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ABSTRACT. — There are nontrivial dualities and parallels between polynomial alge-
bras and the Grassmann algebras (e.g., the Grassmann algebras are dual of polynomial
algebras as quadratic algebras). This paper is an attempt to look at the Grassmann
algebras at the angle of the Jacobian conjecture for polynomial algebras (which is the
question/conjecture about the Jacobian set — the set of all algebra endomorphisms
of a polynomial algebra with the Jacobian 1 — the Jacobian conjecture claims that
the Jacobian set is a group). In this paper, we study in detail the Jacobian set for
the Grassmann algebra which turns out to be a group — the Jacobian group ¥ — a so-
phisticated (and large) part of the group of automorphisms of the Grassmann algebra
Ap,. It is proved that the Jacobian group ¥ is a rational unipotent algebraic group. A
(minimal) set of generators for the algebraic group %, its dimension and coordinates

are found explicitly. In particular, for n > 4,
(n—1)2""1 —n2 +2 if nis even,
(n—1)2""1 —n24+1 ifnisodd.

dim(%) = {

The same is done for the Jacobian ascents - some natural algebraic overgroups of ¥. It

is proved that the Jacobian map o +— det(%) is surjective for odd n, and is not for
J

even n though, in this case, the image of the Jacobian map is an algebraic subvariety

of codimension 1 given by a single equation.
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40 V. V. BAVULA

REsSUME (L’application de Jacobi, le groupe de Jacobi et le groupe des automorphismes
de Ualgébre grassmanienne)

Il existe des dualités et des parallélismes non-triviaux entre les algébres polyno-
miales et les algébres grassmaniennes (par ex., les algébres grassmaniennes sont duales
des algébres polynomiales en tant qu’algébres quadratiques). Cet article est une ten-
tative d’étude des algébres grassmaniennes du point de vue de la conjecture de Jacobi
sur les algébres polynomiales (qui est la question/conjecture sur ’ensemble de Jacobi
— Densemble de tous les endomorphismes d’algébre d’une algébre polynomiale avec
jacobien 1 —, la conjecture de Jacobi affirme que I’ensemble de Jacobi est un groupe.
Dans cet article nous étudions en détail I’ensemble de Jacobi pour ’algébre grassma-
nienne qui s’avére étre un groupe — le groupe de Jacobi ¥ —, une partie grande et
sophistiquée du groupe d’automorphismes de ’algébre grassmanienne A,. Nous dé-
montrons que le groupe de Jacobi ¥ est un groupe algébrique rationnel unipotent.
Nous calculons explicitement un ensemble (minimal) de générateurs pour le groupe

algébrique ¥, sa dimension et ses coordonnées. En particulier, pour n > 4,
(n—1)2""1 —n2 42 sin est pair,
(n—1)2""1 —n2 41 sin est impair.

dim(%) = {

Nous faisons de méme pour les ascendants jacobiens — certains surgroupes algébriques

naturels de ¥. Nous démontrons que l’application de Jacobi o +— det(m) est
Tj

surjective pour n impair, et ne I’est pas pour n pair, néanmoins, dans ce cas, 'image
d’une application de Jacobi est une sous-variété algébrique de codimension 1, donnée
par une seule équation.

1. Introduction

Throughout, ring means an associative ring with 1. Let K be an arbitrary
ring (not necessarily commutative). The Grassmann algebra (the exterior al-
gebra) A, = A (K) = K|z1,...,%,] is generated freely over K by elements
Z1,...,T, that satisfy the defining relations:

i =--=22=0 and z;2; = —x;z; forall i# j.
What is the paper about? Motivation. — Briefly, for the Grassmann algebra A,
over a commutative ring K we study in detail the Jacobian map

J(o) := det (ﬁg(;jl))

which is a ‘straightforward’ generalization of the usual Jacobian map /(o) :=
det(a”(z’)) for a polynomial algebra P, = Klz1,...,2,], 0 € Endg_a4(P,).
The pofynomial Jacobian map is not yet a well-understood map, one of the
open questions about this map is the Jacobian conjecture (JC) which claims
that J(0) = 1 implies 0 € Autg(P,) (where K is a field of characteristic
zero). Obviously, one can reformulate the Jacobian conjecture as the question
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THE JACOBIAN MAP, THE JACOBIAN GROUP, ... 41

of whether the Jacobian monoid X(P,) := {0 € Endx_a4(P,) | J(c) =1} is a
group? The analogous Jacobian monoid ¥ = ¥(A,,) for the Grassmann algebra
A, is, by a trivial reason, a group, it is a subgroup of the group Autg(A,) of
automorphisms of the Grassman algebra A,. It turns out that properties of
the Jacobian map 4 are closely related to properties of the Jacobian group ¥
which should be treated as the ‘kernel’ of the Jacobian map ./ despite the fact
that 4 is not a homomorphism.

For a polynomial algebra P, = K|[z1,...,z,], n > 2, over a field of charac-
teristic zero K, the group Autg(P,) of algebra automorphisms is an infinite
algebraic group. We know little about this group for n > 3. There are three
old open questions about the group Autg (FP,).

Question 1. What are the defining relations of the algebraic group Autg (P,,)
(as an infinite dimensional algebraic variety)?

Question 2. What are generators for Autg (P,)?

Question 3. What is a ‘minimal’ set of generators for Autg (P,)?

The Jacobian Conjecture (if true) gives an answer to the first question. For
the last two questions there are no even reasonable conjectures. In this paper,
answers for ‘analogous’ questions are given for the Grassmann algebras.

It turns out that the Jacobian group ¥ is a large subgroup of Autg(A,),
so we start the paper considering the structure of the group Autg(A,) and
its subgroups. The Jacobian map and the Jacobian group are not transparent
objects to deal with. Therefore, several (important) subgroups of Autg (A,,) are
studied first. Some of them are given by explicit generators, another are defined
via certain ‘geometric’ properties. That is why we study these subgroups in
detail. They are building blocks in understanding the structure of the Jacobian
map and the Jacobian group. Let us describe main results of the paper.

In the Introduction, K is a reduced commutative ring with % e K,n>2
(though many results of the paper are true under milder assumptions, see in
the text), A, = A,(K) = K|z1,...,2,] be the Grassmann K-algebra and
m := (x1,...,%,) be its augmentation ideal. The algebra A,, is endowed with
the Z-grading A, = @] (A, ,; and Zy-grading A,, = A' @ A%d) and so each
element a € A,, is a unique sum a = a® + a°? where a®” € A%" and a°? € A9,
For each s > 2, the algebra A, is also a Zs-graded algebra (Zs := Z/sZ).

The structure of the group of automorphisms of the Grassmann algebra and its sub-
groups. — In Sections 2 and 9, we study the group G := Autg (A, (K)) of
K-algebra automorphisms of A, and various its subgroups (and their rela-
tions):

o Gy, the subgroup of G elements of which respect Z-grading,

o G7,_gr, the subgroup of G elements of which respect Z,-grading,

o G7,_gr, the subgroup of G elements of which respect Z,-grading,
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U:={o0€G|o(x;) =x;+--- for all i} where the three dots mean bigger
terms with respect to the Z-grading,

G°d = {0 € Glo(z;) € Ap1+A2d for all i} and G := {0 € G|o(x;) €
Apq+ A for all 4},

Inn(A,) := {wy : * — uzu~!'} and Out(A,) := G/Inn(A,,), the groups of

inner and outer automorphisms,

o Q= {wiys|a € A2},
e For each odd number s such that 1 < s < n, Q(s) := {wiral|a €

219 isodd A"7j8}7

o [':= {7b|7b(xz) =ux;+b;, b; € A%dﬂm:s,i = 1,...71’L}, b= (bl,...7bn),
e For each even number s such that 3 < s < n, I'(s) := {y|all b; €

2321 An,l-i—js}v

U™ .= {n|m(z) = 2 + Aix1 - Ty, A= (A1,...,0n) € K} =~ K™
T & A,

GLn(K)? := {04 |oa(z;) = Y j_1 aijzj, A= (aij) € GLn(K)},
:={o:z;—>zi(l+a)|a; €A Nm? i=1,...,n}

If K = C the group I'GL,(C)°? was considered in [2]. If K = k is a

field of characteristic # 2 it was proved in [4] that G is a semidirect product
Inn(Ag(k)) X Gz,—gr. One can find a lot of information about the Grassmann
algebra (i.e. the exterior algebra) in [3].

(Lemma 2.8.(5))  is an abelian group canonically isomorphic to the ad-
ditive group A%d/Azd NKxy-- -z, via wiyq — a.
(Lemma 2.9, Corollary 2.15.(3)) Inn(A,,) = Q and Out(A,) ~ Gz,— g
(Theorem 2.14) U =Q x T.
(Theorem 2.17) Q is a mazimal abelian subgroup of U if n is even (Q 2
U™); and QU™ = Q x U™ is a mazimal abelian subgroup of U if n is odd
(QNU™ = {e}).
(Theorem 2.14, Corollary 2.15, Lemma 2.16)

1. G=U x GL,(K)°? = (2 xT') x GL,(K)°P,

2. G=QxGgy_gr, and

3. G = GevGod — GodGev_
(Lemma 2.16.(1)) G°¢ = Gz,_4r =T x GL,,(K)°P.
(Lemma 3.6) Let s = 2,...,n. Then

G _JT(s) x GL,(K)%P, if s is even,
L7 7 ) Q(s) % GL,(K)%P,  if s is odd.

The Jacobian matrix and an analogue of the Jacobian Conjecture for A,,. — The
even subalgebra ASY of A, belongs to the centre of the algebra A,. A K-
linear map 6 : A, — A, is called a left skew derivation if é(a;a;) = 6(a;)a; +
(—1)‘a;6(a;) for all homogeneous elements a; and a; of graded degree i and j
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respectively. Surprisingly, skew derivations rather than ordinary derivations are
more important in study of the Grassmann algebras. This and the forthcoming
paper [1] illustrate this phenomenon.

The ‘partial derivatives’ 0; := 3%1, cieyOp 1= % are left skew K-
derivations of A, (K) (0i(z;) = d;;, the Kronecker delta; 0x(a;a;) = Or(a;)a; +
(=1)ia;8k(a;)). Let ! := Endg_a,(An)°? = {0 € Endg_a,(An)]
all o(z;) € A%4}. For each endomorphism o € £°d, its Jacobian matriz

9o . M) € M,(AZ") has even (hence central) entries, and so, the

oz = (o,
J(o) := det (80(&00) ,

Jacobian of o,
8$j

is a well-defined element of the even subalgebra ASY. For o, 7 € £°d, the ‘chain

rule’ holds
oom) _, (07 00
or " \oz) oz’
which implies, J(o71) = J(0) - 0(J(7)), i.e. the Jacobian map is almost a
homomorphism of monoids (with zeros). It follows that the sets ¥ C Sco
are monoids where

0:={o € 6| 4(0) is a unit},
S i={oe &) =1},
Yi={oe&'NT=T|J(0)=1}.

If o € &N Autg(A,) = Gzy_gr = DGL,(K)° (Lemma 2.16.(1)) then
o=t e &N Autg (A,) and

1=J(ida,) =J(007") = J(0)a(J (™)),
and so (o) is a unit in A,,.
An analogue of the Jacobian Conjecture for the Grassmann algebra A, i.e.
o € O implies o is an automorphism (i.e. O C G := Autg(A,)), is trivially
true.
e HCG.

Proof. — Let 0 € O. Then o(z) = Az + --- where z := (z1,...,2,)% A €
M, (K), and the three dots mean higher terms with respect to the Z-grading.
Since
J(o) = det(A) mod m

and /(o) is a unit, the determinant must be a unit in K. Changing o for
0041 where 04-1(x) = A~z (004-1(x) = A"*Ax +--- =2 +---) one can
assume that, for each i = 1,...,n, o(x;) = x; — a; where a; € m3N A%, Let us
denote o(z;) by z}, then z; = x} + a;(z). After repeating several times (< n
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times) these substitutions simultaneously in the tail of each element z;, i.e.
elements of degree > 3, it is easy to see that x; = z + b;(2’) for some element
bi(z') € m® N A%, This gives the inverse map for o, i.e. o € G. The elements
b; can be found even explicitly using the inversion formula (Theorem 3.1). O

The next two facts follow directly from the inclusion & C G and the formula

JoH=0"1(J(o) ), forall o € G.

e 3, %, and O are groups. _
o 0=Gzy_gr =T % GL,(K)? and S = ¥ x SL,, (K)”.

The Jacobian map and the Jacobian group. — The set £, := K* + Y~ A, o
is the group of units of the even subalgebra ASY := @,,>0An 2m of Ay where K*
is the group of units of the ring K; and E], := 1+, ~; Ay, 2, is the subgroup
of E,. Due to the equality 4 (o7) = 4(0)o(J(7)), to study the Jacobian map

J :TGL,(K)?? — E,, o+ J(0),
is the same as to study its restriction to I':

J:T = E, o~ J(0).

When we mention the Jacobian map it means as a rule this map. The Jacobian
group ¥ = {0 € T'|J(0) = 1} is trivial iff n < 3. So, we always assume that
n > 4 in the results on the Jacobian group ¥ and its subgroups.

An algebraic group A over K is called affine if its algebra of regular functions
is a polynomial algebra K|t1,...,t4] with coeflicients in K where d := dim(A)
is called the dimension of A (i.e. A is an affine space). If K is a field then
dim(A) is the usual dimension of the algebraic group A over the field K.

— (Theorem 6.3) The Jacobian group ¥ is an affine group over K of dimen-
sion
n—12""1—n24+2 ifn iseven
dim(%) = ( ) f ' ’
(n—1)2""t —n2+1 ifn is odd.
— The coordinate functions on ¥ are given explicitly by (93) and Corollary
4.11.(5).

A subgroup of an algebraic group A over K is called a 1-parameter subgroup
if it is isomorphic to the algebraic group (K, +). A minimal set of generators
for an affine algebraic group A over K is a set of 1-parameter subgroups that
generate the group A as an abstract group but each smaller subset does not
generate A.

— (Theorem 6.1) A (minimal) set of generators for ¥ is given explicitly.
— (Corollary 4.13) The Jacobian group ¥ is not a normal subgroup of " iff
n > 5.
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— (Theorem 7.9) The Jacobian map J : T' — E!, 0 — J(0), is surjective
if n is odd, and it is not surjective if n is even but in this case its image
is a closed affine subvariety of E!, of codimension 1 which is given by a
single equation.

The subgroups >’ and X" of the Jacobian group 3. — To prove the (above) results
about the Jacobian group 3, we, first, study in detail two of its subgroups:

Yi=Ynd={o:z;i—2i(1+a)|J(0) =1, a; €AY Nm? 1<i<n}

and the subgroup X" which is generated by the explicit automorphisms of
(see (64)):

&b, i X = T+ by, T =Ty, J§FA,
~ d .
where b; € K|21,...,%i,...,7,]%3 and i =1,...,n.

The importance of these subgroups is demonstrated by the following two
facts.

— (Corollary 4.11.(1)) ¥ = X'%".
— (Theorem 4.9.(1)) T = &X".

Note that each element x; is a normal element of A,,: z;A,, = A, x;. Therefore,
the ideal (z;) of A, generated by the element x; determines a coordinate ‘hy-
perplane.” The groups ¥’ and X" have the following geometric interpretation:
the group X’ preserves the coordinate ‘hyperplanes’ and elements of the group
3" can be seen as ‘rotations.’

By the definition, the group X’ is a closed subgroup of ¥, it is not a normal
subgroup of X unless n < 5. It is not obvious from the outset whether the
subgroup X’ is closed or normal. In fact, it is.

— (Theorem 6.4.(2)) X" is the closed normal subgroup of 3, X" is an affine
group of dimension

(n—1)2""1'—n?+2—(n-3)(5) ifn is even,

dim(¥") = {(n —127 = n? 41— (n—3)(2) ifn is odd,

and the factor group $/¥" ~ %' /¥'5 is an abelian affine group of dimen-
sion dim(2/2") = n(";") — (3) = (n — 3)(32).
— (Corollary 5.6) The group X' is an affine group over K of dimension

—2)2"2 —n+2 ifn is even
dim(z’) = 4 " ’
() {(n—2)2"2—n+1 if n is odd.
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— (Lemma 6.2) The intersection X' N X" is a closed subgroup of &, it is an
affine group over K of dimension

(n—2)2""2—n+2—(n-3)(3) ifn is even,

dim(Z"NT") = {(n_2)2"—2—n+1—(n—3)(§) if n is odd.

— The coordinates on X' and X" are given explicitly by (93) and (98).

To find coordinates for the groups X, ¥, and X" explicitly, we introduce avoid-
ance functions and a series of subgroups {®2*™1} | s = 1,2,...,[25], of ®
that are given explicitly (see Section 5). They are too technical to explain in
the introduction.

— (Theorem 5.4) This theorem is a key result in finding coordinates for the
groups ¥, X', ¥ etc.

The Jacobian ascents I';;. — In order to study the image of the Jacobian map
J:T — E/ o~ (o), certain overgroups of the Jacobian group ¥ are
introduced. They are called the Jacobian ascents. The problem of finding the
image im(Y) is equal to the problem of finding generators for these groups.
Let us give some details. The Grassmann algebra A, has the m-adic filtration
{m'}. Therefore, the group E!, has the induced m-adic filtration:

E,=FE,;2E, ;D DE; 5,2 DE) 21 D Ej 5240 = {1},

n,2m
where E}, ., := E; N(1 +m?2™). Correspondingly, the group I' has the Jacobian
filtration:
=TTy 2 2T, 2+ 2T 2 Pgny40 = X,

where gy, := Ty 2, ::jfl(E;L’Qm) ={oeTl|J(o) € E, 5,,}- It follows from

n,2m
the equality J(o7) = J(0)o(J(7)) that all T, are subgroups of T, they are
called, the Jacobian ascents of the Jacobian group X.
The Jacobian ascents are distinct groups with a single exception when two
groups coincide. This is a subtle fact, it explains (partly) why formulae for
various dimensions differ by 1 in odd and even cases.

— (Corollary 7.7) Let K be a commutative ring and n > 4.
1. If n is an odd number then the Jacobian ascents

F:F23F4D"'DFQSD"'DF2[%]3]:12[%]_;’_2:2

are distinct groups.
2. Ifn is an even number then the Jacobian ascents

[=T>5045--5T2 5 DIz D Igg) =Tygp42 =2

are distinct groups except the last two groups, i.e. Iainy = I'y(n)4o.
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The subgroups {I'***1} of T" are given explicitly,
%=t ={o:z; =z +a;|a; GAfbdﬂmQSH, 1<i<n}, s>1,

they have clear structure. The next result explains that the Jacobian ascents
{T'3,} have clear structure too, 'y, = I'***13 and so the structure of the
Jacobian ascents is completely determined by the structure of the Jacobian
group X.

— (Theorem 7.1) Let K be a commutative ring and n > 4. Then
1. Ty, =T25F1Y = $25F1Y = 25HLY for each s=1,2,..., ["T_l]
2. If n is an even number then I'y, =%, i.e. T, =T,410=2%.

The next theorem introduces an isomorphic affine structure on the algebraic
group I'.

— (Theorem 7.2) Let K be a commutative ring, n > 4, and s =
1,...,[”771]. Then each automorphism o € T is a unique product
o = ¢g(2)¢;(4)...¢;(2[%])7 for unique elements a(2s) € A, 25 and
v € Dypnoayyy =X (by (100)). Moreover,

2

a(2) =J(0) =1 mod E, 4,
-1 -1
a(2t) = rj(ﬁsla(zt—z) "'¢/a(2)0) —1 mod E:z,2t+2’ t=2,...,]

— / / / —1
Y= (¢a(2)¢a(4) T ¢a(2["T—1])) g.

n—1
2

I,

The automorphisms ¢;(2 s) are given explicitly (see Section 7 for details),
they are too technical to explain here. The theorem above is a key result in
proving that various quotient spaces, like I'ss/T'o; (s < t), are affine, and in
finding their dimensions. An algebraic variety V over K is called affine (i.e.
an affine space over K) if its algebra of regular functions £(V) is a polynomial
algebra Klvy,...,v4] over K where d := dim(V) is called the dimension of V
over K. In this paper, all algebraic groups and varieties will turn out to be
affine (i.e. affine spaces), and so the word ‘affine’ is used only in this sense.
This fact strengthen relations between the Grassmann algebras and polynomial
algebras even more.

— (Corollary 7.5) Let K be a commutative ring, n > 4. Then all the Jaco-
bian ascents are affine groups over K and closed subgroups of ', and

(5]
dim(Ty,) = dim(X) + Z (n), szl,...,[ngl].

2

i=s
— (Corollary 7.8) Let K be a commutative ring and n > 4. Then the quotient
space T'/Y ;= {oX| o € T'} is an affine variety.
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1. If n is odd then the Jacobian map T'/¥ — E!, o — J(0), is
an isomorphism of the affine varieties over K, and dim(I'/¥) =
on—l 1.

2. If n is even then the Jacobian map T'/Y — E,/E, ., 0%
J(0)E}, ., is an isomorphism of the affine varieties over K (where
E,=14Kz---z,), and dim(I'/¥) = 2"~' — 2.

— (Theorem 7.9) Let K be a commutative ring, n >4, 4 : T — El o
J(a), be the Jacobian map, and s =1,2,..., ["7_1] Then,

1. for an odd number n, the Jacobian map 4 is surjective, and

2. for an even number n, the Jacobian map J is not surjective. In
more detail, the image im(J) is a closed algebraic variety of E!, of
codimension 1.

The unique presentation 0 = wy4,7,04 for o € Autg(A,). — Each automor-
phism o € G = QI'GL,,(K)°? is a unique product (Theorem 2.14)

0 = Wi+a7b0A

where w4, € Q (a € A°Y), 4 € T, and 04 € GL,(K)° where A'°d := @A, ;
and ¢ runs through odd natural numbers such 1 < 4 < n —1. The next theorem
determines explicitly the elements a, b, and A via the vector-column o(x) :=
(o(x1),...,0(z,))" (for, only one needs to know explicitly the inverse v, * for
each 7, € T which is given by the inversion formula below, Theorem 3.1).

— (Theorem 9.1) Each element o € G is a unique product ¢ = wWi14Vp04
(Theorem 2.1/.(8)) where a € A’° and
1. o(x) = Az +--- (i.e. o(z) = Az mod m) for some A € GL,(K),
2. b=A"to(z)°d — z, and
3. a= %(—14—1‘1 s Xy O e 81)7(,(2?:_11 Ty 20 (9181‘_:,_1(0,;_,_1)4—
o1 (ah)) where al := (A™1y, H(o(2)))i, the i’th component of the
column-vector A~ v, (o (z)®),
where 0 = 3%1, e, 0y = % are left skew K-derivations of A, (K)
(0;(xj) = 6;5, the Kronecker delta).

The inversion formula for automorphisms. — The formula (22) for multiplication
of elements of G shows that the most non-trivial (difficult) part of the group
G is the group I'. Elements of the group I' should be seen as n-tuples of
noncommutative polynomials in anti-commuting variables 1, ..., z,, and the
multiplication of two n-tuples is the composition of functions. The group I' (and
I'GL,,(K)°P) is the part of the group G that ‘behaves’ in a similar fashion as
polynomial automorphisms. This very observation we will explore in the paper.
The analogy between the group I' and the group of polynomial automorphisms
is far more reaching than one may expect.
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— (Theorem 3.1) (The Inversion Formula) Let K be a commutative ring,
0 € PGL,(K)? and a € Ap(K). Then o7 (a) = Y ,cqp, Aaz® where
Ao = (1—0(2,)0,)(1 — 0(p—1)0h_1) -+ (1 — 0(21)07)0'*(a) € K,
a/cx = 6;?"6;0?171 . 81(11,

(Bo(zl) ... Oo(z1)

Oz IS
al(+) = ;det i.(.) 8. () i=1 n
% det(aa(mz,,)) 61‘1' 8357? ’ ) 1
Ao (zr) . Ao (zr)
Oz, Oy
where 0 1= 8%1’ ceeyOp 1= a% are left skew K-derivations of A, (K).

Then, for any automorphism o = wi1,7%04 € G, one can write explicitly
the formula for the inverse o1, (23). Note that wi.!, = wi_, and o' =0 4-1.
So, v, ! is the most difficult part of the inverse map ¢—'. The formula for Yy !
is written via skew differential operators (i.e. linear combinations of products
of powers of skew derivations). That is why we start the paper with various
properties of skew derivations. Detailed study of skew derivations is continued
in [1].

Analogues of the Poincaré Lemma. — The crucial step in finding the b (in o =
Wi+aYp04) is an analogue of the Poincaré Lemma for A,, (Theorem 8.2) where
the solutions (as well as necessary and sufficient conditions for existence of
solutions) are given explicitly for the following system of equations in A,, where
a € A, is unknown, and u; € A,,:

ria = uy,
o = U9,
Tpd = Up.

— (Theorem 8.2) Let K be an arbitrary ring. The system above has a solu-
tion iff (1) w1 € (21),...,uUn € (2n), and (i3) x,u; = —xju,; for all i # j.
Then

n—1
a=2x1 " Tpan + Z Iy -- -Iiai N '8181‘4_1(’[14“_1) + al(ul), a, € K,
=1

are all the solutions.
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Note that the left multiplication on z; is, up to the scalar %, a skew derivation
in Ay zi(ajar) = $((wsa;)ar + (—1)7a;j(z;a;)) for all homogeneous elements
a; and ay of Z-graded degree j and k respectively.

Another version of the Poincaré Lemma for A,, is Theorem 8.3 where the so-
lutions are given explicitly for the system (of first order partial skew differential
operators):

01(a) = ug,
O2(a) = ug,
On(a) = up,
where 0; := 8%1’ ceeyOp 1= % are the left partial skew K-derivatives of A,,.

— (Theorem 8.3) Let K be an arbitrary ring. The system above has a solu-
tion off (¢) u; € K(x1,...,%i—1,Tit1,...Tpn) for all i; and (i) 0;(u;) =
—0;(u;) for alli # j. Then

a=X+ > (1-2,0,)1 = 2p10n-1) - (1= 2101)(ua)z®, AEK,
0£a€ B,

are all the solutions where for o« = {i; < --- < i} we have
Uq = 81»,681»,671 . -61-2 (Uil).

Minimal set of generators for the group I' and some of its subgroups. — For each
i =1,...,n; A € K; and j < k < [, let us consider the automorphism
Oiazjzpe; €L Ty = Ty + AT;TRTY, T > Ty, for all m # 4. Then

-1 -1

Oidzjzre Oiusjeper = Oi,(Mp)zjzees Pidzjaez — Ti,—Azjaez

So, the group {0; xz,ez; | A € K} is isomorphic to the algebraic group (K, +)
via 0 az;zpa A.

— (Theorem 3.11.(1)) The group T" is generated by all the automorphisms
Tz enay 6 T = (Ciprgjope |t = 1,...,mA € K;j < k <1). The
subgroups {Ui,)\wja:kwl})\EK form a minimal set of generators for T'.

— (Theorem 3.11.(3)) The group U is generated by all the automor-
phisms 0 z;z,0, and all the automorphisms wiiiz,, i.e. U =
(Tirz;over Witre |1 = 1,...,mA € K;j < k < I). The subgroups
{0,000 Irek s {Wisae, }rek form a minimal set of generators for U.

— (Corollary 3.12) The group ® is generated by all the automorphisms
Cirgszpms -6 = (Tipara |0 =1,....,mA € K;k <l;i & {k,l}). The
subgroups {0 rxg;zpz, frek form a minimal set of generators for ®.
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2. The group of automorphisms of the Grassmann ring

For reader’s convenience, at the beginning of this section some elementary
results on Grassmann rings and their left skew derivations are collected. Later
in the paper they are used in proofs of many explicit formulae. In the sec-
ond part of this section, all the results on the group of automorphisms of the
Grassmann ring and its subgroups (from the Introduction) are proved.

The Grassmann algebra and its gradings. — Let K be an arbitrary ring (not
necessarily commutative). The Grassmann algebra (the exterior algebra) A,, =
An(K) = K|z1,...,2,] is generated freely over K by elements z1,...,z, that
satisfy the defining relations:

ri=--=22=0 and z;2; = —x;z; forall i# j.

Let B, be the set of all subsets of the set of indices {1,...,n}. We may
identify the set B, with the direct product {0,1}" of n copies of the two-
element set {0,1} by the rule {i1,...,it} — (0,...,1,...,1,...,0) where 1’s

are on 41,...,% places and 0’s elsewhere. So, the set {0,1}" is the set of all
the characteristic functions on the set {1,...,n}.
An _ @ Kz = @ IQK, z° :=£L'(1X1 ...xgn7
a€ By a€ By,

where a = (aq,...,0,) € {0,1}" = B,. Note that the order in the product
x® is fixed. So, A, is a free left and right K-module of rank 2". The ring
A, (K) is commutative iff K is commutative and either n = 1 or —1 = 1.
Note that (z;) := z;A, = Apz; is an ideal of A,,. Each element a € A, is
a unique sum a = Y a.z%, an € K. One can view each element a of A,

as a ‘function’ @ = a(zy,...,z,) in the non-commutative variables x;. The
K-algebra epimorphism
Ay = N/ (Tiyy ooy @iy) = K| T1ye o Ty y ooy Ty e oy T |
ar—a iy =0,...,24, =0 =a+ (xil ) xik)v
may be seen as the operation of taking value of the function a(z1,...,z,) at
the point x;, = --- = x;,, = 0 where here and later the hat over a symbol means

that it is missed.

For each a € By, let |a| := a1 + -+ + a,,. The ring A, = & (A, ; is a Z-
graded ring (A ;Apj C Ay iyj for all 4,5) where A, ; := =i Kx*. The ideal
m = @;>1A,; of A, is called the augmentation ideal. Clearly, K ~ A, /m,
m" = Kz; -- -z, and m"*! = 0. We say that an element o of B, is even (resp.
odd) if the set « contains even (resp. odd) number of elements. By definition,
the empty set is even. Let Zy := Z/27Z = {0,1}. Thering A, = A, DA, 71
is a Zso-graded ring where An,ﬁ =AY := @y is even K¢ is the subriné of even
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elements of A, and A 7 := A% = B, is 0aaKx® is the A%-module of odd
elements of A,,. The ring A, has the m-adic filtration {m‘};>o. The even

subring A7’ has the induced m-adic filtration {A7Y, := A7Y N m‘}. The AS'-
module A% has the induced m-adic filtration {A%%; := A% N m'}.
The K-linear map a — a from A,, to itself which is given by the rule

_ a, ifacA, g,
a:= ,
—a, ifa€A, 7,

is a ring automorphism such that @ = a for all @ € A,,. For all a € A,, and
1=1,...,n,
(1) r;a = ax; and ax; = x;a.

So, each element x; of A, is a normal element, i.e. the two-sided ideal (x;)
generated by the element z; coincides with both left and right ideals generated

For an arbitrary Z-graded ring A = ®;czA4;, an additive map 6 : A — A is
called a left skew derivation if

(2) §(asa;) = 8(ai)a; + (=1)'a;0(a;) for all a; € A;, a; € A;.

In this paper, a skew derivation means a left skew derivation. Clearly, 1 € ker(d)
(6(1) = 6(1-1) = 26(1) and so 6(1) = 0). The restriction of the left skew
derivation § to the even subring A®Y := ®;c07A4; of A is an ordinary derivation.
Recall that an additive subgroup B of A is called a homogeneous subgroup if
B = ®;czB N A;. If the kernel ker(d) of § is a homogeneous additive subgroup
of A then ker(¢) is a subring of A, by (2).

Definition. For the ring A, (K), consider the set of left skew K-derivations:

0 0
81' o, :

: axl,..., n - 8:[;n

given by the rule 0;(z;) = 4,5, the Kronecker delta. Informally, these skew
K-derivations will be called (left) partial skew derivatives.

Ezample. 0;(x1 -2 -xp) = (1) Loy - 12501 -+ T

The Taylor formula and its generalization. — In this paper, 01, ..., 0, mean left
partial skew derivatives (if it is not stated otherwise). Note that

02 =...=02=0 and 0;0; = —0;0; for all i # j,
and K; :=ker(0;) = K|z1,..., %4y, Tn].
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LEMMA 2.1. — (The Taylor Formula) For each a =" ,c g aaz® € Ap(K),

a= Y 9%(a)0)z”

a€ By

Qo — .
where 0% := %9 "' -+ - 07, in the reverse order here and everywhere.

n “n—1
Proof. — 1t is obvious since a, = 0%(a) mod m. O

The operation of taking value at 0 in the Taylor Formula is rather ‘annoy-
ing’. Later, we will give an ‘improved’ (more economical) version of the Taylor
Formula without the operation of taking value at 0 (Theorem 2.3).

LEMMA 2.2. — Recall that K; = ker(9;) = Kl|z1,...,Zi,...,2y] and
1. for eachi=1,...,n, the map ¢; :==1—x;0; : A, — A,, is the projection
onto K;.
2. The composition of the maps ¢ := Gpppp_1---¢1 : Ay — A, is the projec-
tion onto K in A, = K ®m.
3. 0= (1-2,0,) (1 —2p-10p-1) - (1= 2101) = Y peq, (—1)1*lz*0* where

Oy — .
z® =gt 2% and 0% =930, - O, in the reverse order.

Proof. — 1. By the very definition, ¢; is a right K;-module endomorphism

of A, with ¢;(z;) = z; — x; = 0, hence ¢, is the projection onto K; since
2. This follows from statement 1 and the decomposition A, = ®,c g, Kz“.
3.

¢ = Z (—1)k$i18i1$i28i2 o xikaik

11> >0

= Z (_1)k(_1)1+2+m+k_1mi1 e mikail e alk
11> >y

= Z (—1)kz;, e By, B, = Z (_1)|a\xaaa' 0
i1 > >0 o€ By

The next theorem gives a kind of the Taylor Formula which is more econom-
ical then the original Taylor Formula (no evaluation at 0).
THEOREM 2.3. — For eacha =73 cq 0oz € Ay(K),

Loa=3 0egp, $(0%(a))z.

2. a=3 qeq, (Zﬂef]jn(_l)lﬂlxﬁaﬂaa(a)) .
Proof. — 1. Note that 9%(a) = a, mod m, hence a, = $(0%(a)), and so the

result.
2. This follows from statement 1 and Lemma 2.2.(3). O
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The Grassmann ring A, (K) = @,cq, t*K is a free right K-module of rank
2"™. The ring End g (A,,) of right K-module endomorphisms of A,, is canonically
isomorphic to the ring Man (K) of all 2™ x 2™ matrices with entries from K by
taking the matrix of map with respect to the canonical basis {z%*, a € B,} of
A, as the right K-module. We often identify these two rings. Let {Eqyg|a, 5 €
PBn} be the matrix units of Man (K) = @, geg, KEap (6. Eop(x?) = dgya®).
One can identify the ring A, with its isomorphic copy in Endg(A,) via the
ring monomorphism a — (z — ax).

THEOREM 2.4. — Recall that ¢ := (1 — £,0,)(1 — ©—10p—1) -+ (1 — 2101).
Then

1. for each o, B € By, Enp = x2¢0°.
2. EndK(An) = @aefzgnAnaa = @aegnaQAn.

Proof. — 1. Each element a =} g z7ay € Ay, ay € K, can also be written
asa =) cq a,z”. Aswe have seen in the proof of Theorem 2.3, a, = ¢07(a),
hence 2%¢0”(a) = 2%ag which means that E,5 = z%¢0°.

2. Since 4, . . ., Oy, are skew commuting skew derivations (i.e. 8;0; = —98;0;),
the following equality is obvious

DAY= ) 9A,.

ae%’n ae%n

Now, Endg (An) = S := > ,cq, An0® since Eqp = z®¢d% € S. The sum S is
a direct sum: suppose that » u,0% = 0 for some elements u, € A, not all of
which are equal to zero, we seek a contradiction. Let ug be a nonzero element
with |8| = 81 + -+ + B, the least possible. Then 0 = 3 u,0%(2?) = ug, a
contradiction. O

Let A be aring. For a,b € A, {a,b} := ab+ ba is called the anti-commutator
of elements a and b.

COROLLARY 2.5. — The ring Endg(A,) is generated over K by elements
Z1y-eey Ty, 01,...,0, that satisfy the following defining relations: for all i, 3j,
xf =0, =mz;=—1;T4
92 =0, 0;0; = —0;0;,
0ixj + x;0; = 6;5, the Kronecker delta.

Proof. — 1t is straightforward that these relations hold. Theorem 2.4.(2) im-
plies that these relations are defining. O
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By Corollary 2.5, we have the duality K-automorphism of the ring
El’ldK(An):
A:xir—>6‘i, 37;P—>l‘i, Z=1,,Tl
Clearly, A? = id. Similarly, by Corollary 2.5, we have the duality K-anti-
automorphism of the ring End g (A,,):

V:xir—>8i, 8ir—>xi, z=1,,n

Clearly, the anti-automorphism V is an involution, i.e. V? = id, V(ab) =
V(b)V(a).

We say that the element 2 :=1+1 € K is regular if 2XA = 0 for some A € K
implies A = 0. If K contains a field then 2 is regular iff the characteristic of K
is not 2. If K is a commutative ring then the ring A, (K) is non-commutative
iff n >2and 2#0in K. A commutative ring is called reduced if 0 is the only
nilpotent element of the ring.

LEMMA 2.6. — If the ring K is commutative, 2 € K is regular, and n > 2,
then the centre of A, (K) is equal to

A S, if n is even,

Z(5y) = {20 et

An,6 @ Kxy--xn, ifn is odd.
Proof. — Since 1, ...,x, are K-algebra generators for A,,, an element v € A,,
is central iff it commutes with all z;. Now, the result is obvious due to (1) and
the fact that z; - (z1---z,) =0, i > 1. O

Let A'n 5= ®Kz* where o runs through all even subsets of 6, distinct

from {1,2,...,n}. So, A’ - C A, 5C Z(A,), and A - = A, 5 iff n is odd.
Let G := Autg(A,(K)) be the group of K-automorphisms of the ring

A, (K). Each K-automorphism o € G is a uniquely determined by the im-
ages of the canonical generators:

zy:=o(z1),..., 2, = o(xy,).

Note that ..., 2!, is another set of canonical generators for A,,.
Till the end of this section, let K be a commutative ring. Consider the

subgroup Gy, of G, elements of which preserve the Z-grading of A,:
Ggr i ={0€G|o(An;) =Ap; foralli e Z} ={oc € G|lo(An1) =An1}.

The last equality is due to the fact that the A, ; generates A,, over K. Clearly,
0 € Gy, iff 0 = 04 where 0a(z;) = ) 7_ aijz; for some A = (a;;) € GLn(K).
This can be written in the matrix form as o(z) = Az where z := (z1,...,2,)*
is the vector-column of indeterminates. Since c40p = opa4, the group Gy,
is canonically isomorphic to the group GL,,(K)° opposite to GL, (K) via the
map GL,(K)? — G4, A — o4. We identify the group G4, with GL,(K)°?
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via this isomorphism. Note that GL,(K) — GL,(K)°?, A — A~! is the
isomorphism of groups. One can write

Ggr ={0a|A € GL,(K)}.

From this moment and till the end of this section, K is a reduced commutative
ring (if it is not stated otherwise). For o € G, let z} := o(x;). Then z/* =
o(x?) = o(0) = 0. If \; = /. mod m for some \; € K then A\? = 0, hence

A; = 0 since K is reduced. Therefore, o(m) = m, and so

(3) o(m®) =m’ forall 7> 1.

This proves the next lemma.

LEMMA 2.7. — If K is a reduced commutative ring and o € G then o(z) =

Az + b for some A € GL,(K) and b:= (by,...,b,)" where all b; € m?2.
Consider the following subgroup of G,

U:={0€G|o(x)=x+bforsomebec (m?)*"} ={o€G|(c—1)(m) C m?}.

For each ¢ € G written as o(x) = Ax + b and each 7 € U, we have

00 4-1,04-10 € U, and 070! € U. These mean that U is a normal subgroup
of GG such that

(4) G=GyuU=UGy, Gg-NU = {e}.
Therefore, G is a skew product of the groups Gy, and U:
(5) G =Gy xU =GL,(K)? x U ~ GL,(K) x U.
For each i > 2, consider the subgroup U*® of U:
(6) Ul:={ceU|(c—1)(m) Cm'}.
By the very definition, U = U2 D> U? > --- D U™ D U™"! = {e}. Note that
o € U'iff, for all j, o(z;) = x; +m; for some m; € m’. Recall that o(m*) = m’
for all 0 € G and ¢ > 1 (since K is a reduced commutative ring). For any
T € G, o €U and z;,
TO'T_I(.'K]') =7(1+0-— 1)7'_1(:1:]-) = TT_I(ZL‘]') =z; mod m’.

Hence, each U® is a normal subgroup of G. Each factor group U’/U‘*! is
abelian: Let 0,7 € U*, o(z;) = z; + aj + -+ and 7(z;) = x; + b; + --- for
some elements aj,b; € A,; and three dots denote elements of m**!. Then
or(z;) = zj +a; +b; +--- and 7o(z;) = z; + b; + a; + ---. Therefore,
otU ! = roU!, and U is a nilpotent group.

Let K™ be the direct sum of n copies of the additive group (K,+). Let
0 :=x1---x,. The map

(7 K" ->U" A= (A1,.., ) — (0r t @ =z + Ni0),
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is an isomorphism of groups (o4, = or0,). This follows directly from the
fact that mf = 6m = 0. So, U™ = {0 |A € K"}. One can easily verify that
for any o € G with o(z) = Az + b, A = (a;5) € GL,(K),

-1 _
(8) 00N =0 _an .
Indeed,
0'_10')\0(.’131') = O'_lU)\(Z aija:j + bl) = O'_l(z aij.’B]' + bl + Z aij)\jﬁ)
j=1 j=1 7j=1
o - B doio1 i
=0 (d$0+2;aw&ﬂf—%+“4&H277

The equality (8) describes completely the group structure of Autg (As) (where
K is a reduced commutative ring since U = U?):

Autg (Ag) = GLo(K)PU = {oa0x |04 € GL2(K)P,0) € U},

TAOX*OBOu = UBA“d;?KB) +u

An element a(z1,...,2,) = A+ -+ € A, is a unit iff a(0,...,0) =X € K
is a unit. For each unit a € A, the map w,(z) := aza~! is called an inner
automorphism of A,,. Since wy(z;) = A+ )z(A+ )" t=Ag; A+ =
x;+--- we have w, € U, i.e. the group Inn(A,,) of all the inner automorphisms
of A, is a subgroup of U,

9) Inn(A,) CU.

Let us denote the automorphism a — @ of A, by s. Recall that A, 5= {a €
Ay |s(a) =a}and A, 7= {a € A, |s(a) = —a}. Consider the subgroup Gz,
of G elements of which respect Zy-grading on A,,:

GZ2,gT = {0' € G | U(An,ﬁ) = An,a’ O'(Ani) = An,f}

Clearly,
(10) Gzy—gr ={0 € Glos = so}.
Then
(11)
I''=UNGz,—gr={0€Ulos=s0}={oce€Ulo(zi) € A,7,1 <i<n}

is the subgroup of U (the last equality follows easily from the fact that the set
A, 7 generates the K-algebra A, and that A, = A 5® A, 7 is a Zo-graded
K-algebra). So, o € T'iff, for each i = 1,...,n,

(12) o(zi)) =zitaiz+ais+- - +aizj41+ -, ai2j41 € An2jyi,
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all summands are odd. Note that for arbitrary commutative ring K (not nec-
essarily reduced) the set of automorphisms o from (12) is a group I'. Clearly,
GL,(K)° C Gz,—g4r and GL,(K)? NT = {e} since GL,(K)? NU = {e} and
I’ CU. The group I' (over an arbitrary commutative ring K) can be defined
as

(13) I={oeGlo()—z €A, ;Nm’ i>1}.
The group I is endowed with the descending chain of its normal subgroups:
F=T?2T32...2T":=TNU*D---D2T" DI = {e}.
Since I'' = {0 € T'|o(z;) — z; € A%(,lziv j=1,...,n}, it is obvious that
r=r=r’orM=r°s...or"=r""s..

Recall that [z,y] := zy — yz is the commutator of elements z and y, and
ws : t+— sts™! is an inner automorphism.

LEMMA 2.8. — Let K be a commutative ring.

1. For each a € A%?, a® = 0.

2. [A%, A,] € A% C Z(A,,) and [ASY,[A%9, A,]] = 0.

3. For each a € A% and x € A,,, wi1a(z) = x + [a, 7).

4. For each a,b € A;’ld, W1tqWith = Witatb = WitbWitq and wl__&a = Wi_gqg-

5. The map w: A%¢ — U, a — w114, is a homomorphism of groups. It is a
monomorphism if n is even and has the kernel ker(w) = Kxq -+ x, if n
is odd.

6. For each a € A, aa = aa = a where a = ag + a1, ag € A4, a; € A,

a:=ag—a-

Proof. — 1. For a € A%, a = 3" A,z where a runs through non-empty odd

n

subsets of the set {1,...,n}. For any two such subsets « and 3, zoxP = —gfz®
and (z*)? = 0. Now, a® = 3,5 AaAg(z2’ 4+ 2Pz®) + 3, A2(2*)? = 0.
2. [A%9 A,] = [ASY, A% + Z(A,,)] C [ASY,A%d] C A% C Z(A,). Then the
second equality is obvious.
3. It suffices to prove the equality for monomials z = z®. If z® is even,
hence central, the equality is obvious. If z® is odd then
wita(@®) = (1+a)2%(1 + )~
=(14a)z%(1l—a) (by statement 1)
= 2% + [a,2%] — az%a = z° + [a, 2] + a®z®
= 2%+ [a, 2] (by statement 1).
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4. For each a,b € A% and = € A,,,

witawi+s(z) = x4+ [a+b,z] + [a,[b,z]] = 2+ [a + b,z] (by statement 2)

= Wita+b(T) = Witp+a(T) = W14pW14a(T).
wl__&a = W(14a)-1 = W1—q Since a® = 0, by statement 1.

5. By statement 4, the map is a group homomorphism. By statement 3, an
element a € A%? belongs to the kernel iff [a,z;] = 0 for all i iff a € Z(A,,) =
AY + Ky -+ - z,. Now, the result is obvious since a is odd.

6. aa = a2 — a? = af and @a = a} — a? = a} since a? = 0, by statement

1. O

Let €2 be the image of the group homomorphism w in Lemma 2.8.(5),

(14) Q= im(w) = {wi1q|a € A2}

LEMMA 2.9. — Let K be a commutative ring. Then Q = Inn(A,). In par-
ticular, the group Inn(A,,) of inner automorphisms of the Grassmann algebra
A, (K) is an abelian group.

Proof. — Let u be a unit of A,. Then v = A+ a + b for some A € K*, an
odd element ¢ € m, and an even element b € m. Note that A\ + b is a central
element and that the element o’ := 45 € mis odd. Now, wy = winib)(1+a) =
WrLbW1+a’ = Wit € Q. Therefore, Q = Inn(A,,).

So, Q is a normal abelian subgroup of G. Since Q = Inn(A,) C U, by (9),
the group 2 is endowed with the induced filtration

Q=0°00*2...20Q0":=QNnU'D--- 20" DO" = {e}.

Note that 2 = Q2 D Q3 = Q* > Q% = Q6 o ... D Q%+l = Q242 5 ...,
By Lemma 2.8.(5), the group € is canonically isomorphic to the factor group
A% /A% N Kxq---2,. Under this isomorphism the filtration {Q} coincides
with the filtration on A24/A%4 N Kz - - -z, shifted by —1 that is the induced
filtration from the m-adic filtration of the ring A,, i.e. Q2™ = {w1 4]a €
A%d Nm2m~=1} m > 1. Note that (Lemma 2.8.(3))

15 wWite(z;) — i = [a, ;] € A for all a € A°? and i.
(15) +a(@i) [a, ;] € A} n
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Generators for and dimension of the algebraic group U. — Define the function
0.e0 : N — {0,1} by the rule

5 _ )1, ifnis even,
e 0, if n is odd.

For each n > 2, [§] — On,ev (resp. [5]) is the number of odd (resp. even)

numbers m such that 2 < m < n.

THEOREM 2.10. — Let K be a commutative ring in statement 2, and let K
be a reduced commutative ring with % € K in statements 1, 3, and 4. Let
A=A, (K),U=U(Ay), andn > 2. Then
1. the associated graded group [];>o Ut /UL s isomorphic to the direct
product of d,, copies of the additive group K where

[%}_671,81) n [%] n

dn, = .

2 () 2 ()
In more detail,

2. for eachm =1,...,[3] = dp,cv, the map

(Anomi1)" = U UP™2 6 = (as,...,an) — 0 U2,

is a group isomorphism where oo € U?™H1 : z; — x; + a;;
3. for eachm =1,...,[3], the map

An,Zm—l N U2m/U2m+1’ a— W1+QU2m+1,

is a group isomorphism where w1, € U*™ is the inner automorphism of
Ap:z— (1+a)z(1+a)7t.

4. All the elements o, and wiyp from statements 2 and 8 are generators for
the group U.

Proof. — 1. The first statement follows directly from statements 2 and 3 since
Ai~ K foralli=0,1,...,n.

4. This statement follows from statements 1-3.

2. One can easily see that o, € U?™*! for any a € (A 2m+1)"; and
0,0U?*2 = 5,,,U?™*2 for any a and b. By the very definition, the map
a — 0,U?™* 2 is an injection. It suffices to show that it is a surjection. Let
o be an arbitrary element of U?™t!. Then o(z;) = z; + a; + --- for some
a; € Ay omy1 where the the dots mean bigger terms with respect to the Z-
grading on A,. Then

g’_ag(xi) =U—a(xi+ai+"') :mz—al+az+=xl+ s
hence o_n,0 € U>™12 ie. cU?™t2 = g, U?™*2, and we are done.

TOME 138 — 2010 — ~N° 1



THE JACOBIAN MAP, THE JACOBIAN GROUP, ... 61

3. Clearly, w11, € U™ since wi44(7;) = z; + [a,2;] (Lemma 2.8.(3)). By
Lemma 2.8.(5), the map a — w4 ,U?*™*! is a group homomorphism. By the
very definition, this map is injective. It suffices to show that it is surjective.
This will be done in the next lemma in the proof of which an algorithm is given
of how, for a given element o of U?™/U?™*+!  to find an element a € Ap2m—1
such that o = wy,U*™H1, O

LEMMA 2.11. — We keep the assumptions of Theorem 2.10.(3). For

each m = 1,...,[%], and each o € U?™, there ezist elements ciy1 €
K|Zit1,--yTnlom—i, © = 1,...,2m, such that wo € U*™t1 where w =
1 1 —1

_ -1 -1 _
w1+1?1"'z2m—162m+1w1+w1'“902m—262m w1+961~"xi—1ci+1 w1+$163w1+62'

Remark. If n = 2m then cop 11 € K.

Proof. — Since each element x; - --x;_1¢;41 is a homogeneous element of A,
of degree i — 1+ 2m — i = 2m — 1, each automorphism wiy4,...c;_;¢;,, belongs
to the group U?™, and so does their product w. For each i = 1,...,n, let
z} :=o(z;) = x;+a;+- - for some a; € Ay, 2y, We prove the lemma in several
steps.

Step 1. For each i = 1,...,n, a; = xz;b; for some element b; €
Kl|z1,...,%i,...,Zn]2m—1. Note that each element a; € Ap2m C Z(Ay)
is central. Then z/> = o(z2) = 0, and so

0=2a=(zi+a;i+ )" =2ma; + -

hence z;a; = 0 since % € K; and so a; = x;b; for some element b; €
KLZIJl,...,IEi,...,J,‘nJQm_l.

Step 2. Let us prove that for each pair i # j,
(16) bile,=0 = bjlz,=o-

By Step 1, z; = z;(1 + b;) + --- for all 4. Since b;,b; € Ay, 2,—1 and 2m — 1 >
2—1>1, we see that the homogeneous elements b; — b; and b;b; have distinct
degrees (if the elements are nonzero). Computing separately both sides of the
equality zjz’ = —2’x] we have

= (2i(1+bi) +-- ) zj(L+bj) +---) = 2w (1= bi +bj) +---,
Since the degree of the elements b; — b; is2m —1>2—-12>1 and % € K, we
must have

This equality is equivalent to the equality b;|y;=0,2;=0 = bj|z;=0,2;=0 Which is
obviously equivalent to (16) (since each by does not depend on zj, by Step 1).
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Step 8. We are going to prove that ome can choose elements c;y1 €
K|zit1,- - Znlom—i, 1 =1,...,2m, such that for eachi=1,...,2m,

-1 -1 -1 I\ —
(18) w1+zl~‘~mi_1ci+1 e w1+ar:1C3w1+cQ (x]) = xj IIlOd m

We use induction on i. Briefly, (18) will follow from (16). Note that b €

2m+1 . .
, J=1...,1.

K|zo,...,Zn]2m—1. Then cg := —%bl € K|za,...,Zn]2m—1, and

1
mll =331+.’171b1+"' =3§1—b11‘1+"‘ =m1+[—§b1’m1]+... =w1+cz(x1)+"' ,
hence ‘*’1_4}‘:2 (r1) = 21 mod m?m*L,

Changing o to wl__:CQU, one can assume that i = z; + ---, i.e. by = 0.
Applying (16) in the case j = 1 and ¢ > 2, we have b;|,,—o = 0, hence b; =
—2z1¢;41 for unique c;y1 € K|wa,...Tiy- -, Tn]om—2 C Z(A,). Now,

Ty = oo+ Ta(=22103) + - = T + [T163,T2] + - = Wigaye,(T2) + -0,
hence wi!, . (z5) = x2 + ---. Note that wi_!, . (#}) =1+ since

Witaies (T1) = Wigayes(T1) + - =21 + [m163, 21 + - =21 + -+

This proves (18) for ¢ = 2.

Let ¢ > 3, and suppose that we have found already elements cyy1 €
K|zpt1,. . - Tnlom—k, k = 1,...,1, that satisfy (18). We have to find c;4o.
Changing o for w;ﬁzl.._miilciﬂ . -wl‘ﬁm%w;}@a, if necessary, one can assume

that 2 =z, +--- fork=1,...,i,ie. by =0for k=1,...,i. By (16),

bi+1|mk=0 = bk|zi+1:O = 0, k= ].7 . ,’i,
hence b; 11 = —2x1 - - - z;¢;12 for a unique element ¢; 19 € K|Zit2,. ., Tn|om—i—1-
Now,
/
Tivg = Tip1 + Tip1 (=221 - Ticipe) + - = Tig1 + [T1 - Ticipo, Tipa] + - -

= Witz ziciqa (15i+1) +oee

—1 —1

hence Wiy, .. icis (xj.1) = xig1+---. Note that W1 miciss (x,) =K+,
k=1,...,1i, since

-1 -1

w1+m1---mici+2(1’.;€) = w1+x1---mici+2(wk +o)=xp A+ [T Ticip, TR+ =T e
So, (18) holds for 4 + 1. By induction, (18) holds for all ¢ = 1,...,2m.
In particular, it does for ¢ = 2m. Then changing, if necessary, o for
wl__:ml,,,zm_ICQmH ~-~w1__:m163w1__:620 one can assume that zj = xy + --- for

k=1,...,2m, i.e. by = 0 for £k = 1,...,2m. Note that in order to prove
Lemma 2.11, we have to show that by = 0 for k = 1,...,n. If n = 2m
we are done. If n > 2m then by (16) for each ¢ > 2m and j = 1,...,2m:
bilz;—0 = bjle;=0 = 0. Hence, b; € (z1---Z2m), but b; € Ap 211, therefore
b; = 0. This proves Lemma 2.11 and Theorem 2.10. O]
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In Step 3, it was, in fact, proved that the conditions (18) uniquely determines
the elements ca, ..., comy1 (the idea of finding the elements ¢; is to kill the
‘leading term’, this determines uniquely ¢; by the expression given in the proof
above). So, Lemma 2.11 can be strengthened as follows.

COROLLARY 2.12. — The elements ca, .. ., Comy1 from Lemma 2.11 are unique
provided (18) holds for all 1 < j <1i < 2m.

Proof. — This fact also follows at once from Lemma 2.8 and Theorem 8.1.(1).
O

COROLLARY 2.13. — Let K be a reduced commutative ring with % € K, and
o €U. Theno is a (unique) product 0 = - -+ W1 445 ObsW1+tazTbsWita, JOT UNiqUE
elements a; € An; and bj = (bj1,...,bjn) € AL

By Corollary 2.13, the coefficients of the elements ...,as,bs,as,bs,a; are
coordinate functions for the algebraic group U over K. Therefore, the K-
algebra of (regular) functions of the algebraic group U is a polynomial algebra
over K in d,, variables where d,, is defined in Theorem 2.10.

It follows from Corollary 2.13 that

(19) Ul=Q' x T i > 2.

The group structure of G := Autx (A, (K))
THEOREM 2.14. — Let K be a reduced commutative ring with % € K. Then
1. The group U = Q x T’ is the semi-direct product of its subgroups (Q is a
normal subgroup of U, QNT = {e}, and U = QT).
2. G=UxGL,(K)° (U is a normal subgroup of U, UNGL, (K)° = {e},
and G = UGL,(K)°?).
3. G=(QxT)xGL,(K)°P.

Proof. — 1. By (13) and (15), @NT = {e}. For any v € " and w14, € N
(resp. witq € N :=QNUY, i > 2)
(20) 7W1+a7_1 = Wy(14a) € Q (resp. 7w1+a'7_1 = Wy(14a) € Qia iz 2)a
since TA2Y C A% and 1+ a € AS¢ (resp. and I'm? C m?, i > 1). So, in order to
finish the proof of statement 1 it is enough to show that U = I'QQ. This equality
follows from Corollary 2.13 and (20).

2. See (5).

3. This follows from statements 1 and 2. O

Let B = B,, be the set of all the n-tuples (columns) b = (by, ..., b,)! where all
b; are arbitrary odd elements of A,, of the form by =z1+---,...,bp, =z, +---
where the three dots mean bigger terms. Then

I'={wl|beB, w(x:i)=bi, i=1,...,n}
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and the map B — I', b — <3 is a bijection. The product of two elements
Vb, Ye € I' is given by the rule

YoYe = Ycob

where c o b is the composition of functions; namely, the i’th coordinate (c o b);
of the n-tuple cob is equal to ¢;(b1,...,b,) where ¢; = ¢;(z1,...,z,) (we have
substituted elements b; for z; in the function ¢; = ¢;(z1,...,Z,))-

By Theorem 2.14, each element ¢ of the group G = QI'GL,(K) is the
unique product

(21) 0= Wi14+aV04A, Wita € D 1 €T, 04 € GL,(K)°P.
The product of two elements of G is given by the rule

(22) W14a Vb0 A * Wita’ Vo' OA" = Witatyoa(a’) YA=1o 4 (b )ob TA’A

where g4 (V) := (0a(b)),...,04(b,)) and o 4(b') 0 b:= (ga(b)) 0 b,...,04(bl,) 0b).
This formula shows that the most sophisticated part of the group G is the
group I'. To prove (22), note first that aAfyb/ozl = YA-15, (), then

-1 —1
W1+a Vb0 A * Wit W OA = Wita " V6O AWI+a (V6TA) ™~ Vo TaAVWOT 4 - TACAl
= WitaWitqy,oa(a’) " T0VA- o4 (b)) " OA’A
= Witaty,oa(a’) TA=1o4(b)ob TA'A-

We know how to find inverse elements for the group Q (w7 ﬁa = wi_,) and
for the group GL,,(K)°P (cr;‘l = 04-1). The inversion formula for elements -y,
of the group I' is given explicitly by Theorem 3.1. So, one can find explicitly
an element b’ such that v, ' = v, by applying Theorem 3.1: b := 7, '(z;).
Now, one can write down the explicit formula for the inverse of any element
0 =wit+eV04a € G,

(23) (W1+a704) ™ = Wio, ;4 (a) VA0 1 (b) TA-1-

In more detail, by (22), we have (wita10a)"! = oo 1VpwWi_a =
Wi—0,_17y(a)YAc 1 (b') OA-1- O
COROLLARY 2.15. — Let K be a reduced commutative ring with % € K. Then

1. Gzy—gr =T % GL, (K)°P.
2. G=Qx GZg—gr-
3. Out(A,) ~ Gz,—gr.

Proof. — By (22), G’ := IT'GL,(K)° =T x GL,(K) is the subgroup of G
such that G = Qx G’ (Theorem 2.14) and G’ C Gz,_g,. By (15), Gz,—¢rNQA =
{e}, hence Gz,_gr = G’ and G = Q@ x G = Q X Gz,_gr. Then Out(A,) =~
Q% Grygr/Q~ Gy g 0
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Let K be a commutative ring. Consider the sets of even and odd automor-
phisms of A,:
G :={oc e G|o(z;) € Ap1+ Ay, Vi},
G°Y = {0 € G|o(x;) € Ap 1 + A2, Vi}.

One can easily verify that G°Y is a subgroup of G. It is not obvious from the
outset that G°V is also a subgroup of G.

LEMMA 2.16. — Let K be a reduced commutative ring with % € K. Then

1. G°d = Gy, gr =T % GL, (K)°".
G’ = Q x GL,, (K)°".

. G°YN G = GL,(K)°P.

LG = GodGev — GeVGOd.

INJNSUNNY

Proof. — 3. G°YNG® = {0 € G|o(x;) € Ay1,Yi} = GL, (K)°P.

4. This follows from statements 1 and 2 since G = QI'GL,,(K)°" (Theorem
2.14).

1 and 2. Recall that Gz,_4 = I'GL,(K)° (Corollary 2.15) and G =
QI'GL,(K)? = QGz,—gr (Theorem 2.14). Clearly, Gz,_4 C G°?¢ and QN
G°4 = {e}, it follows that

G = (G4 n NGz,—gr = Gzy—gr.

Similarly, QGL,,(K)°? C GV and TNG*¥ = {e} give the equality QGL,, (K ) =
G: G = Q(I'NG*)GL,(K)°? = QGL,, (K)°?. O

Ezample. For n = 2, Go = QaGL2(K)? = {wi4a04|a = A1x1 + Moo, \; €
K,A € GL,(K)}. The group s is canonically isomorphic to K? via
Witn 420z — A = (A1, A2)t. Then Gy ~ K2GLy(K)? = {()\,A)|) €
K2,A S GLQ(K)} and

NA) -V, A=A+ AN A'A) and (N, A)7' = (—(AH) 7N A7Y).

Ezample. For n = 3, G3 = Q3T'3GL3(K)°. The group 3 is canonically
isomorphic to K3 via wiyx,z, 4 szstrszs = A = (A1, A2, A3)t. Similarly, the
group I's is canonically isomorphic to K3 via v, = V(@1 +110,53-+ 120,25 +130)
w = (p1,p2,u3)t where 6 := mjzors. Then Gz ~ K3K3GL3(K)®? =
{\p, A) | A\ pn€ K3, A e GL3(K)} and

A, A) - (N, A') = (A4 AN+ det(A) A1, A A),
(s, A) 71 = (= (A% 1A, —det(A1) - Ay, A1),
For n = 2,3, the group U := U, = Q,I', is abelian: Uy = Qs ~ K? and
Us = Q33 = Q3U3 ~ K3 x K. The next result shows that these are the only
cases where U is an abelian group.
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Maximal abelian subgroups of U
THEOREM 2.17. — Let K be a reduced commutative ring with % € K. Then

1. The group Q is a mazimal abelian subgroup of U if n is even (Q D U™).
2. The group QU™ = Q x U™ is a maximal abelian subgroup of U if n is odd
QNU"™ = {e}).

Proof. — Recall that 2 is an abelian subgroup of U (Theorem 2.8.(5)) and that
U =QI'(= Q xT) is the semidirect product of the groups Q and I" (Theorem
2.14.(1)). Suppose that €’ is an abelian subgroup of U such that  C .
Then Q' = Q(I' N Q). Each element v, € I' N Q' must commute with all the
elements of Q: w1147 = VWita = Wiy, (@)Y for all a iff wi ., (a)—a = € iff
[1o(a) —a,z] = 0 for all z € A,, (since wi1q (z) = = + [d, 2], Lemma 2.8.(3))
iff v(a) —a € Z(A,), the centre of A,, iff v,(a) = a for all a if n is even; and
vw(a)—a € Kz -z, if nisodd, iff v, = e if n is even; and v, € U™ if n is odd.
Since the group U™ is abelian and all elements of {2 commute with elements of
U™ if n is odd, the result follows. O

3. The group T, its subgroups, and the Inversion Formula

In this section, the inversion formula (Theorem 3.1) is given for any auto-
morphism o € I'GL,, (K)°?; the groups I'z,_g,, s > 2, are found (Lemma 3.6);
minimal sets of generators are given for the groups I' and U (Theorem 3.11)
and the commutator series are found for them; several important subgroups
are introduced: ®, &', ®(4), &n i, (?'m, 6;11
The Jacobian and the inversion formula for automorphism. — Let K be a commu-
tative ring and 0, := 8%1, ceyOp = % be the left skew partial derivatives for
A,. For each automorphism o € I'GL,,(K)°, the matrix of left skew partial
derivatives % = (%ﬂ:)) is called the Jacobian matrix for the automorphism
o. Note that the entries of the Jacobian matrix are even elements, hence cen-
tral elements. The determinant (o) := det(%) is called the Jacobian
of 0. One can easily verify that the ‘chain rule’ holds for automorphisms
o,7 € I'GL, (K)°P:

O(oT) or, Jo

(24) o ZU(%)‘%

where 0’(%) = (O’(%f;))). By taking the determinant of both sides we have

the equality
(25) J(or) =0o(J(7)J (o).
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Then, for each o € I'GL,, (K)°?
(26) S =" (o).

Let 0 € TGL,(K)? and z} := o(z1),...,z,, := o(zn). The elements
x},...,xz, are another set of canonical generators for Ay, zixl = —zlx] and
z/? = 0. The corresponding left skew derivations 9} := 52,,..., 0], := 82, are

1
equal to
o(z1) . Oa(z1)
( Oxq Oxp
27 o) =~ det | 2y 2 =1
(27) (0= gy det | g0 20 |4 i=1m,
do(z,) do ()
Oxq e Oxp

where we ‘drop’ o(z;) in the determinant J(o) := det(aa(wf)) and (-) stands
for the argument of function.

Foreachi=1,...,n, let

(28) ¢t i=1—2.0]: Ay, — Ay,

7
and (the order is important)

(29) o = ndpr o1 = (1=2,0,) (=2, _10p 1) - (1=2101) : Ap — Ag.

The next theorem gives the inversion formula for automorphisms of the group
I'GL, (K)°P.

THEOREM 3.1. — (The Inversion Formula) Let K be a commutative ring, o €
I'GL,(K)° and a € A (K). Then

= > ¢s(0"(a))x
aEB,

a . Qa1 « /oo . Qla e3]
where % =" - 20" and 0'* = 9" --- 0.

Proof. — By Theorem 2.3.(1), a

lay —1

™z Applying o

Yoacs, Po(0"%(a))z'® where z'* =
we have the result

Z ¢a‘ 8/&

a€ B,

Z ¢0 ala <. |

a€ B
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The abelian groups of units £,, and E/,. — Let K be a commutative ring and E,,
be the group of units of the commutative algebra A7Y. So, E, = K* + A}YS,
where K* is the group of units of the ring K and Aj's, := m? N A =

@f]zlAn’gm. There is the natural descending chain of subgroups of FE, de-

termined by the m-adic filtration of the Grassmann algebra A,:

(30) E, = En72 D En74 DD En’[%] D En,[%]+2 = K*

where Ej g = K* +m2™ NASY = K* + 021 A o
Each element e € E,, is a unique sum ¢ = A + et for some A € K* and
et € m?N A, The map
v:E, — 27, e— v(e) =max{2m|e" € E,om},

satisfies the following properties: for e, f € E,,

L. v(ef) > min{v(e),v(f)},
2. v(e™t) = v(e).

The group E, = K*E] = K* x E/, is the direct product of its subgroups
K*and E/, :=1+ A‘;‘jzz (E, = K*E/, and K* N E], = {1}). The chain (30)

induces the chain of subgroups in E/:

n
2

where El, 5, = El\, N Epam = 1 +m?™ NAY =1+ B A K s a

reduced commutative ring then, by (3),

(32) 0(En2m) = Enom and o(E, ,,,) = E, ,,, foral o€ Gz, 4, m>1.

n,2m

It follows that (where K is reduced)

(33) v(o(e)) =v(e) forall ee€ E,, o € Gz,_gr-
LEMMA 3.2. — Let K be a commutative ring. Then
1. each element o € T is a (unique) product o = -+ 0p,0p,0p, for unique

elements b; = (b1, ..., bin) € A, ; (see Corollary 2.13).
2. The elements {Yirze |1 < i < n,A € K,a € B,,3 < |a] isodd} are
generators for the group T' where y; xgo (z;) 1= @i+ Ax® and v; rgo (z5) ==
x; fori#j.
Proof. — 1. This follows from Theorem 2.10.(2).
2. This statement follows from statement 1 and Theorem 2.10.(2). O
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The dimension of the algebraic group I'. — Let K be a commutative ring
and A, = A,(K). A typical element of " is an automorphism z; —
1+ ay,..., Ty — Ty + a, where all a; € An >3- The group T is a unipotent

algebraic group over K where the coefficients of the elements a; are the affine
coordinates for the algebraic group I'" over K, and the algebra of (regular)
functions @(T) of the algebraic group T is a polynomial algebra in

(34) dim(T) = n(2"" ' — n)

variables since

(7] [277]
im(T) = rkg ((A%,)") = L ") )y = et — ).
dim(T) = rk ((A7s5)") = n Z <2¢+1> n<z; (%H n) =n(2""" = n)
If K is a field then dim(T") is the usual dimension of the algebraic group T

A noncommutative analogue of the Taylor expansion

THEOREM 3.3. — (An analogue of the Taylor expansion) Let K be a commu-
tative ring, f = f(x1,...,2n) = D, 2Ny € Ay, where the coefficients Ao € K
of f are written on the mght and o €T'. Let ) :=o(z1) =21+ ay,...,2), =

o(zn) = Tp + a, where ay,...,a, are odd elements of m3. Then
O @1 s2n) = f@n e a a) = 3 a0 (f)
a€ By,

where a® = af" -+ a%" and 0% = 9%~ -9, O; = 2 are the left partial

skew derivatives of A,,.

Proof. — It suffices to prove the statement for f = z1-- -z, A where A € K.
Then

o(f) = @+ a) - (m+amA = D B ag e,

11 < <is
= Z @iy - ai, 0, - 05, (f) = Z a®9*(f). N
i1< < a€Bn

The groups I'(s) and Q(s). — The next Lemma introduces subgroups deter-
mined by even subgroups of Z (the subgroups of type 2mZ).

LEMMA 3.4. — Let K be a commutative ring and A, = A, (K).

1. For each even number s = 2,4,...,2[3], the subset of T', T'(s) := {0 €
[|o(xi) € xi + 351 Anjivjs for all i} is a subgroup of T.
2. If s|s’ (s divides s') then T'(s") C T'(s).
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Proof. — 1. It is easy to see that the set I'(s) is closed under multiplication
and that it contains the identity. The fact that the set I'(s) is closed under the
operation of taking inverse is a consequence of repeated use of Theorem 3.3.
Let o € I'(s) and z} := o(z;) = z;—a; for some odd element a; € Y1 Mnitjs
Now,

z; =z; + a;j(z1,...,2,) =z, + a;(z) + a1(z),..., 2, + an(z))
=2} +ai(h,...,2)+ D a®(@)0%a;)(a)
0#a€ B,

=2l t+a@)+ Y @) +ai(z),..., 2], + an(x))0*(a;) ()

0#a€ B,
! / [e% / o /

=z +a@)+ Y a*(@)0(a)(a)+

0£ac B,

> () dP@)d%(a)(@)d*(ai)(a)
0£a€ B, 0£BE€ B,

]
keep going making substitutions z; = «} + a; and then using Theorem 3.3 we
get the result (in no more than [2] 41 steps).

2. This is obvious. O
LEMMA 3.5. — Let K be a commutative ring, and s = 2,4,...,2[5]. Then
1. each element o € I'(s) is a (unique) product s = --- 0y, ,, Op,,, 0p,,, for
unique elements b; = (b; 1,...,bin) € A}, ; (see Lemma 3.2).

2. The elements {y;  z= |1 <i <n, XA € K*,a € B,, such that a € 1 + sN}
are generators for the group I'(s) (see Lemma 3.2).

Proof. — These statements follow from Lemma 3.2. O

For each odd number s such that 1 < s < n, the set

(35) Q(s) == {witala € ZAn,js} ={witala € Z Anjs}

j>1 1<j isodd
is a subgroup of  (Lemma 2.8.(4)). Note that Q(1) = Q and Q(n) = {e}.

The groups Gz__g4-. — Recall that Gz _g, is the group of all K-automorphisms
of the Grassmann algebra A, (K) that respect its Z,-grading (o € Gz, _g4, iff
0(Anyis) = Apis, © > 0). The next result describes the groups Gz, _ g,

LEMMA 3.6. — Let K be a reduced commutative ring with % € K. Then
1. if s is even then Gz, _gr = I'(s)GL, (K )P =T'(s) ¥ GL, (K)°? and I'(s) =
I'n GZs—gr;
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2. if s > 3 is odd then Gz, _gr = Q(s)GL, (K)? = Q(s) x GL,(K)°? and
Qs)=Qn Gr,—gr = {witala € 219 isodd An,sj}-

Proof. — 1. The number s is even, hence Gz,_4 C Gz,_gr = ['GL, (K)°P
(Lemma 2.15.(1)). Then it follows from the inclusion GL,(K)°” C Gz,_g4r
that Gz,_gr = (I' N Gz,_gr)GL, (K)°P. So, to finish the proof of statement 1
it suffices to show that I'(s) = I' N Gz,_4r. The inclusion I'(s) C I' N Gz, _4r
is obvious. If e # v € I'N Gz, g then v = ---0p,,,,0p,,,, (Lemma 3.2)
where b2k+1 = (b2k+1’1, . ~ab2k+1,n) 7& 0, "Y(.'I/'l) =z; + b2k+1,i B for all +.
Hence 2k +1 € 1+ sZ, i.e. oy, ., € I'(s). Applying the same argument to
vab_ziH = - Opys € [N Gz,_gr and using induction on k we see that all
Obyy,; in the product for v belong to I'(s). Therefore, I'(s) = I'N Gz, g,

2. By Lemma 2.8.(3), QN Gz,—gr = {wi+al@ € I 1<jis0dd An,si} = Q(5).
Considering the action of automorphisms from the intersection Gz, _g. NQI" on
the generators z1,...,z, (with help of Corollary 2.13) it is easy to show that
Gz,—gr NQI = Gz, —gr N Q. Recall that G = QI'GL, (K)° and GL,(K)°? C
Gz, —gr hence

Gz —gr = (Gz.—gr NOT)GL, (K)% = Q(s)GL,, (K)° = Q(s) x GL,,(K)°. O

The groups @, ®(i), and &’. — Let K be a commutative ring. Clearly,

where a;,b; € K|x1,...,%5,...,%5], a; € A Nm? and b; € A% Nm3. Consider
the subset ® of I where all b; = 0,

(37) o:={o:z;,~»z;(1+a;), i=1,...,n}
The set ® can be characterized as

b={ocel|o(z1) € (x1),...,0(xn) € (zn)}.
Then it is obvious that ®® C & and idy, € .

LEMMA 3.7. — Let K be a commutative ring. Then ® = {o € I'|o((z1)) =
(z1),...,0((zn)) = (xn)} is a subgroup of T.

Proof. — It remains to show that, for each o € ®, 071 (z;) € («;) for all i. The
equation z := o(z;) := z;(1 — a;) can be written as z; = =} + z;a;(z1, ..., %)
(we have changed the sign of the a; for computational reason). Our aim is to
show that z; = x}(1 + a}), then the result will follow as z € (x;). We use in
turn, first, the substitution z; = z} + x;a;(x) and then the Taylor expansion
(Theorem 3.3). After repeating these no more than n + 1 times we will get
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the result (since all elements are nilpotent and any product of n + 1 of them is
z€ero).

z; = ) + za:(x) = z) + (2] + zi0:(2))a; (2] + z101(2), . .., T, + Than(x))
= @ + (2] + zias(2)) (@i (), - .., 27,)
+ Y (za(2)*0%(a) (@), ..., 7)) =+ . -
0#aE B,

The group @ is the solutions of the polynomial equations in coefficients of
the elements a; and b;: by = 0,...,b, = 0. So, ® is a closed subgroup of I
with respect to the Zariski topology. The group ® is an algebraic group, the

ev

algebra of functions on @ is a polynomial algebra over K in n-rtkx (A7 | 55) =
n(2"~2 — 1) variables. So, the algebraic group ® is affine and

(38) dim(®) = n(2"? - 1).
Note that, in general, the set {c € T'|o(z1) =21 + b1,...,0(zn) = Tpn + by}
is not a subgroup of I' where each b; € K|z1,...,7;,...,7,] Nm3 is odd.
Foreachi=1,...,n, let

®(i):={ocel|o(z;) € (z;)} ={oel|o(x;) =z:(1+a;)}
where a; € K|z1,...,Zi,...,7,]%,. Clearly, ®(i)®(i) C ®(i) and the set ®(i)

contains the identity map.

LEMMA 3.8. — Let K be a commutative ring. Then ®(i) = {c € T'|o((z;)) =
(z4)} is a subgroup of T.

Proof. — It remains to prove that, given o € ®(i), 0~! € ®(i). Repeat word
for word the proof of Lemma 3.7. Note that if K is a field the result is ob-
vious since dimg ((z;)) = dimg(o((x;))): it follows from o((z;)) C (z;) that
o((x;)) = (x;), hence o~ 1((x;)) = (=;), as required. O
It is obvious that ® = NI ; ®(4), and
D(i1,...,0s) :=N5_1 () ={oc €T |o(ziy) € (z4y),.--,0(xi,) € (x,)}
={oello((zi)) = (zs,),-.-,0((zs,)) = (zi,)}
is a subgroup of I'. The submonoid of G,
& = {0 € G|o(x1) € (x1),...0(x,) € (z)},

is a subgroup, as the next Lemma shows. Let T™ be the subgroup of all the

diagonal matrices of GL, (K )°P, the n-dimensional torus.

€ K. Then
) = (zn)}-

LEMMA 3.9. — Let K be a reduced commutative ring with
P =QxP)xT" and &' ={oc € G|o((z1)) = (x1),...,0((xn

SIS

~—
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Proof. — It is obvious that  C ®', T" C &', and ® NT'GL,(K)°? = &T".
Since G = QI'GL,,(K)°P (Theorem 2.14.(3)),

&' = Q(® NTGL,(K)) = QOT" = (Q x &) x T".
Then by Lemma 3.7, ® = {0 € G|o((z1)) = (z1),...,0((zn)) = (zn)} O

The groups &, ; and its subgroups. — Let K be a commutative ring. For each
i=1,...,n, the stabilizer of the elements x;, j # ¢, in I,

Gni =A{vy €T |v(z;) = x;,Vj # i},
is a subgroup of I'. Clearly,
(39) bni ={V1tap 1 i = xi(1+a) + b, x; — z;,Vj # i}
where a € K|21,...,Zi,...,7,]%5 and b € KLazl,...,@,...,an%%, and
Vi+a,bYi4a’ b = Y(1+a)(1+a’),b(1+a’)+b’ s ’Yfﬁ%b = Y(14a)~1,—(1+a)~1b>
’Y1+a,b’Y1+a',b'7ﬂla,b = Yi+a’,(14+a)~1(ba’+b')s Y+a,b = V1,(14+a)~16V1+a,0-
Below, the equality (42) explains importance of these small subgroups. So,

6ni = {71400} and &, ; = {71} are abelian subgroups of &, ; such that
6niNéni=1e}, bni=b6nibni,and &, ; is a normal subgroup of &, ; since

(40) 71+a,071,b71_+1a,o = Y1,(1+a)~1b-

Therefore, &, ; = 5'7171» X é"nz Clearly, 5;” =6, NO.
Let E’  be the group of units E/,_; in the case of the Grassmann algebra
n,t
K|z1,..., %5y, Tn], Le.

E ~:={l1+alacK|z1,...,Zi,..., 2|5}

n,i

LEMMA 3.10. — Let K be a commutative ring. Then

L Gni= 5211 . 6111

2. The map E' ~— &
n,i

/
n,.?

14 a— Yita,0, i5 a group isomorphism.

— /! . .
3. The map K|x1,...,Zs,...,T]%% — Gnis b Y1p, 18 a group isomor-

phism.
4. 671,1’ = <71+/\z‘¥,0»71,>\mjxkxl |)‘ € Kv |a| = 2} .7 <k < laaU {]7k»l} g
(1,....%, ...,n}).

Proof. — Statements 1-3 are obvious. Statement 4 follows from statement
/

1 and the two facts: (i) {y14az0,0} are generators for the group &, ; since
{1 + Az*} are generators for the group E;? and (i7)

(41)

’71+a,071,b’71__|}a,0’71_,1} = M71,(14a)~1b—b = V1,—ab+a2b—adb+--- = V1,—abV1,a2b—a3b+----
The proof of the Lemma is complete. O
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For each j > 2, let {(‘;Z” := &n,;NU?} be the induced (descending) filtration

on the group &, ;. BEach subgroup ézu ={o € &ni|l(c—1)(m) Cmi}isa
normal subgroup of &, ;. By Lemma 3.2 and Theorem 2.10.(2), the group I is
a finite product

T oolemil] | T £5) TT #09)
w1l e 116

where
2m+1 —~
6'[,1771‘n+ ] = {71+a,b S 671,1’ | a e K|_.'171, ey gy e aanQma
be KL$1,...,§3\i,...,.'EnJ2m+1}.
Clearly, 5271 € g2m+1,
Minimal sets of generators for the groups I', U, and ®. — For each i = 1,...,n;
A€ K,and a C {1,...,n}, 3 < |a is odd, let us consider the automorphism
of T,
Tige © i — Ty + Ax®, x5 — xj, Vj #i.
Then
(43) i age = Ti—Aaer-

For two elements a and b of a group A, the group commutator of the ele-
ments a and b is defined as [a,b] := aba='b~! € A. A direct (rather lengthy)
calculation shows that

(44) [Ui,)\firjmavaj,uzjzﬁ] = 04, \pz;zjzPze

for all \,u € K; i # j; o and [ are subsets of {1,...,n}\{,5} such that
anNf =g, aisodd and 8 is even, |a| > 1 and |8| > 2. Similarly,

(45) [Ui,kziz“vo'i,uxﬁ] = Oi,—ApzBz

foral \pe K;i=1,...,n;and o, 8 C {1,...,n}\{i} such that a NG = 2,
o is even and f is odd, || > 2 and |5] > 3.
For a group A, let us consider its series of commutators:

AD = A A® =4, A i > 1.

Foreachi=1,...,n; A € K; and j < k <, let us consider the automorphism
Cinzjzpe €1 T = T + AT;TRTy, Ty > T, for all m # i. Then
g; o =0; oL =g}
LArjrpT Yi,px ey — 94, (A p)zjzrz A TRm . Od,—AzjmpT

So, the set {0 x¢;z,2, | A € K} is isomorphic to the additive abelian group K,

Ui,)\wjitkil?l g )\'

TOME 138 — 2010 — ~N° 1



THE JACOBIAN MAP, THE JACOBIAN GROUP, ... 75

THEOREM 3.11. — Let K be a commutative ring in statements 1 and 2; and
let K be a reduced commutative ring with % € K in statements 8 and 4. Then

1. the group T is generated by all the automorphisms 0;re e,z I-€-
I' = (Gipejane |® = 1,...,m3A € K;j < k < 1). The subgroups
{0ira;ena frex of T form a minimal set of generators for T

2. T =T24+3 .= {5 € T| (0 — 1)(m) C m**3}, i >0.

3. The group U is generated by all the automorphisms 0; sz, z,z, and all the
automorphisms witrg,, t.e. U = <0i,>@jwkwl,w1+)\wi ,i=1,...,nX €
K;j <k <l). The subgroups {0ixe;zz; Yrek, {Witrz fack of U form
a minimal set of generators for U.

4. UW =U"*2 .= {0 € U|(0 —1)(m) C m*t2}, i > 0.

Proof. — 1. In view of (42) and Lemma 3.10.(4), it suffices to show that each
automorphism 714 xge 0 from Lemma 3.10.(4) is a product of the generators
from statement 1. In the o-notation, the automorphism 7; 4z« o is of the form

(46)

0 1= 04y Azyy @iy (@ig@iy) - (Bigp 1 Ting ) (@ing 1 Tigm2)Tiomya

for some distinct elements 41,142, ...,%9m+3, m > 0, and A € K. The result is
obvious for m = 0. So, let m > 1. Then, applying (44) m times we have

(47)

0= [ i [ail)\zil TigTig,, 137 Oiy,—xiy Tigyit xiszr?]’ Oy, —iy @iy, wisz s ]7 Oiy,—xi, Zi3zi4]'
The claim that the ‘one dimensional’ abelian subgroups {o;, ijxm} of ' form
a minimal set of generators is obvious due to the isomorphism in Theorem
2.10.(2) in the case m = 1 there.

2. By Theorem 2.10.(2), T(™ C I'?"+3 for all m > 0. Clearly, T™ = {e} =
['?"+3, Now, using downward induction on m (starting with m = n), in view
of Theorem 2.10.(2) and (47), in order to prove the equality T'(™~1) = [2m+1,
it suffices to show that each automorphism of the type

0= Ui*)‘zi1wi2wi3 (@ig@ig) - (Tig,, o%Tig,, )(zi2mxi2m+1)

(where the elements 7,41, ig, . . . , io,+1 are distinct, and A € K) can be expressed
as (m — 1)-commutator of the generators from statement 1 (i.e. m — 1 brackets
are involved). Below is such a presentation (apply (45))
(48)
o= [Ui,*AIiIiQ‘m Tigpi1? [Ui,*$iﬂ?i2m,2 Tigm_1 [ . [O'i,*mﬂmwigj > Odymyy wizwig] s ]
3. By Theorem 2.10 and statement 1, it suffices to prove that any inner
automorphism W1 Azi, @iy @iy, 10 i1 < -0 < dgmy1, m > 0, A € K, is a
product of the generators from statement 3. For any automorphism o € G and
an odd element a € A,, (Lemma 2.8.(2,4)):

(49) [0’, w1+a] = aw1+a0_1w17_&a = wl—l—o’(a)—a'
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Applying this formula m times we have

(50)

Witrz;, Tig Tigy g [Uil,mil TinTig) [Uil,zilﬁﬂi4$i5 [ .- [Uil,mil Tigm Tigyy1? w1+>\ﬂh’1] s ]
The statement that generators in statement 3 are minimal follows from the
isomorphisms in Theorem 2.10.(2,3) for m = 1 there.

4. By Theorem 2.10.(2,3), U™ C U™+2 m > 0. Clearly, U™ = {e} =
U™*2. Now, using downward induction on m (starting with m = n), in view
of Theorem 2.10.(2,3), statement 2 and (50), we have U™ = U™ for all
m > 0. O

COROLLARY 3.12. — Let K be a commutative ring. Then

1. the group ® 1is generated by all the automorphisms o;z,zpz, &€
Q= (Cirgaez |t =1,...,m;X € Kjk < l;i & {k,1}). The subgroups
{0i rwszra frekx of © form a minimal set of generators for ®.

2. &) = 23 .= {5 € ®| (0 — 1)(m) C m?*3} i >0.

3. Each element o € ® is a unique finite product 0 = --- 0oy, 0p,0p, for
unique elements b; :== (b;1,...,bin) € AL (see Corollary 2.13) such that
bij € (x;) for all j.

Proof. — 3. Statement 3 follows from Lemma 3.2 and Theorem 2.10.(2).

1. By statement 3, the elements of the type (46) are generators for the group
®. Then the result follows from (47).

2. By Theorem 2.10.(2), ®® C ®%+3 for all 4 > 0. The reverse inclusion
follows from (47). O

4. The Jacobian group X and the equality > = >'>"

The Jacobian map. — Let K be a commutative ring. Recall that the group

I" consists of all automorphisms v, : ;1 — z1 + b1,...,2, — z, + b,, where
b:= (b1,...,b,) is an n-tuple of odd elements of m3. Consider the matrix B :=
% = (gTIZ;) of the skew gradients grad(b;) := (g;’il yeves gﬁn) for the element
b= (b1,...,b,) (where 8%1’ ey a% are the left partial skew K-derivatives of

A (K)), and its characteristic polynomial

det(t+ B) =t"+ Y tr;(B)t" "

i=1
Clearly, try(B) = tr(B) = Y 1, gzi_ is the trace of the matrix B, tr,(B) =
.. . ab;
det(B) is its determinant, and tr;(B) = Zl§j1<-~-<g‘i§ndet(ﬁ)u,uzl,...m
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Now, the jacobian of the automorphism -y, is given by the rule

(51) J(w) = det(t + B)|s=1 = 1+ Y _ tr;(B).

i=1
Note that the sum of the traces above is an element of m? since tr;(B) € m?,
i > 1. So, the Jacobian map is given by the rule

(52) J:T = B,y J(%) =det(t + B)|i=1 = 1+ Y _ try(B).

i=1
It is a polynomial map in the coefficients of the elements by, ..., b,. Recall that
the abelian multiplicative group of units E;, is equal to £}, = 1+ 7,51 Ap 2

The Jacobian group ¥. — Let K be a commutative ring. Despite the fact that
the jacobian map ./ : I' — E, is not a group homomorphism, its ‘kernel’

Y:={cel|J(o) =1}

is a subgroup of T as it easily follows from (25) and (26). We call ¥ the Jacobian
group. This is a sophisticated subgroup of I'. By (52), the elements of the group
3. are solutions to the system of polynomial equations over K

(53) S ={wel|) tr(B)=0}
i=1

So, X is a unipotent algebraic group over the ring K. If K is a field then X
is an algebraic group over K (in the usual sense). By Theorem 2.3.(1), the
system of polynomial equations in (53) can be made explicit

(54) Y={wel| ¢(8°‘(zn: tr;(B))) =0, foralleven 0+# o € B,}.
i=1

The Jacobian group ¥ is the solution to the non-linear system (53) of skew
differential operators equations. It looks like this is the first example of a
group of this kind. The Jacobian group X is a closed subgroup of I' in the
Zariski topology. The group I' contains the descending chain of its normal
subgroups

P=T350% 5.0l .= U2t 5 ... 5 T2 S 1235148 = (e}

with the abelian factors I'?™+1/T2m+3 where I'*™*+1 = {¢ € T'| (0 — 1)(m) C
m2m+1}.

The group ¥ contains the descending chain of its normal subgroups

2223 225 2 2 22m+1 ::Zml—\Qm-‘rl 2 :_)22[%]+1 222[%]+3:{€}
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with the abelian factors {32m*1/$2m+3} gince R2m+1l /y2m+3 C p2m+l p2m+3,
the abelian group.

The Jacobian group ¥ and the image of the Jacobian map for n = 3. — For n = 3,
T = {oy|o(z1) = 21(1 + Ma2x3), 0(22) = 2o(1 + Mgz123), 0(23) = 23(1 + A32175), X € K*}
where \ := (A1, A2, A\3), and ' — K3, o) +— ), is the group isomorphism. Since
J(ox) = 14 A1Taw3 + A2x123 + A37122, the Jacobian group ¥ = {e} is trivial,
and im(¥) = Ej, i.e. the Jacobian map  : I' — E} is surjective.

LEMMA 4.1. — Let K be a commutative ring and o,7 € I'. Then

1. J(o)=J(1) iff T € oX.

2. j( H=g0Y) iff r € Zo.
Proof. — 1. Note that (o) = o(J(c71)7!) as it follows from the equality
1=Y(oo™)=J(0)o(J(c71)). Now, T € o iff o7 € D iff 1 = J(o77) =
I o (J(1) if J(1) = (J(e™") 1) = (o).

2. By statement 1, J(c7!) = J(r ) if 71 € 071X iff 7 € B0 O

Remark. Lemma 4.1 explains ‘intuitively’ why, in general, the Jacobian
group ¥ is not a normal subgroup of I': note first that J/(c~!) = 0= 1(J (o)1)
and J(771) = 771(J(7)~!). Suppose that ¥ is a normal subgroup of I, then
oY = Yo for all o € X, and so the two statements of Lemma 4.1 are equivalent,

ie. J(o) =J(1) = uiff J(o71) = J(r71) iff 07 (u) = 77 (u). Since the
image of 4 is ‘big’ there is no reason to believe that the automorphisms o~!
and 77! acts always identically on u.

The image im (/) and I'/X. — By Lemma 4.1, the map
(55) J:T/E —im(]), 0% J(0),
is a bijection.

The groups I'y,,,, the Jacobian ascents. — By (31), the abelian group E/, contains
the descending chain of subgroups

E,=En;2E, 4D D Ey 52 D Ej a0 = {1}

If K is a commutative ring then, for each m =1,2,..., [ﬂ] + 1, the preimage
-1
(56) Fzm = Fn,Q’m ::J ( n, 2m) - {U er |J n Qm}
is, in fact, a subgroup of I': let 0,7 € 'y, then
j J(U)U J C E’I/'L 2m 7 (En 2m) c En QmE’;L 2m c E;z 2m>

i.e. FQmFQm g Fgm; and
S0 ) = (07 F))) 7 S (07 (Enom) " S (Epam) ™' = Epom
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ie Iy} CTyp.
Note that

(57) Y = Igny40.

We call the groups I'yp, = I'y, o, the Jacobian ascents. We have the descending
chain of subgroups in I, the Jacobian filtration:

(58) P =Ty 2742 2Tz 2 Tygpso = 3.

We will see later that all these groups are distinct except the last two if n is
even (Corollary 7.7); each group I', 42 is a normal subgroup of I'y,, such that
the factor group I'a;/T'am4o is abelian (Lemma 4.2).

LEMMA 4.2. — Let K be a commutative ring. For each natural number m > 1,
the group 'y om+2 15 a normal subgroup of I'y, oy such that the factor group
Ty2m/Tn2m+2 is abelian.

Proof. — Recall that the groups {E] ,,,} are I'-invariant. The result is an
immediate consequence of the following obvious fact: for each m > 1, a €
E;, 5, and 0 €T,

(59) o(a)=a mod E], 5, s

Indeed, to prove that I'j, 2,42 is a normal subgroup of I';, 2,, we have to show
that, for any o € Ty, 0m and 7 € Ty 942, 07071 € Ty 2o, ie. J(oT0™1) €
E;, om42- By (25) and (26),

Jora™) =J(0)o(J (7)) or(J(07)) =S (o) o (J (7)) o0~ (I (0) 7).
Note that o(J(7)) € E}, o, since J(7) € E} o,,49; and 070~ (J(0)7") =
J(0)™" mod E}, 5,,,5, by (59). Now,

J(oro™ ) =J(0)J(0) " =1 mod Ej, 5, s,

ie. J(o107 ") € E] 549, as required.

To prove that the factor group I'y, 2/m/T'n 2m+2 is abelian, we have to show
that, for any o,7 € Tyam, 070 1771 € T o2, that is J(oro™1r71) €
E;, omy2- By (25), (26), and (59), we have

Jloro 1) =J(0) o(J(1)) o (0 ™")) oo™ (S (771))
J(@)oJ(r)ora™ (S (o)) oro™ 7 (J (1))
J(@)I (I (@) ()T =1 mod B} 15 H

The following result which is a part of Lemma 4.2 has a more short and
direct proof.

COROLLARY 4.3. — The Jacobian group X is a normal subgroup of L[z such
that the factor group ].“2[%]/2 is abelian.
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Proof. — Since each automorphism o € T' acts trivially (i.e. as the identity
map) on E:u?[%]’ the Jacobian map ./ : Tz} — E;,Q[g]v T+ J(1), is a group
homomorphism (J(o7) = J(0)o(J(r)) = J(0)J (7)) with the kernel X, hence
3 is a normal subgroup of IPTEY such that the factor group ITEY) /% is abelian

since the group E, o[n] 18 abelian. O
4l

The elements of the group I's,, are solutions to the system of polynomial
equations over K,

(60) Tom = {7 €| Y tr;(B) € m*"}.

i=1
So, I'y,,, is an algebraic unipotent group over the ring K. By Theorem 2.3.(1),

the system of polynomial equations in (60) can be made explicit
(61)

Tom ={mw €T ¢(6“(Z tr;(B))) =0, foralleven0# a € B,, 1< |a| < 2m}.

i=1

LEMMA 4.4. — Let K be a commutative ring. Then, T?™t!L C Ty,,, for each
m=1,2,...,[2]+1.

Proof. — Let 0 € '™+l Then o(x;) = 21 + b1,...,0(x,) = x,, + b,, where
all b; € A(r);,i22m 4+1- Now, the result follows from

— Ob;
62 =1 =1 d m*™
(62) J)=1+ ; oz, mod m*",
i.e. J(o) € E},, since all gzii € m?™, O

Now, we introduce two important subgroups of X, namely ¥’ and X", and
prove that I' = ®3" (Theorem 4.9.(1)) and ¥ = ¥'%” (Corollary 4.11.(1)).

The group /. — Consider the following subgroup of X,
Yi=Y¥n®={ceX|o(x) € (x1),...,0(zn) € (zn)}
={oceX|o(x1)=21(14+a1),...,0(xn) =z, (1 +a,)}

where each element a; € K|21,...,%;,...,2,]%5. The group X’ is a closed
subgroup of X as the intersection of two closed subgroups ¥ and ® of I'. It
contains the descending chain of normal subgroups

sV — 3 D /5 D...D y2m+l . yAr2mtl D...D ElQ[ng ) 2/2[%]+3 — {e}

with the abelian factors {X/2m+1/5/2m+3},
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Ezample. Let a; € K|za,...,Zn]om and ay € K|z1,23,...,2Zy]2m be ho-
mogeneous even elements of the same graded degree 2m > 2, and o € I':
z1 — 21(1 + a1),x2 — z2(1+ a2), ; — x5, § > 3. Then o € ¥ iff

14+a; —1 28 day Oay
J(o) = de <—a;2 02 14 g +a1tar Fara + e o

iff a; = —ay € K|z3,...,Zn]2m and a% = 0. So, for each even homogeneous
element a € K |z3,...,Tn]2m such that a® = 0 the automorphism

(63) cel:z1—z1(1+a), z2— x2(l —a), z; — z;, j >3,
belongs to the group Y.

The group ©"'. — For each i = 1,...,n, and b; € K|z1,...,T;,...,2,]%,

consider the element of >:
(64) gi,bi .’L'l'—>$1+b“ .’L'j '_)'Tja V]#Z

Let X" be the subgroup of ¥ generated by all the elements &; 5,, 1 < i < n. For
eachi=1,...,n, let

"o._ o d
Zi = {gi,bi bz S Kl_xly ceey Ly - 'ﬂanOZS .
Since &b, &i b, = &i b0, and 5;;1, = &;,—p,, the set X is an abelian group canon-
ically isomorphic to the abelian additive group K|z1,...,Z;,...,7,]%% via

&b, — b;. Therefore, the group X/ is the direct product of its one-dimensional
abelian subgroups isomorphic to (X, +),

(65) ¥ = H{&,,\aza})\ek
o
where a runs through all the odd subsets of the set {1,...,%,...,n} with |a| >
3; the map (K, +) — {& xze frek, A &irga, IS a group isomorphism.
So, the group X" is generated by its abelian subgroups 37, ... X
The commutator of the elements &;;, € ¥ and §;p, € X7 where i # j is
given by the rule

(66) [£ip:r&50,] 1 @i — (1 — b))z — bz — b(c' + be),

(67) x; — b2z + (1 +bb + (b0')*)z; + b (c+ b’ + bbc),

(68) Tk — Tk, k#%]?

where b; = bz + ¢ and b; = b'z; + ¢’ for unique elements

bt € K|x1,...,T5,...,Zj,...,2, )35 and ¢, € KLxl,...,@,...,@,...,wnj‘g.
Given automorphisms &1 p,,...&np,, and & := []i—; &, is their product in

an arbitrary (fixed) order, then
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The group X" contains the descending chain of normal subgroups
YWy ... ymtl .y A2mtl 5 S Z”Q[%H‘l ») Z//2[§]+3 — {e}
with the abelian factors {¥/2m+1/5/2m+31,

A direct calculation gives
(70) [ginCjﬂG“vgj,pwﬁ] = §i,f)\;m°‘zﬁ

where i # j; a is an even set and [ is an odd set such that the sets {7,;j} and
a U g are disjoint. Similarly,

(71) [gi,kxo‘a‘gj,ua:ﬁ] =€

for all i # j; A\, p € K; a and § are odd sets such that |a| > 3 and |3| > 3, and
the sets {4, j} and o U § are disjoint.

One can verify that for each ¢ # j, and even sets « and 8 such that {i,j}
and a U 8 are disjoint, A\, u € K, the commutator (which is an element of )
(72)

[€inejzo &) paian] * Ti > Ti(1— )\,uxaxﬂ), z;—x;(1+ )\,u:vaxﬂ), Tp > Tk, k #£1,7,

belongs to the group ¥/, and
[{ijxa,gj,wixﬁ]fl cxex(L+ /\ua:a:cﬂ), z; - il - )\,u:v”‘w’@), T Tk, kF£ 1, .

Now, the next corollary is obvious since [£; xz;ze,§j uzi08] € X' NE" C ENE".

COROLLARY 4.5. — If K is a commutative ring and n > 6 then X' NY" # {e}
and @ NY" £ {e}.

A straightforward calculation gives

(73) [giﬂ/ij% [&,Awg‘w""gj,pwimﬁ]] = §i,72)\;wzjz°‘m5z%

for all \, u,v € K;; the sets a, 8, and v are even and non-empty; the sets {7, j}
and aU S Uy are disjoint. Similarly,

(74) [£i7V$77 [giv\zjfaagj,ua:imﬁ]] = gi,—)\m/m“wﬁz%

for all A\, u,v € K; the sets @ and 3, are even and non-empty; the set v is odd
and |y| > 3; the sets {4,j} and a U B U~ are disjoint.

TOME 138 — 2010 — ~N° 1



THE JACOBIAN MAP, THE JACOBIAN GROUP, ... 83

The group X for n = 4,5,6. — Let A be a group and Ai,..., A, be its sub-
groups. We say that the group A is an ezact product of the groups A;,

A:= Ay - Aglexact] := H A;

i=1
if each element a € A is a unique product a = aq - - - as of elements a; € A;.

The next lemma describes the structure of the group X" for small values of
n = 4,5,6. These values are rather peculiar as Theorem 4.7 shows.

LEMMA 4.6. — Let K be a commutative Ting.

1. If n =4 then ¥ =3 x --- X XY is the abelian group.
2. If n=5then X" =X x --- x X is the abelian group.
3. If n =06 then
(@) " = Z(Z") X [1i ki 20k, 18 the ezact product of the centre
Z(X") of ¥ and the one dimensional abelian subgroups Z;';Lk,l =
{&irajzpe frexr = K wherei=1,...,6;j <k <l;i&{jk]l}.
(b) [27,2"] = ¥ NXY’ and the group &' N'X" is the direct product
[Ii<; Cij of its subgroups Cij := {cijn 1 i = z;(1 — Az%),z; —
zi(1 4+ Ax®),z, — zk, k # 1,5} where o := {1,...,6}\{3,5} and
Cij ~ (K,+) via Cij\ A.
() Z(Z") = £ = (S NE") x [[i=1 {5 where S5 = {&,
Kl_.’lll,...,@,...7$6j5}.

b; €

Proof. — 1 and 2. If n = 4,5 then the elements of ¥ commute with the
elements of Z;’ , hence statements 1 and 2 are obvious.

3. Let n = 6. The group X" is generated by its abelian subgroups
XY, ..., 3¢, and so, by (65), the group X" is generated by the 1-dimensional
abelian subgroups (& xzo)rex =~ (K,+), & aze — A, where |a| = 3,5. If
|a| = 5 then all the & xgo € Z := Z(X"), the centre of the group ¥”. Since
n = 6, 3> C Z and the RHS of (70) is equal to the identity. By Theorem
2.10.(2), [X",X"] € ¥, and so [X",X"] C Z. By (70), (71), and (72), the
only nontrivial commutators come from (72) and only in the case when i < j
and {i,j}UaUB = {1,...,6} there. In this case, the commutators (72) is
the automorphism c;;, € Z. It is obvious that the product of the groups
Cij is the direct product ], ; Cyj, and [, %"] = [[,; Ci; € ¥'NE". Tt
follows that ¥"° = [2",%"] x [[S_, 375 is the direct product of groups since
the abelian group X'° is generated by the subgroups [%”,%"] and []°_, s,

P . . P . _ " __ x5 " .
and their intersection is trivial. Since n =6, X" = X" X [[; ; 1, X7 1 ; is the
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exact product of groups where i, j, k,[ are as in (a), then X' NY" = ¥/ N L5,
Since [£”, "] C ¥’ and ¥"° = [, 5] x [{—; /5, we have

YA = [E”, 2// EI N H E// E” H Cij
i<j
since ¥/ NS, Y75 = {e}. This proves statement (b).
It follows from the decomposition X" = %" x [, ., %7, ; and (72) that
Z C 3", Since X0 C Z, we have Z = X"°. Since X" = X" X [, ; v 1 1 ks
(a) follows. Since X° = [, 2] x [{_; £/, (c) follows. O

A minimal set of generators for the group >”. — The next result provides a (min-
imal) set of generators for the group X”.

THEOREM 4.7. — Let K be a commutative ring and n > 4. Then

1. if either n is odd; or n = 4; or n is even and n > 8 and % € K, then
E”: <0—iy)\$j$kﬂ?l |>\€K77/: 1’7”7.7 <k<la2¢{j7k7l}>7

and the subgroups {0ixz,zp2, }rex =~ K of X" form a minimal set of
generators for X',
2. If n is even, then

Y = (Cipa,0n0s O Az |)\EK i=1,...,nj<k<lii&{jk1l}).

Proof. — 1. Recall that the group X" is generated by its abelian subgroups
Y,... %", In order to prove the claims that the elements above generate the

group X" it suffices to show that each automorphism &; y,» (where « is odd,

|| > 3, and i € «) is a product of some of them. By (70), for A € K and

distinct indices 1, j, k1,11, ko, l2, . . ., k2m, lam, D, @, T there is the equality

(75) gi«\(ﬂckl 211 ) @y Tig)  (Thyy, Tigp )TpTqTr — [Si’fﬂjmkl Ty [§j71imk2 Tiy
[§i7xj$kz3wl3 ) [§j71i1k4zl4’ e
[gj,xikanzbm ) gz}/\xpacqwr] . ]

Similarly, for A € K and distinct indices 4, j, k1,11, k2, l2, - . -, k2m+1, lom+1,0, ¢, T
there is the equality

(76)
Ei A @y 21y ) @hy013) (Thgy o1 D1y 41 )Tp@azr = (Siejany w1y [Ewinyay
[€i,250ng 215 0 [EG2100, 3030 - - -
(€625 20z, 01 igm s 1 > Sl ATpzqas] - - ]-
Suppose that n is odd. The set {i} Ua (for & x4« ) is an even set hence it is not

equal to the set {1,...,n}, and so one can find element j such that j € {i}Ua.
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It follows from (75) and (76) that the 1-dimensional subgroups {0 xz,z,«, } are
generators for the group X”. They are a minimal set of generators due to the
isomorphism in Theorem 2.10.(2) in the case m = 1 there.

Let n > 4 be an even number. If n = 4 the result is obvious. If n =
6 the result is not true by Lemma 4.6.(3). So, let n > 8 and 3 € K. If
{i} Ua # {1,...,n} then we have already proven that the automorphism
§i,ace is a product of the elements 0y x'z;z,a,- If {i} Ua = {1,...,n} then the

automorphism &; yze = gi,/\mlwﬁmxn is a product of the elements o/ x/¢;z, 2,

by (73).
2. This statement has been proven already in the proof of statement 1 (see
the last two sentences above). O

The Jacobian group is a complicated group. To understand its structure
first we intersect it with the small group &, ;.

LEMMA 4.8. — Let K be a commutative ring. Then

é}m nY= ((;l,iﬂ = {gi,bi od

biEKLxl,...,@,...an23 .

Proof. — A typical element of the group &, ; is as follows Y1445 @ @; — z;(1+
a)+b,zj — xj, j #i (see (39)). Then J(Vitap) =1+a. S0, Yitap € EniNE
iff a=0,ie EiNS =6, O

The equality I' = ®%”. — For a natural number n, let od(n) be the largest odd
number such that < n, and let Od(n) be the set of all odd natural numbers j
such that 3 < j < n, ie. Od(n)={3,5,...,0d(n)}.

For each t = 3,5,...,0d(n), let

gf’ri,t = {(762“|0’(5I3i):1§i+bi, b; GKLxl,...,ﬁ-,...,ant, i:l,...,n}.

The set gﬁ,t is an affine variety over K of dimension n("zl), i.e. the al-
gebra of regular functions on & :;t is a polynomial algebra in n("zl) vari-
ables where the coordinate functions are the coefficients of the polynomials

b € K|Z1,...,Ti,...,Tpn]¢ Let

(77) 9’1: = gfri,od(n) ><---><9’Z,5><9Ti§,3
be the product of algebraic varieties. Then
(78)
. , od(n) n—1 od(n) n—1 -
dim(9,)=n Z (2s+1> :"(Z (25—1—1) —n+1)=n2"2-n+1).
s=1 s=0

In general, ® N X" # {e} (Corollary 4.5). The next theorem shows that
I' = &Y" and that any element of I' is a unique product of elements from ®
and ¥” when one puts certain conditions on the choice of the multiples.
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THEOREM 4.9. — Let K be a commutative ring. Then
1. T = oX".
2. 9 =®I%" j=3,5,...,0d(n).

3. Let j = 3,5,...,0d(n). Each o € TV is a unique product o =
Giod(n) -+ Ej+28; where ¢; € ®7 and each & is as in (69) with
&p(z;)) —x; € K21, T4y sTn]r, © = 1,...,n. Moreover, for all
i=1,...,n the following conditions hold:

(a) o7 (@) = —€(z) mod ((z:) +Agds;.0),
(b) &k -+ &ira&io (wi) = —Ersa(z:) mod (i) +Ap% 1 y), k=5,5+
2,...,0d(n) — 2.

4. For each odd natural number j such that 3 < j <n, let 717 := gg’d(n) X

cee X 9;’+2 X 9}'. The map

I x T I, (dyoarnys-- -+ Ej42,&5) > Bhod(n) -+ - Eir2Eis

is an isomorphism of the algebraic varieties with the inverse map o —
®Eod(n) * - Ej+285 given by the decomposition of statement 3.
5. The map

D x g;: - Fa ((ba god(n)a o 7‘55363) = ¢€od(n) o '65‘533

is an isomorphism of the algebraic varieties with the inverse map o —
BEoan) -+ - €563 given by the decomposition of statement 3.

Proof. — 1. Statement 1 is a particular case of statement 2 when j = 3 since
=I3 &=®3 and X" = X3
2. Statement 2 follows from statement 3.

3. First, we prove that there exists a decomposition for ¢ that satisfies the
conditions (a) and (b), then we prove the uniqueness.

By the inversion formula (Theorem 3.1), the map I' — T, 0 — o7}, is
an automorphism of the algebraic variety. Let ¢ € I'Y. Then o' € IV,
and, for each i = 1,...,n, o 1(x;) = z;(1 + a;) + b; for some elements a; €
Kl_:vl,...,fc},...xnj‘gjfl and b; € KLxl,...,@,...an%%. Then b; =c¢; + - --
for some element ¢; € K |z1,...,%;,...2,];. Clearly,

(79) g—l(xi) =c¢; mod ((z;) + A%?ZHQ).
Define the element &; € ¥’/ by the rule
(80) fj({l,‘z) =XT; — C4, for all +.

Then the automorphism ¢; satisfies the condition (a). Consider the automor-
phism
o =¢ot eV iz xi(1+a)) + 0]
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where ageKLxl, . fz, xn %, and b € K|xy,..., L5, ... 2|9, 5. Then
b, =c;+--- for some ¢, € K|z1,...,Z;,...2Tn]j42. Clearly,
(81) o~ (w) = ¢ mod () + A% 44)-

Define the element &1 € X772 by the rule & ia(z;) = z; — ¢ for all .
Then ;- satisfies the condition (b) for k = j. Now, we can repeat the same
argument for the automorphism ¢ := £;2£;0 . Continue in this fashion we
finally come to the inclusion

od(n) €260 € BT,
and obtain a decomposition for o that satisfies the properties (a) and (b) exists.
Uniqueness: Let o = ¢'¢), & 2&; be another decomposition with
§i(w;) = z; — A; for some \; € K|z1,...,%i,...,&n])j, 1 < i < n. Then
& 1(3:1) = x; + \;. Since o~} (z;) = §' Yay) = )\ mod ((x;) + A2 >]+2) we
must have & = &;, by (79). Slmllarly, (81) yields the equality &} o = §j12.
Using the same argument again and again (or by induction) we see that &, = &
forall k = 4,5+ 2,...,0d(n). These equalities imply that ¢’ = ¢.
4. This statement follows from statement 3 since the map o —
#Eod(n) * * + j+2€; is a polynomial map as the proof of statement 3 shows.

5. This statement is a particular case of statement 4 for j = 3 since ® = ®3,
" =" and ' =3, 0

In the proof of Theorem 4.9, the algorithm is given for finding the automor-
phisms ¢ and ; in the presentation o = ¢&oq(n) * - - §j+2&;-

COROLLARY 4.10. — Let K be a commutative ring. Then J(T') = 4(®).

Proof. — Let 0 € T. Then ¢ = 7¢” for some 7 € ® and ¢” € X" (Theorem
4.9.(1)). Then

J(0) = (r0") =7(J(0")I (1) = 7(1)J (1) = (7).
Therefore, J(T') = (). O

The equality © = X'X"”. — The next result shows that the Jacobian group X is
the product of its subgroups X’ and ¥, i.e. each element ¢ € ¥ is a product
o = 0’0" of some elements ¢’ € ¥’ and ¢” € ¥”. This product is not unique as,
in general, 3’ NY" # {e} (Corollary 4.5). Though, by putting extra conditions

on the choice of the elements ¢’ and ¢” the uniqueness can be preserved.

COROLLARY 4.11. — Let K be a commutative ring. Then

1. X =X'%".
2. % =¥%9%" j=3,5,...,0d(n).
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3. Let j = 3,5,...,0d(n). Each ¢ € Y7 is a unique product o =
0'Cod(n) * - Ej+2& where o' € X7 and each & is as in (69) with
&x(zy)) —z; € Kl|x1,..., T4y .s2n]k, © = 1,...,n. Moreover, for all
i=1,...,n the following conditions hold:

(a) o7 (@) = —¢;(x;) mod ((z;) + A?f,lszrz);
(b) &k -+ &jra&io (i) = —Ersa(zi) mod (i) +Ap o), k=5,5+
2,...,0d(n) — 2.
4. For each odd natural number j such that 3 < j < n, the map
9 x i — 8, (0" &dn), - &2, &5) = T boa(ny - - €26,
is an isomorphism of the algebraic varieties with the inverse map o —
0'6od(n) - Ej+28; given by the decomposition of statement 3.
5. The map
Y x T =, (0, dmys- -1 E5,&3) > 0 Eoaqn) - €56,

is an isomorphism of the algebraic varieties with the inverse map o —
0'6od(n) - €583 given by the decomposition of statement 3.

Proof. — 1. By Theorem 4.9.(1), I' = ®X"”. Note that ¥ C ', ¥ C 3, and
¥ =¥ N®. Now,

T=YXNT=Xndx"=(ZTnNnd)x" =x'%".
This proves statement 1. The rest follows at once from Theorem 4.9. O

By Corollary 4.11 and (78), in order to find the dimension (and generators)
for the Jacobian group ¥ it suffices to find the dimension (and generators) for
Y.

The largest normal subgroup of I in . — Let A C B be groups. Then
(82) N(A,B):={a€ Albab~' € A, forall be B},
is a normal subgroup of B contained in A. If N is a normal subgroup of B that
is contained in A then N C A (A, B). Therefore, (A, B) is the largest normal
subgroup of B that is contained in A. The group A is a normal subgroup of B
iff A=N(A,B).
THEOREM 4.12. — Let K be a commutative ring. Then
NET)={reX|r(\) =X forall Xe€im()}.

Proof. — 1 € X(5,T) iff oro~! € ¥ for all o € T iff

1=J(oro™ ") =J(0)o(J(1)or(J(07)) = (0)or(J(s7))
iff 7(J(0c71)) = o7 (J(0)7Y) iff 7(J(071)) = J(o7!) for all ¢ € ¥ (since
o Y I (o)) =S (oY) iff 7(X) = X for all X € im(Y). O
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COROLLARY 4.13. — Let K be a commutative ring and n > 4. Then the group
3 is not a normal subgroup of " iff n > 5.

Proof. — For n = 4, the group I is abelian, and so ¥ is a normal subgroup of
I. Let n > 5. By Theorem 4.12, ¥ is a normal subgroup of I iff ¥ = A"(X,T")
iff
im(J) CE". :=={ec E,|o(e) =e, Vo € X}

For the automorphism I' 3 ¢ : 21 +— z1(1 + zox3), z; — x;,¢ # 1, the Jacobian
J(0) = 1 + 2225 does not belong to E'> since 7(J(c)) # (o) where £ 3 7 :
Ty > Tg + T124%5,T; — xj,J # 2. Therefore, ¥ is not a normal subgroup
of T O

5. The algebraic group X’ and its dimension

In this section, the group Y’ is studied in detail over a commutative ring
K. It is proved that the group ¥’ is a unipotent affine group over K of dimen-
sion (n — 2)2""2 — n + m, (Corollary 5.6). Important subgroups {®"?**1} are
introduced and results are proved for these groups (Lemma 5.3 and Theorem
5.4) that play a crucial role in finding the dimension and coordinates of the
Jacobian group X.

LEMMA 5.1. — Let K be an arbitrary ring, n > 4, and s = 1,2,...,[%‘1].

Each element a € Ay, 25 15 @ unique sum a = Gp_25 + Gp—_2541 + - - + a, where

QAp—25 = )\xn—23+1xn—2s+2 ccrTp,

On—2s54+p ‘= CpTn—254+p+1Tn—2s+p+2 """ Tn, Cp := § )\il,...,ipxil e xipa
1<i1 < <ip<n—2s+p—1
Qp 1= Cg5 1= > Aigoonying Ty " Ty s

1<i1 < <igs<n—1
1 <p<2s—1, and the lambdas are from K.

Proof. — This follows directly from Theorem 8.1.(1). O

Let K be a commutative ring and n > 4. For each fized natural number s
such that 1 < s < [%4], we define the K-module

V.= Vn,Zs = An,ZS(]-) DD An,2s(n)> An,Zs(":) = KLxh cee a:/rf'\iv “e 7$nJ237

the direct sum of free K-modules of finite rank over K. Each element v =
(v1,...,v,) € V is a unique sum v = > 1", v;e; where v; € A, 24(i) and
er :=(1,0,...,0),...,e,:=(0,...,0,1). By Lemma 5.1, the K-module homo-
morphism

(83) Z ::jn,% V= Apas, (V1,...,0p) — U1+ 4 Uy,
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is a surjection, and the K-homomorphism (where a = a,_25 + -+ + a,, as in
Lemma 5.1)

n
f:fn,2s:An,25HVa a6=ap2s+ +a,— Z aiei:(07~~~a07an—2sa~~-aan)

i=n—2s

is a section of Z, ie. zf = id. Hence,

(84) V= ker(J) D f(ATL,QS)a f(An,Qs) = An—25 D---D An7
where A; := A, 25 1= f(An,2s) N Ay 25(i). By Lemma 5.1,

An72s - Kxn72s+lwn72s+2 ccTp,

An—2s+p = ( @ Kxil e xip)xn—25+p+1xn—25+p+2 c T,
1< < <ip<n—2s5+p—1

A’Vl: @ Kxil"'xi2s,

1<i1 < <igs<n—1

where 1 < p < 2s — 1. So, the K-modules A,_o,...,A, are free finitely
generated K-modules generated by monomials (as above) of degree 2s.

We will see later that the map 3 in (83) is, up to isomorphism, the Jacobian
map  (88). Our goal is to find a special K-basis for the kernel ker(/) that has
connection with certain automorphisms of the group X’. For, we will define,
so-called, avoidance functions which allows one to produce the required basis
and then explicit automorphisms of the group ¥'.

Avoidance functions. — For each monomial v = x;, ---x;, of A, the set
{#1,...,%:} is called the support of the monomial u. Let us fix a natural
number s such that 1 < s < ["7_1] Next, for each ¢ = 1,...,n — 1, we are
going to define a set S, and a function j; on it. We do this in two steps: first,
fori=n—2s,...,n—1; and then fori =1,...,n —2s — 1.

For each ¢ = n —2s,mn —2s+1,...,n, let S; := S, ;s := Supp(A4;) be the
set of supports of all the monomials from the module A; (the K-module A;
is generated by monomials), and let S; := S; ; be its complement in the set

~

Supp(Ap2s(i)) = {a C{1,...,4,...,n}||a| = 2s} where |a| is the number of
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elements in the set a. In more detail,
Sp—2ss ={{n—2s+1,...,n}},
Sn—23+p,s = {ag{1,...,n—2s—|—p,...,n}|a2{n—25—|—p+1,...,n},|a\ :28}3
Sps={aC{l,...,n—1}||a| = 2s}, and

;L_Q&s ={aC {1,...,71/—?3,...,n}|a76 {n—2s+1,...,n}, |a| = 2s},
;_28_,_1)75 ={aC{l,....n—=2s+p,...,n}|aB{n—-2s+p+1,...,n},|a| = 2s},
S’:’L,S =,
where 1 < p < 25— 1. One can easily verify that the following sets are the only
empty sets among the sets {S;, ../ |s=1,...,["5 1 p'=0,1,...,25s — 1}:
if » is an odd number, s = ["771] and p’ =0, 1, .. .,23 —1,1ie.
/ / o

(85) 5] Lt = S (251 =" =5 1t =
In particular, for n = 5 we have
(86) Si,z = Sé,z == Szll,z =9

Let us stress that for each i = n — 2s,. — 1, the set S} := S ; is equal

to the set of all & € Supp(Ay, 25(2)) such that {z +1,i+2,...,n}\a # @. So,
we can fix a function

Ji=Jis: S = {i+1,i+2,...,n}, a—ji(a)€{i+1,i+2,...,n}\a.

If the set S! is an empty set then this definition is vacuous since we have an
‘empty function’ defined on the empty set. It is convenient to have these ‘empty
functions’ in order to save on notation.

Foreach i =1,...,n—2s —1,let S; := S | := Supp(A, 2s(7)), and we can
fix a function

Ji=Jis: S —={i+1,i+2,...,n}, a—ji(a)€{i+1,i+2,...,n}\a,
(if not then {i+1,...,n} C o for some a € S}, and so aU{1,...,i} = {1,...,n}
but then one has the contradiction: n = |a U {1,...,i}| < |a|+i < 2s+n—
2s—1=n—-1<n).

Definition. For the fixed number s (as above), the functions {j; |1 < i <
n — 1} are called avoidance functions.

Note that there are many avoidance functions, in general. The importance
of avoidance functions {j;} is the fact that, for any a € S}, we can attach the
1-dimensional abelian subgroup of ¥, {p; j,(a)iree} = K, Piji(a)irae — A, by
the rule
(87)

Piji(ayaae * Ti = Ti(1HAZY), x5 ) = Tj,(a)(1=A2%), z) = Tk, k #14, ji(@).
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LEMMA 5.2. — Let K be a commutative ring, n > 4, and {j; = j; s} be avoid-

ance functions for a fized number s such that 1 < s < ["T_l] Then the set

Mz (ei — €j, () | € S} is a K-basis for the kernel ker (4) of the map

j :jn 287 (8 3); and the rank of the free K -module ker(J is equal to

n2s

rk g (ker(J n.2s) Z|S/ = (231>_<2T;>'

Proof. — By the very definition, the elements from the union are from the
kernel ker(/) and K-linear independent (use the fact that i < j;() for all
i and a € SI; and the fact that, for each ¢ = 1,...,n — 1, the monomials
z%, a € S, are K-linear independent). Let U be the K-submodule of V
that these elements generate. It follows from the definition of the sets S, that
U+ f(Apas) =V, hence U = ker(), by (84) and the inclusion U C ker(/).

By (84), the rank of the free K-module ker(/ ) is equal to

n,2s

rkK(ker n, 25 Z | | = rkK n, 28) rkK(f(A"’hQS))
n—1 n
=nrkg(An_1,2s) — kg (An2s) =n 9s | " \og ) O
The groups 251!, — Let K be a commutative ring, and n > 4. For each
number s = 1,2,..., ["T_l], let ®25+1 be the subset of ® that contains all the
elements of the following type:
o(@i)) =zi(l+---), 1<i<n—-2s-1,
o'(xn—2s) = mn—2s(1 + Amn—25+1xn—23—}-2 R P );
0(Tn—2s+1) = Tn2s41(1 + ( Z iy Tiy )T _2sq2 " Tn + o),
1<i1<n—2s
U(xn—25+p) = In—2s+p(1 + ( Z )\il ..... ipxil i xip)xn—25+p+1
1<i1 < <ip<n—2s+p—1
Ty + e )7
= . 5
0-(1"”_1) = zn-1(1+( Z Aigyize—1 iy "'l‘i2371)$n+--~),
1<i1 <+ <igs—1<n—2
U(l‘n) = $n(1+ Z Ail»--~7i25xi1 T Ty, T )7

1<i1 < <igs<n—1
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where the lambdas are elements of K and the three dots mean higher terms.
By Theorem 2.10.(2), ®>*1 is a subgroup of ®. In the notation of Lemma
5.1, the automorphism o = o, above (where a = a,,_25+ -+ a,, as in Lemma
5.1) can be written as

o(@;)) =zi(l+---), 1<i<n—-2s-1,

o(z;))=z;(1+a;+--+), n—2s<i<m.
Clearly,

@28-{—3 C @/28-{-1 C @28—‘,—1

and ®2°13 is a normal subgroup of ®25*! since ®2°*3 is a normal subgroup of

®. Foreachs=1,..., ["?_1], we have the Jacobian map
J: 0 S B, =14 Anas, 0 J(0).
i>s

The factor group Ej, 5,/E}, 5510 = {(1 +a)E}, 5,19 |a € Ay 2} is canonically
isomorphic to the additive group A, 25 via the isomorphism

/ / /
En,2s/En,28+2 - AH,QS’ (]- + G’)En,2s+2 = a.

The Jacobian map  : ®***1 — EJ ,_ yields the Jacobian maps

(88) j : ‘I)28+1/(I)28+3 - E’:’L,ZS/E’:L,25+27 o®?t3 '_’(7(‘7) ;,25+27

and
g : <I’IQSH/‘I)2S+3 - E’:I,QS/E':'L,ZS—‘,-Q? o®*t? HJ(U)E;'L,QS-‘,-Q'

There is the natural isomorphism of the abelian groups:

®2s+1/q)2s+3 - @An,2s(i) -V = szs,
i=1
{o:z;— 2;(1 4+ a)®* 3} = (a1,...,a,),

where a; € Apo(i) for all ¢ = 1,...,n. When we identify the groups
®?s+1 /@243 and V on the one hand, and the groups E) . /E 5. ., and
Ap2s on the other via the isomorphisms above, then the Jacobian map
o @ @2H3 s B B o, 083 s J(0)EL 440, coincides with the
map (83), 3 2V — Anos, (a1,...,a,) — a1 + - + ap. Then Lemma 5.3
follows, which is one of the key results in finding generators for the Jacobian
group X and its subgroup X'.

LEMMA 5.3. — Let K be a commutative Ting, n > 4, and s = 1,...,["7_1],

The Jacobian mapg D QAL /P2oHS B} 95/ B st o®?F3 J(0)E} 2512
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is an isomorphism of the abelian groups which is given by the rule

j(U(I)QS-H)’) — (1 + )\$n—23+1 S
2s5—1

+ > > Aigyoip @iy * " Ty ) Bn—2spt1 * T

p=1 1<i1<--<is<n—2s+p—1

!
+ E NiyyoipTiy *** Tin ) By 0gi0

1<i1< - <i2s<n—1

for the element o € ®'2T1 as above (i.e. in the definition of ®'25+1).

Proof. — When one writes down the determinant (o) for the element o €
@251 as above it is easy to see that /(o) E}, 5, is the product of the diagonal
elements in the determinant /(¢) modulo E}, 5, 5

J(@@*73) = (1+ A\op_osp1 Tn)

e (1 E AiryeoyipTiy **  Tiy) )25 4pi1 - Tp) -
1<i1 <+ <is<n—2s+p—1
!
(14 E AigyonyipTiy ** Tig, ) By 0540

1< < <igs<n—1
2s—1

= (1+>\$n72s+1"'mn+z( Z

p=1 1<i1<---<is<n—2s+p—1
XityorsipTiy * " Tiy) ) Tn—2stptl " T
+ Z NissoipTiy Ty, ) By 910,
1<i1 <+ <igs<n—1
and so we obtain the formula for 3 (o®2?**3) in Lemma 5.3. Now, it is obvious

that the map 3 is the isomorphism of the abelian groups since each element
of A, 2s can be uniquely written as a sum s in the formula for J(c®25+3) =

(1+ 8)E}, 55,2 above (see Lemma 5.1). O
THEOREM 5.4. — Let K be a commutative ring, n >4, and s =1,..., ["T_l]
Then

1. @25—&-1 — q)/2s+12/23+1 — E/2s+1q)/2s+1'

2. O P25H3 v Fy2sHL /52543 o Hr2sHL /2543 the direct product of
abelian groups.

3. Each automorphism o € ®271: z; — x;(1 4+ b; +--+), by € Ap2s(i),

i=1,...,n, is the unique product modulo ®>*13 as follows,
n—1
(89) o= ¢l H H Piji(a)iAaze mod ¢)2S+37
i=1 aES,ﬁ
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where
& (zy) =z, 1<k<n-—2s—1,
¢ (x;) == z;(1+a;), n—2s<i<n,

and

n—1 n
(b1,...,bp) = Z Z Aot (€i = €j,(a)) + Z a;e;
i=1 aES; i=n—2s

in V =ker(J) & f(An 2s) for unique A, € K and unique elements a; as
in Lemma 5.1.

Proof. — Recall that the Jacobian map J : ®25+1/®2s+3 — E! , /E! , ..
o®25+3 — j(U)Equ,zs+27 is naturally identified with the map (83),

3:V_>An,287 (0/17...,an)|—)a1+"‘+a/n,

under the identifications ®*1/®*5*3 =V and E}, »,/E}, 9,49 = An,2s. Con-

sider the direct sum (84): V = ker(4) @ f(Ay,25). By Lemma 5.2, the free K-
module ker(/) has the K-basis U"— ' {2 (e; —é€j.(a)) | @ € S}}, and each element
of f(Ap2s) is a unique sum > 7 .. a;e; where a; are as in Lemma 5.1. To
each basis element z%(e; —e;,(o)) We attach the 1-dimensional abelian subgroup
of X251 {p; i (ayaze frek =~ K, by (87). To each element a = Y7, o, aie;
it corresponds (under the identification ®25+1/®2?5+3 = V') the automorphism
¢a c <I)/23+1:

o(z) =2k, 1<k<n-—2s-—1,
da(z;) = x;(L+a;), n—2s<i<n.

Each element v of V' is a unique sum

n—1 n
=SS At 3 e
=1 aESlf k=n—2s

for unique A, € K and unique aj as in Lemma 5.1. Under the identification
@25+1 /§25+3 = V| the element v can be identified with the automorphism o,
modulo ®2**3 (i.e. v = 0,9%°"3) where

n—1

(90) ov=¢a0’, o' =[] ] piiarase-

i=1 aes!
Conversely, any coset c®2**3 where ¢ € ®***! can be identified with the
element v € V (i.e. o®2**3 = v) by the rule: let o(z;) = z;(1 +b; + --+)
for some b; € Ay 25(i), s =1,...,n, then (by,...,b,) € V = @7 A, 25(4) and
o®%*t3 = (by,...,b,). Now, statement 1 follows immediately from (90). Under
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the identification ®25+1/$25+3 = V| the decomposition V = ker(J) & f(An 25)
corresponds to the decomposition (the direct product of groups)

(I)23+1/(I)2s+3 ~ 2/28+1<D28+3/(D28+3 % @/25-1-1/(1)28-1-3

Since 2/25+1(I)23+3/(I)25+3 ~ E/Qs+1/2/2s+3 N (I)25+3 ~ EI2S+1/E/28+3, the state-
ment 2 follows. Statement 3 is just (90). O

THEOREM 5.5. — Let K be a commutative ring, and n > 4.

1. Then each automorphism o € ® is a unique product
(5]

(91) o= H 254102541 = P3030505 - - - ¢2[n74]+102[n74]+1
i=1

for unique elements ¢osy1 € @21 and 09511 € X'?°* from (89). More-
over,

0 = ¢303 mod P,

_ s n—1
(¢303 -+ P2s—1025-1) 10 = pasr102541 mod >3 2 < s < [T]

2. Each automorphism o € ¥/ is a unique product
(92) o= H O2s+1 = 0305 " Ogn_1y4,
i=1
for unique elements 09511 € X'?**! from (39). Moreover,

o3 mod fI>5,

g

-1
(0-3 .. '028—1)_10 = 02s5+1 mod @284_3, 2 S S S [nT]

Proof. — 1. This statement follows from Theorem 5.4.

2. We need only to show that, for 0 € ¥/, ¢35 = --- = ¢2[n74]+1 =ein (91).
Suppose that ¢os11 # e for some s and the s is the least possible with this
property. We seek a contradiction. Without loss of generality we may assume

that 03 = -+ = 0951 = €, i.6. 0 = Pas1102541 . Since J(o) = 1, we must
have /(o) = 1in Ej, ,/E;, 5.,5. On the other hand, /(o) = J(¢2s41) # 1 in
E;, 25/ E}, 9542 (Lemma 5.3), by the choice of the ¢2,11, a contradiction. [
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The dimension of the algebraic group ©’. — Recall that n > 4 and for each num-
ber s = 1,...,["7_1], we defined the sets S} := S, 1 <i < n—1, and the

avoidance functions {j; := jis}. By Theorem 5.5.(2) and Theorem 5.4.(3),
each element o of ¥/ is a unique ordered product

[n—l

(93) = H H pi,ji,s(a);)\az"

s=1 i=1 aGS’

where o = o; s (they depend on ¢ and s) and Ay = Ao s € K. Therefore,
{Aa = Aa,i.s} are affine coordinates for the algebraic group ¥’ over the ring
K, and the algebra of (regular) functions £(X’) on the algebraic group X' is a
polynomial algebra in

[(*F* ] n-1
(94) dim (¥ Z Z| i

s=1 i=1

variables. Consider the function

Ty 1= ] ]
2 if n is even.

{1 if n is odd,

COROLLARY 5.6. — Let K be a commutative Ting and n > 4. The group ¥’ is
a unipotent affine group over K of dimension

R NG .
dim(2) = ) (n ("28 1) - (23)) => (n—2s— 1)(23)

s=1 s=1

J(m=2)2""? —n+2 ifn is even,
B (n—2)2""2—-n+1 ifn is odd.

over K, i.e. the algebra of reqular functions on ¥’ is a polynomial algebra over
the ring K in dim(X’) variables {\,}.

Proof. — The only statement which is needed to be proven is the formula for
the dimension. For each s, by Lemma 5.2,

Zl . |_n( 81>—(;>=(n—2s—1)<;8>.

The first part of the formula for dim(¥’) then follows from (94). Note that

[25H] (25
n—1 _ n—1 _ n-2
n§<2s)—n(;0<28> 1) =n(2 1).
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If n is even then

[25] [25] (5]

n n n n
§ :§ —1:§ ( )—( n>—1:2"—1—2.
s=1 (28) s=0 (28) s=0 2s 2[5]

If n is odd then

[n—l

=51 n (5] n [5] n
- —1=2""1_1.
s=1 (28> ; <2S) s=0 (28>

By the first part of the formula for dim(X’) and the calculations above, we have

dim(X)=n@2" 2 -1) - 2" ' —m)=(n—-2)2""2 —n+m,. O

The subgroup ¥’ of T is ‘twice smaller’ than T' in the following sense (see

(31))

. dim(%) . (m=-22"2-n+m, 1
lim ———2 = 1 _—
(95) nse dim(D)  nbse n(271—n) 2

The group X’ is not a normal subgroup of X if n > 6 and 2 # 0in K. — Clearly, ¥ >
0Ty T+ Tax3Ty, T — Ty, £ Lyand XD 72y o x21(1 + 2576), 2 —
2o(1 — x56), T; — T4, i # 1,2. Then oo 77 (1) = 21 + 22223747576,
hence oro~'77! & ¥/, This means that the subgroup X’ of ¥ is not normal if
n>6and 2#0in K.

We will see later that the group X" is a closed normal subgroup of the
Jacobian group ¥ (Theorem 6.4.(2)).

6. A (minimal) set of generators for the Jacobian group X and its dimension

Let K be a commutative ring. In this section, a minimal set of generators for
the Jacobian group ¥ is found explicitly (Theorem 6.1). The dimensions and
coordinates of the following algebraic groups are found explicitly: ¥ (Theorem
6.3), ¥’ N X" (Lemma 6.2), ¥ (Theorem 6.4). It is proved that the sets of
cosets ¥\ X and ¥’ N ¥”\ X" have natural structure of an affine variety of
dimension n(2"~2 — n + 1) over K (Corollary 6.5).
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(Minimal) set of generators for the Jacobian group 3. — We keep the notations
of Section 5. For s =1,1<p<2s—1=1,ie. p=1. Consider the sets Slf’l,
1 <i<n-—1, defined in Section 5:

81 = Supp(An2(i)), 1<i<n—3,
s ={aC{l,...,n—2,n—Ln|a#{n-1n} o =2},
S, _1i=f{aC{l,...,n—1,n|aFn,|a| =2}
Fix avoidance functions
'

ji: Sy {i+1,...,n), 1<i<n—1.

The next theorem provides a (minimal) set of generators for the Jacobian
group X for n > 7.

THEOREM 6.1. — Let K be a commutative ring, n > 7, and for s = 1 let
{ji == jia1} be avoidance functions. If either n is odd; or n is even and % € K;
then

% = (Diji(c)da% O pajm | A € K31 <i<n -l € 5211;1 <i'<myj<k<li ¢ {5k}

and the 1-dimensional abelian subgroups {p; ;,(ayre~} = K and {0y ro;zp2, } ~
K of ¥ form a minimal set of generators for ¥ in the sense that no subgroup
can be dropped.

Proof. — Recall that ¥ = ¥'%" (Corollary 4.11.(1)); and, by (93),

—-1
AeK;1§z’§n—1;1SSS[TLT];O‘SESZ{’S>

2= (i, (as)izos
where j; ; are avoidance functions;
= (Ot Azjepa | A € K51 < i <myi<k<l;i {4k}

(Theorem 4.7.(1)), and, by the definition, the group X" is generated by all the
automorphisms
Eib, 1 X T+ by, T =Ty, §FA,
where b; € K[xl,...,i\i,...,xnj‘%%.
If s = 1 then the elements {Pi,ji,l(al);mal} are precisely the p-part of the
generators in the theorem. If s > 2 then, by (72), each element p; j,  (a,);rzs
belongs to the group X”. Therefore,

E = <pi,ji(a);kz‘1aUi’,)\a:jzkzl |>\ € K,l S i S n— 1;0[ € SZ{J;I S i/ S n;j < k < l;il g {.77 ka l}>7

i.e. the first part of the theorem is proved. To prove the second part of the
theorem (about minimality), note that, by Theorem 2.10.(2), the map

(A 3)" — UPJU, a=(ay,...,a,) — a,U°,
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is a group isomorphism where o, € U3 : 2; — x; + a;. We iden-
tify these two groups via the isomorphism above, then the elements
Pijs(@)raeU° and 0iag,2,2,U° are identified correspondingly with the el-
ements Ax“(ri€; — Zj,(a)€j;(a)) and Az;rrriey of the K-module W :=
(Ap3)” = @ A,3e; where e = (1,0,...,0),...,e, = (0,...,0,1).
To prove the minimality it suffices to show that the elements {z*(z;e; —
Tj.()€i(a))s zjzrxiey } are K-linearly independent. To prove this let us

consider the descending filtration {W; := @;’:iAmgej} on W. Clearly,
Wi/Wi+1 = (An736i D Wi+1)/Wi+1 ~ An,3ei ~ An73, ) > 1. Suppose that
o= Y Aax®(xie; — xji(a)eji(a)) + > it g kiTiTrriey = 0 is a nontrivial

relation. Let ¢ be minimal index such that either some \;, # 0 or some
Wik 7 0. Then r € W;. Taking the relation » modulo W;,; we have

r= (Z XiaZ%T; + Zui,j,k,lmjxkxl)ei =0 mod Wy,

(we used the fact that j;(«) > 4), i.e. > Nia@®@i+ . i j k1% Tkz; = 0in Ay, 3,
hence all A;, = 0 and all y; jx,; = 0 since all the monomials are distinct, a
contradiction. This finishes the proof of the theorem. O

The dimension of X’ N X”. — Recall that
{1 if n is odd,
Ty 1=

2 if n is even.
Let £/%" = {0X" |0 € £} = {oX"|0 € ¥'} since ¥ = ¥'E"” (Corollary
4.11.(1)).
The next result shows that the subgroup X" of ¥ is quite large and that the
intersection ¥’ N X" is a large subgroup of X'.

LEMMA 6.2. — Let K be a commutative ring and n > 4. Then
1. ¥ NY =3 where ¥° := {oc € ¥'| (0 — 1)(m) C m®}, and so X' NY"
is a closed subgroup of X.
2. The group ¥’ NY" is a unipotent affine group over K of dimension

dim(Z'NY")=(n-2)2""2-n+m, — (n—3) <Z>

over K.

3. There is the natural bijection
Z/EH - E//E/5 = Hznz_ll HaeS'.l{pi,ji(a);)\wD‘}XEKa o — UZ,; where
o €Y (see Corollary /.11.(1)). The set ¥'/¥'5 is an affine variety of
dimension

dim(2'/57%) = n<” ) 1) - (Z) =(n—3) (Z)
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Proof. — 1. For n = 4, the first statement is obvious as ¥’® = ¥/® = {e} and
' NY" = {e}, by the very definitions of the groups ¥’ and ¥”. We assume
that n > 5.

By (92), any element o of ¥/ is a product o = o305 - - - Oainstipy where o; is
a product of elements of the type p; j; ,(a,)irzess Qs € SZ o 1< s <[5 11 by
(93). Any element o of X/ is a product o = o507 - S Ognoti (with o3 =€)
where each o; is product of elements of the type p;j,  (a,)rzess s € SZ o
2<s< ["21]. For n > 6, by (72), if s > 2 then all p; j, (a.)rae € T
Therefore, an element ¢ = o305 - - - O'Q[n—l]+1 € ¥’ belongs to the group " (i.e.

ce¥NY)iff o3 € £ (since o5 - Oynsipy € X" iff o3 =e.

An element o = 0305 - - - Tyrnziyyy € ¥’ belongs to the group X% iff o5 € £/°
(since o5 - - - Oypnzijq € ¥’5) iff 03 = e. Therefore, ¥’ N X" = X3, if n > 6.
2

If n = 5 then ¥’ = {e} by (86), and so X'NY" = {e}, by the very definitions
of the groups ¥’ and X”.

3. By Corollary 4.11.(1), ¥ = ¥'%”. Using statement 1, we se that

E/E” _ E/Z”/E" » /Z/ n E” ~¥ /215 ~ 213/215 H H {p%h(a) /\za}AeK
i=1 a€S]

So, ¥//%'5 is an affine variety. Now, using the identifications as in the proof of
Theorem 5.4 in the case s = 1 there it follows at once that

dim (%' /2%) = tkg (V) — rkg (Ay0) = n(n; 1) - (g) =(n—3) (Z)

One can prove this fact directly. Note that |S 1| = (ngl), 1<i<n-3;

|57, 21|—("21)—1and Sy — 11|_(n 2) Then

5) n—1 n—1 n—2\ n
dim(¥'/5") Z| =mn-3 < ) >+< ) )—1+< ) >_(n—3)<2>.
2. By statement 1, X' N X" = %5, Hence,

dim(2' NY") = dim(Y') — dim(¥'/2%) = (n — 2)2"% —n+ 7, — (n — 3) (Z) ,

by Corollary 5.6. O
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The dimension of 3. — The next theorem gives the dimension of the Jacobian
group X.

THEOREM 6.3. — Let K be a commutative ring and n > 4. The Jacobian
group X is a unipotent affine group over K of dimension

dim(s) {(n — 12"t —n?+2 ifn is even,

(n—1)2" "t —n2+1 ifn is odd,

over K, i.e. the algebra of reqular functions on % is a polynomial algebra in
dim(X) variables over K.

Proof. — Recall that the algebraic group ¥’ is affine and dim(¥') = (n —
2)2"~2 —n 47, (Corollary 5.6); & ~ ¥/ x 77 (Corollary 4.11.(5)); dim (")
n(2"~2 —n + 1), see (78). Therefore, the algebraic group ¥ is affine and

dim(Z) = dim(X') + dim(7,) = (n = 2)2" 2 —n+ 7, +0(2" 2 —n+1) = (n-1)2""" —n? + 7,
O

The Jacobian group ¥ is a large subgroup of I' since

dim(X) . (n=1)2""1—n2+m,
nooo dim(D)  noeo  m(2n—1 —n)

(96)

The coordinates of . — The isomorphism (93) and the isomorphism in Theo-
rem 4.9.(5) provide the explicit coordinates for the Jacobian group ¥ if n > 4.

The dimension of X/. — The following theorem gives the dimension of the group
3" and proves that the group X" is a closed normal subgroup of ¥ (which is
not obvious from the outset).

THEOREM 6.4. — Let K be a commutative ring and n > 4. Then
L Y= (2'n¥"g, =5°,.
2. ¥ is the closed normal algebraic subgroup of . Moreover, ¥/ is an

affine group of dimension
dim(s") — {(n - 1)2:: - nz +2—(n-3) (g) zfn z:s even,
(n—1)2""1'—n?2+1-(n-3)(5) ifn is odd,

and the factor group X/¥" ~ X' /%'5 is an abelian affine group of dimen-
sion dim(X/¥") = n(”gl) —(5)=m=3)()-

3. The map Ny’ x glri - EN; (Ul)god(n)) s 755)53) = Ulfod(n) o '5553’
is an isomorphism of algebraic varieties over K with the inverse o —
0'&od(n) - - - €563 given in Corollary /.11.(5).
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Proof. — 1. The first equality follows from statement 3, then the second equal-
ity follows from %' N X" = %5 (Lemma 6.2.(1)).
3. Since 71, C X" C ¥, statement 3 follows from Corollary 4.11.(5).
2. By Lemma 6.2.(2) and statement 3, the group 3" is affine and
dim(¥") = dim(X' N £") 4 dim(77)

= (n_z)zn—2_n+7rn—(n—3)<;l> +n(2n—2_n+1)

= (n—1)2"1—n2+7rn—(n—3)(;l>,

by Lemma 6.2.(2) and (78). Recall that ¥ is a closed subgroup of ¥ and %'°
is a closed subgroup of X', hence ¥ is a closed subgroup of ¥ since
YNy )x Il =S x T CY x Tl ~%.

Let us prove that the group X" is a normal subgroup of the Jacobian group X.
First, note that

(97) oy,

since ¥° = X/5%5 (Corollary 4.11.(2)) and ¥’® = ¥’ N ¥” C ¥” (Lemma
6.2.(1)). The subgroup X" is normal in ¥ iff ¢%” = ¥"¢ for all 0 € X. Note
that

Z,ECI,INE=[3I*NnsCcr’ny = ¥°.
For any 7 € X",
or =or0 't o = [0, 7|70 € [, 2]2"0 C %% 0 = X0,
by (97). This means that cX” C ¥"¢. Similarly,
To =07t 07 € 0%[%, 8] C o¥'T5 = 0¥,

by (97). This means that X”c C o%"”. Therefore, c¥” = X0 for all 0 € 3,
i.e. ¥ is a normal subgroup of X. Finally, the factor group

Z/Z” — E/Z///Z// ~ E//Z/ N E" — 21/215

is an abelian affine group of dimension (n — 3)(}) (Lemma 6.2.(3)), and its
coordinates are given explicitly by Lemma 6.2.(3). O
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The coordinates on ©”’. — By Theorem 6.4.(3), each automorphism o € X" is a
unique product o = 0'§,q(n) - - - €563 Where, by (93), the ¢’ is a unique product

n

;1] n—1

[
(98) o = H H H Pigi s ();haze

5=2 i=1 a€s,

where oo = o s (they depend on ¢ and s) and Ay = Ao, s € K. Therefore,
{Aa = Aa,i,s} and the coefficients of the elements that define the automorphisms
&; are affine coordinates for the algebraic group X" over the ring K. The group
" is a large subgroup of the Jacobian group X and the group X' is of ‘half
size’ of X" since

dim(¥) 1

=1, lim ——’ =

. dim(¥")
(99) lim A () 2

n—oo dim(X)

The dimension of ¥'\¥. — For groups A C B, let A\ B := {Ab|b € B} and
B/A:={bA|bec B}. Ifagroup G actsonsets X and Y thenamap f: X - Y
that respects the actions of the group G on the sets X and Y is called a G-map,
ie. f(ax) = af(z) for all @ € A and x € X. The isomorphism in Corollary
4.11.(5) is a X'-isomorphism where the group X’ acts by left multiplication on
Y and ¥’ (in ¥’ x 7). Therefore, the set ©'\ X is naturally isomorphic to the
set Y\X' x I ~ ' The set 7. is an affine variety over K of dimension
n(2"~2 —n+1) (by (78)), hence so is '\ X. Note that

EI\E — 21\2/21/ ~ E/ N E/I\E/I ~ 215\21/

since ¥ = ¥'%" (Corollary 4.11.(1)) and ¥’ N X" = %5 (Lemma 6.2.(1)). So,
we have proved the next corollary.

COROLLARY 6.5. — Let K be a commutative ring and n > 4. There are nat-
ural isomorphisms of affine varieties over K: ' ~ Y\ X ~ X/ N L\ 2" ~
YN, each of them has dimension n(2"~2 —n + 1) over K.

7. The image of the Jacobian map, the dimensions
of the Jacobian ascents and of I'/%

In this section, it is proved that all the Jacobian ascents I'ys are distinct
groups with a single exception (Corollary 7.7) and that their structure is com-
pletely determined by the Jacobian group, I'ss = I'?*T1Y (Theorem 7.1); each
quotient space g5 /Iy is an affine variety (Corollary 7.4) which is, via the Ja-
cobian map, canonically isomorphic to the affine variety Ej, 5,/ E}, 5, (Theorem
7.6). In particular, the quotient space I'/¥ is an affine variety of dimension
2n=1 — ,, (Corollary 7.8). The Jacobian map is a surjective map if n is odd
and is not if n is even. (Theorem 7.9).
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The equalities [, = 71X, — Tt follows directly from (25) and (51) that
[25H1% C Iy, for all s = 1,2,...,[25t]. The next theorem states that, in
fact, the equalities hold, i.e. T'2**!¥ = I'y,. The groups {I'>**!} have clear
structure and are given explicitly, therefore studying the Jacobian ascents {I'o5}
is immediately reduced to studying the Jacobian group .

THEOREM 7.1. — Let K be a commutative ring and n > 4. Then

1. Toy =271 = 92571% = @'2H1Y for each s = 1,2,...,[%52].
2. Ifn is an even number then 'y, =X, i.e. T')y =40 =X

Proof. — 1. The equalities I'?**1Y = ®25t1% are obvious due to Theorem
4.9.(2). The equalities >t = ®"25+1% are obvious due to Theorem 5.4.(1).
The inclusions I'2511S C T'y, are obvious for s =1,2,..., ["?_1] To prove the
reverse inclusions let o € I'y; (i.e. /(o) € E},) where 1 < s < [251]. We have
to show that o € 21X, If J(0) = 1, i.e. 0 € X, there is nothing to prove.
So, we assume that /(o) # 1, i.e. 0 € ¥. By Theorem 4.9.(1), 0 = ¢¢ for
some elements ¢ € 2"\ d2m+3 and ¢ € . Now, we fix a presentation, say
o = ¢&, with the largest m. Using Lemma 5.3 and Theorem 5.4.(2,3), we see
that (by the minimality of m)

J(0) = (98) = ($)¢(J(€)) =J($) € Egpn\Esp 2,

and so o € Iy, \I'2;n12, hence s < m by the choice of m and since o € T'a;.
This proves that o € ®?™m+1y C I'?2m+1Y C I'?H1Y as required.

2. Note that I',, C T,,_o = &7 1% (by statement 1) and ®"*! = {e}, and
so @71/t = "1 If ¢ € T, then 0 = ¢7 for some automorphisms ¢ €
" 'and T € X, and E}, ,, = 1+ Kz125- -2, 3 J(0) = J(¢7) = J(¢), hence
¢ € @ = {e}, by Theorem 5.4.(3) and Lemma 5.3. Therefore, o0 = 7 € X.
This proves that I';, = 2. O

Note that the number ¢ := 2["5+] 4 2 is equal to n + 1 if n is odd; and to n
if n is even. Correspondingly,
Iy =% ifnisodd,

100 |
(100) 2[#=]+2 {I‘n =X if n is even (by Theorem 7.1.(2)).

Combining two results together, namely Theorem 7.1.(1) and Theorem
5.4.(2), for each s = 1,2,...,[”7_1], there is a natural isomorphism of the
abelian groups:

(101) To,/Tosqp o ®25H /@213,
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In more detail,

FQs/F23+2 — <I)28+12/<I)28+32 ~ (I)23+1/(I)23+3(2 N @25—&-1) — <I)28+1/<I)28+3E/28+1
~ ((I)Qs-i-l/@254—3)/(@23+32/2s+1/¢2s+3)
~ (2125+1/2/2s+3 x ®/28+1/@28+3)/(E/28+1/2l2s+3) ~ @/25+1/¢,25+3.

By Lemma 5.3 and (101), for each s = 1,2,...,[25], there is the natural
isomorphism of the abelian groups:

(102) FQS/FQS+2 ~ @/2s+1/q)2s+3 - E':L72S/E;L,2s+2’ UFQS-‘FQ . j(U)E’:L,QS+2'

This isomorphism and its inverse, (103), are some of the key results in finding
the image of the Jacobian map (Theorem 7.9). Recall that the map A, 25 —
E; 25/ E} 9542, a = (1 +a)E;, 5,15, is an isomorphism of the abelian groups.
By Theorem 5.4.(3), (see also Lemma 5.3), the map

(103)

Ap 25 = E:z,2s/E7,1,23+2 — OB OPH Ty, [Tygpn, (14 a)E:"L,QS-\-Q = $p @53 (= ¢ Do),

is the inverse map to the isomorphism (102) where Ay 25 3 @ = ap_25+---+ay
is the unique sum as in Lemma 5.1 and the automorphism ¢/, is defined in (89),
namely,

S(ar) =2, 1<k<n—2s—1,

a

¢ (z) =x;(14+a;), n—2s<i<n.

a

The fact that the map (103) is the inverse of the map (102) means that, for all
ac An,23>

(104) J(¢y) =1+a mod E’II’L,2S+27
or, equivalently, for all o € Iy,

(105) g = (b, mod F23+2,

a
where /(o) =1+ a mod E}, ,,,, for a unique element a € Ay, .

Recall that the group I' is equipped with the Jacobian filtration {25}, and
the group Ej, is equipped with the filtration {E], ,.}. Both filtrations are
descending. The Jacobian map 4 : ' — E/,, o — J(0), is a filtered map, i.e.
J(T2s) C E}, 5, for all s.

THEOREM 7.2. — Let K be a commutative ring, n >4, and s =1,..., ["?_1]
Then each automorphism o € I is a unique product c = ¢;(2)¢;(4) s g (2(nz1p) Y
alel=5—
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for unique elements a(2s) € Ay, 25 and vy € [yncijyn =% (by (100)). More-
over,

a(2) =4(0)—1 mod E, 4,

-1 —1 n—1
a(2t) = J(¢la(2t72) T ¢/a(2)0) —1 mod E1/1,2t+27 t=2,..., [ 9 ]a
— / / / —1
Y= (¢a(2)¢a(4) T ¢a(2["T*1])) .
Proof. — In brief, the theorem is a direct consequence of repeated application

of (105). For s =1, by (105), 0 = ¢/,,) mod Iy for a unique element a(2) €
Ap2 such that /(o) = 1+ a(2) mod Ej 4. Now, 0 = ¢/, 04 where oy :=
¢>;—(21)U € I'y. Repeating the same argument for the automorphism o4 € T'y
(i.e. for s = 2), we have o4 = ¢;(4) mod I'g for a unique element a(4) € A, 4
such that J(04) = 1+ a(4) mod E} 5. Then, o = ¢g(2)¢;(4)06 where o4 :=

(f):;(i) ;7(21)0 € I's. Continue in this way we prove the theorem. O

We know already that the group I' is an affine variety over K where the
coefficients {As; o} of the monomials z® in the decomposition o(z;) = z; +
Y a|>2 Aoyi,a®® (where o € I') are the coordinate functions on I'. Theorem 7.2
introduces the isomorphic affine structure on I' where the coefficients of the
monomials ® in a(2s) and the coordinate functions on the Jacobian group
are new coordinate functions on I'. We will see that this affine structure on I"
is very useful in studying the spaces 'y /T's;.

The next corollary is a direct consequence of Theorem 7.2.

COROLLARY 7.3. — Let K be a commutative ring, n > 4, and s =
1,...,[”771]. Then each automorphism o € T'ag is a unique product o =

‘75;(25)‘75;(254-2) e (b;(?["T_l])’y for unique elements a(2t) € Ay, s <t < [”?_1],
and vy € Pypn_ry, =3 (by (100)). Moreover,

a(2s) = J(c) —1 mod E;z,23+2>
—1 1
a(2t) = J(¢,a(2t72) T ¢Ia(2s)0) —1 mod E;L,Zt+2’ s<t<|

_ / / / —1
= (¢a(2s)¢a(4) T (ba(g[nT—l])) .

n—1

I,

The dimension of I'y, /T'5;. — The next corollary shows that the sets T'as/To;
are affine varieties over K.

COROLLARY 7.4. — Let K be a commutative ring, n > 4, and 1 < s <t <
[251] + 1. Then the set

F2S/F2t = {(z):l(QS) ce ¢:1(2t72)1—‘2t | a(28) E An,287 e ey a(2t - 2) E An’2t72}
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is an affine variety over K of dimension dim(T'as/Tg;) = Z_:ls (272)

Proof. — The first part of the corollary follows from Corollary 7.3, where the

coefficients of the elements a(2s),...,a(2t — 2) are coordinate functions of the
affine variety I'o5 /T'9;. Clearly, dim (I, /T'y;) = Z_:ls rkg (Ap k) = Z_:ls (21)
O
The dimension of the Jacobian ascents. — By Corollary 7.3, for each n > 4 and
s=1,..., ["T_l], the Jacobian group
(106) Too = {@ a0 - ¢;(2["T‘1]>7 |a(2i) € Apoi,y € X}
is an affine variety of dimension
(23
. . n
(107) dim(Iy) = dim(%) + Z <22>

The coordinate functions for the affine group I's, are the coefficients of all the
elements a(2¢) and the coordinate functions on the Jacobian group ¥. In the
particular case when s = 1, one has

(108) I'="I5= {¢;(2) PN ¢;(2[nT,1])’y | a(2z) S An,2i7'7 € E}

It follows from (106) and (108) that each Jacobian ascent I'y,, s = 1,...,[25],
is a closed subgroup of I' that satisfies ezactly dim(T") — dim(T's) = Y5=] ()
defining equations, namely, all coefficients of the elements a(2), a(4),...,a(2s—

2) are equal to zero.

Note that, for an even number n, Py =T, =% (Theorem 7.1.(2)). This
means that, for each n > 4 (not necessarily even), the groups X and T'ag,
s=1,...,[251], are all the Jacobian ascents.

COROLLARY 7.5. — Let K be a commutative ring, n > 4. Then all the
Jacobian ascents are affine groups over K and closed subgroups of I', and

n—1
dim(Ty) = dim(E) + X202 (), s = 1,...,[%52].
The isomorphisms stt. — Forl1 < s <t < ["T_l] + 1, the abelian group
E;, 25/ E}, o, is an affine variety over K of the same dimension as the affine
variety I'ys/T'o;. The next result shows that the Jacobian map

(109) Js,t : Tas/Tor — E’:L,2S/E’II’L,2t7 ol'a '_’J(U)E;z,zta
is an isomorphism of affine varieties.
THEOREM 7.6. — Let K be a commutative ring, n > 4, and 1 < s < t <

[252] + 1. Then the Jacobian map g, (109), is an isomorphism of affine
varieties.

s,t7
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Proof. — By the definition, the map ZS ; is a polynomial map. In order to

finish the proof of the theorem it suffices to show that the map J 5.+ is a bijection
and its inverse is also a polynomial map. For a given ¢, to pfove these two
statements, we will use downward induction on s starting at s = ¢t — 1 where
the result is known due to (102), (103), (104), and (105). If ¢t = 2 then s =1,
and we are done. So, let £ > 3 and s <t — 1, and, by the inductive hypothesis,
we assume that the map 4, 41 is an isomorphism of affine varieties. We are

going to present the inverse map for Z st which is, by construction, a polynomial
map.

By Corollary 7.4, each element of I'y5/T'9; can be written uniquely in the
form ¢[, 7'y, where a € A, 25 and 7Ly € T'gg10/T9,. Similarly, each element of
E;, 25/ E}, o, can be written uniquely in the form (1 + a)bE;, 5, where a € A, o5
and bE], 5, € Ej, 55,0/ E;, o, To finish the proof we have to show that, for a
given element (14 a)bE;, o, € E}, 5,/ E,, 5;, and an unknown ¢/, 7l'y; € T'a5/T'ay,
the equation

js,t(qs/a’TFQt) =(1+ a‘)bE;z,%
has a unique solution ¢/, 7I'y; that depends polynomially on the RHS. By taking
the equation modulo Ej, 5., we obtain the equality a = a’, by (104):

l+a=J(¢)=14+d mod E, 5.5

Now, we can solve the equation explicitly which can be written as follows

I ()00 s41(TT2)) = I 1($7T2e) = (1 + a)bE;, 5.

Namely,

(110) o = (Jy41,) 7 60 (I (0) 7 (1 + a)bE;, ;)

is the unique solution that depends polynomially on the RHS (note that
J(9,) " (1+a) € E], 5,15, by (104)), as required. O
The Jacobian ascents are distinct groups except one case. — Now, we are ready

to give an answer to the question of whether the Jacobian ascents are distinct
groups or not.

COROLLARY 7.7. — Let K be a commutative Ting and n > 4.
1. If n is an odd number then the Jacobian ascents
I'=T92>2Tly4D - DTy D"'3F2[%] 3F2[g]+222

are distinct groups.
2. If n is an even number then the Jacobian ascents

F:F2DF4D"‘DF28D"'DPQ[%]_QDFQ[%]:FQ[%]+2:2

are distinct groups ezcept the last two groups, i.e. I'yn) =DLgnyys.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



110 V. V. BAVULA

Proof. — 1. If n is odd then [251] = [%] and the result follows from Theorem
7.6 since the groups {E}, ,,} are distinct for s = 1,2,...,[25].

2. If n is even then [25!] = [2] — 1 and 2[%] = n. By Theorem 7.6, the
following groups are distinct: ' =T, DTy D --- DIgs D -+ D F2[%]_2 DI
By Theorem 7.1.(2), Py =Ty[n)42 = ¥, and so the result. O
The dimension of I'/¥. — By taking the extreme values for s and ¢ in Corollary
7.4, namely, s = 1 and ¢ = [251]+1, we see that I'/¥ is an affine variety due to
(100) and T' = T'5. The next corollary gives the dimension of the variety I'/X.

COROLLARY 7.8. — Let K be a commutative ring andn > 4. Then T'/X is an
affine variety.

1. If n is odd then the Jacobian map T /¥ — E!, 0¥ +— J(0), is an isomor-
phism of the affine varieties over K, and dim(T'/X) = 27~1 — 1.

2. If n is even then the Jacobian map /% — E,/E;, ., 0% +— J(0)E], ,,
is an isomorphism of the affine varieties over K (where E, , = 1+
Kz1---z,), and dim(T/%) =271 — 2.

Proof. — 1. Take s =1 and t = [251] + 1 in Theorem 7.6. Since n is an odd
number, 2t+2 =n+1,and so B}, o, .o = E;, .,y = {1} and gy 0 =Ty 11 =3
(Corollary 7.7.(1)). By Theorem 7.6, the Jacobian map I'/Y — E/, 0¥
J (o), is an isomorphism of the affine varieties over K. Now,

(3] (3]
n n
dlm(F/z):dlm(E;L): E ( ) — < ) _1=9n1_1.
s=1 2s 2s

s=0

2. Similarly, take s = 1 and t = [251] + 1 in Theorem 7.6. Since n is
an even number, 2t +2 = n, and so E}, 5,15 = E, , = 1+ Kz, --- 2, and
Tyt = T, = X (Corollary 7.7.(2)). By Theorem 7.6, the Jacobian map
L/S = BB, 0% — J(0)E, .
over K, and

(3] (3]

s=0

is an isomorphism of the affine varieties

7’""

Theorem 7.9 gives an answer to the natural question of whether the Jacobian
map g : ' — E!, o — J(0), is surjective? The answer is ‘yes’ for odd numbers
n, and, surprisingly, ‘no’ for even numbers n. In the second case, the image
of the Jacobian map is large. More precisely, it is a closed subvariety of E!, of
codimension 1 which is defined by a single equation. Moreover, it is canonically
isomorphic to the affine variety E,,/E;, ,
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THEOREM 7.9. — Let K be a commutative ring, n > 4, 4 : T — E/, o —

J(0), be the Jacobian map, and s = 1,2,...,[251]. Then,

1. for an odd number n, the Jacobian map J is surjective. Moreover, for
each s, the map J : Tas — E}, ., 0 — J(0), is surjective; and
2. for an even number n, the Jacobian map J is not surjective but very close
to be a surjective map. In more detail,
(a) the image im(Y) is a closed algebraic variety of E!, of codimension
1 (i.e. dim(im(Y)) = 2"~ —2) which is defined by a single equation
(see the proof),
(b) im(f)NE;,,, = {1} where E;,,, =14+ Kz, -+ zp,
(c) the image im(Y) is canonically isomorphic to the algebraic group
E) /E, ,, via the map im(J) — E, /E}, ., a— aFE), .

;T no

Proof. — 1. The fact that the Jacobian map 4 : I' — E/, ¢ — J(0), is
surjective follows from Corollary 7.8.(1) and (55).

2. By Corollary 7.8.(2) and (55), the Jacobian map  is not surjective,
though there is a bijection between the image im(J) and E;/E], ,,. The set
E, /E;, , may be identified with the closed affine subvariety of the affine variety
E!, that is given by a single equation: the coefficient of the element z; - - - z,, is
equal to zero. In more detail, E/, = 1+@L%:]1An725 and E},/E,, ,, is identified with

1+ 69[3%:]1711&”725. Then the bijection between im(/) and E;,/E;, , means that
the last coordinate, say A = A(c), of each element 4 (o) = 14+ -+ Az - -z, isa
polynomial function of the previous coordinates (in the three dots expression).
This is the defining equation of the image im() in E},. So, the statements (a)
and (c) follow. The statement (b) follows at once from the equality I';, = ¥

O

(Theorem 7.1.(2)): ¢ € im(J)NE,, , iff 0 €T, = X.

8. Analogues of the Poincaré Lemma

In this section, two results (Theorems 8.2 and 8.3) are proved that have
flavor of the Poincaré Lemma. Theorem 8.2 is used in the proof of Theorem
9.1.

THEOREM 8.1. — Let K be an arbitrary (not necessarily commutative) ring.
Then
1. the Grassmann ring A, (K) is a direct sum of right K-modules
AN(K) =212, KDz 2y 1 KDz TpoK|z,] D ---
@y K| Zign | BB K |23 x| DK T, 2y
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2. So, each element a € A, (K) is a unique sum
n—2
Q=1 Tpln + @1 Too1bp + T Tibigr + by
i=1

where an,by, € K, b; € K|Zip1...,2,], 1 <i<n—1. Moreover,
ap, = Op0p—1---01(a),
biy1 = 0;0i—1---01(1 = 24410;41)(a), 1 <i<n—1,
by = (1 —z101)(a).
So,

n—1
a=1x1 TpOpOp_1-01(a) + Z 2y 2;0; - 01(1 = 2i410i41)(a) + (1 — 2101)(a).
=1

Proof. — Foreachi=1,...,n,let K; := K|x;,...,2,]| and K41 := K.
1. Existence of the decomposition is a consequence of a repeated use of the
fact that KZ‘ = xiKH_]_ (&) K’H-l' Namely,
Kn = .’1}1K2 &) K2 = .'Iil(iL‘QKg &) Kg) D KQ = CL’1.’E2K3 &) .’E1K3 &) Kg
= z122(23 K4 ® K4) D21 K3 D Ko
= 112273(24 K5 © K5) ©® 1122 K4 O 01 K3 @ Ko = - - -,
when this process stops after n steps we get the required decomposition.
2. The crucial steps in finding the coefficients for the element a are (%)

0?2 =...=092 =0, and (i) for each i = 1,...,n, the map ¢; := 1—z,;0; : A,, —
A, is the projection onto the Grassmann subring K |z1,...,T;,...,T,] in the
decomposition A, = K|z1,...,Z,...,Zn] ® ;K |z1,...,T;,...,T,]| (Lemma

2.2). The tail ¢ in the sum a = 7 - - - z,a, +¢ has (total) degree in the variables
Z1,...,T, strictly less than n, hence t is killed by the map 0, - - - 8;. Therefore,

an...al(a) — an...al(xl...l'nan) — 8n...82(x2...mnan) R an.
To find the elements b; we use induction on i. Since the map ¢; = (1 —
x2101) : A, — A, is a projection onto K|zs,...,z,| and all summands of a

but the last belong to the ideal (x1) (which is annihilated by ¢;), it follows
at once that ¢q(a) = ¢1(b1) = b;. Similarly, applying ¢ to a we see that
$2(a) = x1by + ¢2(b1). Since ¢2(b1) € K|x3,...,,2s], we have O1¢2(b1) = 0,
and so 01¢2(a) = O1(xz1b2) = by. Suppose that the formula for the by in the

theorem is true for all k = 1,...,7, we have to prove it for i + 1. The cases
1 = 1,2 have been established already. So, let i > 3. Now,
i—1
Gir1(a) =1 Tibip1 + i1 (O x1 - TkOg -+ O1¢ks1(a)) + diga (b).
k=1
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Note that the skew derivations 0i,...,0; commute with ¢; 1. ¢i+1(b1) €
K|z, ..., Tit1,..., Ty implies O1¢;41(b1) = 0, and so ;- -- 1z 1(b1) = 0.
For each k = 1,...,i — 1, let ¢y = Pir1(x1 - 20k - - - O10x+1(a)). Using the
commutation relations for the Grassmann K-algebra Aj, = @, sc g, 0*2° K one
can write (in Ag)

Ty 20 ---01 =1+ d; where di € ®0¢a€$k,gegk8a:ﬁ8k’.
Since 8y -+ 01d =0 (as 9 = --- = 92 = 0) and i > k, we have
0i- - 01k = ¢iy10; - 01(1 + di)dry1(a) = ¢i110; -+ Oky1 -+ - O1¢141(a)
= (~1)*¢is10; - D1 1Ok r10k41(a) = 0
since Okt10k+1 = 0. Now, we see that
0+ 019i41(a) = 0; -+ 01(w1 -+~ Tibiy1)
=0;++01(z1--24) - bt
(as bi41 € K|Zit2y...,2n] C Ni_ ker(0y))
= bit+1,
as required. O

By Theorem 8.1, the identity map ida, : A, — A, is equal to
(111)

n—1
idAn =Ty arnan(?n_l . '61 + Z Iy - Zzaz cee 81(1 — xi+18i+1) + (1 — .Tlal).
i=1

If n’ > n then the RHS of (111) is a map from A, to itself. Therefore,
(112)

ldA/n =1 """ .Tnananfl N '81 + Z Iy - iEZaZ cee 81(1 — .’Ei+18i+1) + (1 - .'Elal).

THEOREM 8.2. — Let K be an arbitrary ring, u1,...,u, € A, (K), and a €
A, (K) be an unknown. Then the system of equations

ri1a = up
o = U
Tnd = Up

has a solution in A, iff the following two conditions hold

1. uy € (z1),...,Un € (x,), and
2. zyu; = —xu; for all i # 3.
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In this case,
n—1

(113) a=x1 " Tpan, + Z Ty - :z:ic’)i e 8161'+1(U1‘+1) + 61(11,1), a, € K,
i=1

are all the solutions.

Remark. An analogue of the Poincaré Lemma for A,, is given later (Theorem
8.3). Theorem 8.2 is a sort of Poincaré Lemma for the Grassmann algebra since
the map Iz, : A, — A, u — z;u, the left multiplication by z;, is a sort of skew
partial derivatives on x; as follows from the following two properties:

1. Each element a € A, is a unique sum ¢ = z;a + 8 with «a,8 €
K|z1,...,%;,...x,] and I, (a) = z;5; and

2. for any two elements a; € A,, s and a; € A, + where s,t € Zs:
1 1 1 L1
zi(asar) = STiasa; + sTiasar = (FTias)ay + (—1)°as(5wias),
2 2 2 2
provided % €eK.
Proof. — Suppose that a € A, is a solution then u; = z;a € (x;) for all i; and,
for all ¢ # j,
Tiuj + Tju; = T;75a0 + Tjx0 = ;x50 — ;750 = 0.

So, conditions 1 and 2 hold. Evaluating the skew derivation 0; at the equality
u; = T;a one sees that

Let us write the element a as the sum in Theorem &.1. Note that if a is a
solution to the system then a + x1 - - - x,a, is also a solution for an arbitrary
choice of a,, € K, and vice versa. By (114) and Theorem 8.1.(2),

n—1
a4 =21 Tplp + Z oy 2i0; - - - 01011 (Uig1) + 01 (ur).
i=1
This proves (113).

It remains to show that if conditions 1 and 2 hold then (113) are solutions
to the system. We prove directly that xja = u; for all j. An idea of the proof
is to use the identity (112). For 5 = 1, note that x10; (u1) = w1 since u; € (z1),
and so z1a = 2101 (u1) = u;. Suppose that 2 < 7 <n. Then

j—2
x]-a =21 Jij_laj_l . '3112j8j (UJ) + le . IL‘Z(‘?Z e (91xj8i+1(ui+1) + x]@l(ul).
i=1
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Note that mjai+1(ui+1) = - i+1(xjui+1) = - i+1(—xi+1uj) = (1 -
mi+18i+1)(uj); a:jaj(uj) = Uy since U € (:L'j); and xjal(ul) = —Bl(a:jul) =
—01(—z1u;j) = (1 — 2101)(u;). Using these equalities, we see that

j—2
zja = (21 2j-10;-1 01 + le o 2i0; 011 = 2i410i41) + (1 = 2101)) (ug) = uy,
im1

by (112). O
THEOREM 8.3. — Let K be an arbitrary ring, uy,...,u, € A, (K), and a €
A, (K) be an unknown. Then the system of equations

01(a) = uy

62 (a) = U2

On(a) = uy,

has a solution in A, iff the following two conditions hold
1. foreachi=1,...,n, u; € K|z1,...,Z;,...,2s], and
2. 0i(u;) = —0j(u;) for all i # j.
In this case,
(115) a=A+ Y )z, €K,
0#£a€ B,
are all the solutions where ¢ is defined in Lemma 2.2.(8) and, for a = {i; <

e < ik}, Uq ‘= 8ik8ik71 .- ~8i2(ui1).

Proof. — Suppose that a € A, is a solution then w; = 9;(a) € im(9;) =
K|z1,...,Ti,...,%,], and so the first condition holds. For all ¢ # j,
9i(u;) = 9;0;(a) = —0;0i(a) = —0;(ui),

and so the second condition holds. Note that if a is a solution then a + A,
A € K, are all the solutions since K = NI, ker(9;). By Theorem 2.3.(1),

a= Y $0%(a)e* =X+ DY $0%"@)z* =1+ Y (ud)z",
a€ By 0#a € By, 0#a€ B,
so (115) holds.
It remains to show that if conditions 1 and 2 hold then (115) are solutions

to the system. We prove directly that 9;(a) = u; for all i. An idea of the proof
is to use the equality of Theorem 2.3.(1) together with conditions 1 and 2.

@)= ] lua) (D) = 3T g0\ u))a D =

i€EEB, €€ By
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The second equality above is due to the fact that (—1)*tT@i-iy, =
9\ (u;), by condition 2. The last equality follows from Theorem 2.3.(1) and
condition 1. O

9. The unique presentation ¢ = w1 ,7,04 for o € Autg (A,,)

In this section, K is a reduced commutative ring with % € K. By Theorem
2.14.(3), G = QI'GL,,(K)°P. So, each element o € G has the unique presen-
tation as the product o = wi .04 Where wiy, € Q (a € A°Y), v, € T,
oa € GL,(K)° where A/°d := @;A,,; and i runs through all odd natural
numbers such that 1 <7 <n —1.

THEOREM 9.1. — Let K be a reduced commutative ring with % € K. Then
each element o € G is a unique product 0 = wiyaVpoa (Theorem 2.1/.(3))
where a € A'°Y and

1. o(z) = Az +--- (i.e. o(x) = Az mod m) for some A € GL,(K),

2. b= A"1o(x)°d — z, and

3.0 = (-1 + Ty 2O O (S r T w20y 0103y (@l ) +
d1(ay)) where a) = (A7'y, ' (c(x)®))s, the i’th component of the
column-vector A~1y, ! (a(z)®).

Z1 b1 o(xy)
Remark. Recall that x = , b= , o(z) = ,
T b, o(xy)
o(x1)® o (1)
o(z)® = , o(z)°d = , and any element u € A, is a
o(xn)®” o(zy,)°d

unique sum u = u®¥ 4+ u°? of its even and odd components.

Proof. — Statement 1 is obvious. Note that
(116) o(x) = witaw(Az) = wira(A(x + 1)) = A(z + b) + 2aA(z + b).

Then o(x)°? = A(z+b) and o(2)®" = 2aA(z+b). The first equality is equivalent
to statement 2, and the second equality can be rewritten as follows,

AT @) = (@ + ba = (@) = w(e; (@),
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or, equivalently, 27y, '(a) = —2 A=y, *(o(2)¥). This is the system of equations
ml’Yb_l(a’) = _%alla
'/1727};71(0’) = _%G/IZa
zny;, Ha) = —1al,.

Its solutions are given by Theorem 8.2,
1 = i !/
a= —571,(2 xy 205 - - 010i41(aj, 1) + 01(ay)) + any -+ Ty, ap € K,
i=1

where we have used the fact that v,(apz1---2n) = apz1 - z,. The element
an can be found by applying the skew differential operator 0, ---9; to the
equation above and taking into account that it kills the element a € A/°9.
Now, statement 3 follows. O
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