−kj+ + C2−kj (n− 1)1/2

if this quantity is ≤ 1. Otherwise, we have P lj (kj) ⊂ C(rj , θj , tj) with

tj = max(1, C2−kj (n− 1)1/2).

Since ν( C(rj , θj , tj)) ≈ tn−1
j if tj > 1 and ν(B(rj , θj , tj)) ≈ tnj if tj ≤ 1,

which follow easily from (1.37) and (1.38), and since tj ≈ 2−kj in all cases, the
estimates (A.25) and (A.26) show that ν(Qj) � ν(P lj (kj)). Thus (3.6) follows
from (A.34).

BIBLIOGRAPHY

[1] J.-M. Bouclet – “Semi-classical functional calculus on manifolds with
ends and weighted Lp estimates”, to appear in Ann. Inst. Fourier.

[2] , “Strichartz estimates on asymptotically hyperbolic manifolds”, to
appear in Analysis & PDE.

tome 138 – 2010 – no 1

http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#1
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#2


LITTLEWOOD-PALEY DECOMPOSITIONS ON MANIFOLDS WITH ENDS 37

[3] J.-M. Bouclet & N. Tzvetkov – “Strichartz estimates for long range
perturbations”, Amer. J. Math. 129 (2007), p. 1565–1609.

[4] , “On global Strichartz estimates for non-trapping metrics”, J.
Funct. Anal. 254 (2008), p. 1661–1682.

[5] N. Burq, P. Gérard & N. Tzvetkov – “Strichartz inequalities and the
nonlinear Schrödinger equation on compact manifolds”, Amer. J. Math.
126 (2004), p. 569–605.

[6] T. Coulhon, X. T. Duong & X. D. Li – “Littlewood-Paley-Stein func-
tions on complete Riemannian manifolds for 1 ≤ p ≤ 2”, Studia Math. 154
(2003), p. 37–57.

[7] S. Klainerman & I. Rodnianski – “A geometric approach to the
Littlewood-Paley theory”, Geom. Funct. Anal. 16 (2006), p. 126–163.

[8] N. Lohoué – “Estimation des fonctions de Littlewood-Paley-Stein sur les
variétés riemanniennes à courbure non positive”, Ann. Sci. École Norm.
Sup. 20 (1987), p. 505–544.

[9] G. Olafsson & S. Zheng – “Harmonic analysis related to Schrödinger
operators”, in Radon transforms, geometry, and wavelets, Contemp.
Math., vol. 464, Amer. Math. Soc., 2008, p. 213–230.

[10] W. Schlag – “A remark on Littlewood-Paley theory for the distorted
Fourier transform”, Proc. Amer. Math. Soc. 135 (2007), p. 437–451 (elec-
tronic).

[11] , “Lecture notes on harmonic analysis”, http://www.math.

uchicago.edu/~schlag/book.pdf.
[12] C. D. Sogge – Fourier integrals in classical analysis, Cambridge Tracts

in Mathematics, vol. 105, Cambridge Univ. Press, 1993.
[13] E. M. Stein – Singular integrals and differentiability properties of func-

tions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970.
[14] M. E. Taylor – “Lp-estimates on functions of the Laplace operator”,

Duke Math. J. 58 (1989), p. 773–793.
[15] , Partial differential equations. III, Applied Mathematical Sciences,

vol. 117, Springer, 1997.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#3
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#4
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#5
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#6
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#7
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#8
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#9
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#10
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#11
http://www.math.uchicago.edu/~schlag/book.pdf
http://www.math.uchicago.edu/~schlag/book.pdf
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#12
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#13
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#14
http://smf.emath.fr/Publications/Bulletin/138/html/smf_bull_138_1-37.html#15

	1. Introduction
	2. Functional calculus
	3. A Calderón-Zygmund type theorem
	4. Pseudo-differential operators
	5. Proofs of the main results
	Appendix A. Proof of Proposition 3.1
	Bibliography

