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A NOTE ON SIGNS OF KLOOSTERMAN SUMS

BY KAISA MATOMAKI

ABSTRACT. — We prove that the sign of Kloosterman sums Kl(1, 1;n) changes in-
finitely often as n runs through the square-free numbers with at most 15 prime factors.
This improves on a previous result by Sivak-Fischler who obtained 18 instead of 15.
Our improvement comes from introducing an elementary inequality which gives lower
and upper bounds for the dot product of two sequences whose individual distributions

are known.

REsUME (Une note sur les signes des sommes de Kloosterman). — On montre que le
signe des sommes de Kloosterman KI(1, 1;n) change une infinité de fois pour n par-
courant les entiers sans facteur carré ayant au plus 15 facteurs premiers. Ceci améliore
un résultat précédent de Sivak-Fischler qui avaient obtenu 18 a la place de 15. Notre
ameélioration provient de I'introduction d’une inégalité élémentaire donnant des bornes
inférieures et supérieures pour le produit scalaire de deux suites dont les distributions
propres sont connues.
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288 K. MATOMAKI

1. Introduction

The distribution of values of Kloosterman sums

Kl(a,bn)= > e <a:c Z bf)

z (mod n)
(z,n)=1

is an important question in number theory. By the Estermann-Weil bound (see
[1]) we have, for 32 1 n,

(1) | Kl(a, b;n)| < 2™ (a,b,n)/?nt/2,

where w(n) is the number of distinct prime divisors of n (for 32 | n the bound
holds with an additional factor v/2 on the right hand side). In particular

|KI(1,a;p)| < 2¢/p.
Since KI(1, a; p) is real, this implies that there is an angle 6, , € [0, 7] such that

KI(1, a; p)
cosl,, = ————=.
12 2\/5
The distribution of the angles 6, , is related to the Sato-Tate measure pgr
on [0, 7| defined by

2 sin? 0d0.

dpst =

Indeed Katz has proved the following result concerning the vertical distribution
(see [5, Example 13.6]).

THEOREM. — The angles 0,, for a = 1,...,p — 1 are equidistributed with
respect to the Sato-Tate measure as p — oo, i.e. we have
1 2 (7,
—{1<a<pla<b,, < B} — — sin” 6d#.
p— 1 T Ja

A corresponding horizontal result is expected to hold.

CONJECTURE. — The angles 0, for p ~ X are equidistributed with respect to
the Sato-Tate measure as X — oo, i.e. we have

X< 2X|la <6, , < 2 [P
I{ >p < |Oé — Up,a = ﬂ}' N / Sin2 0do.
(e}

{X <p<2X}] ™

However, it is not even known whether KI(1,a;p) changes sign infinitely
often. In this paper we prove the following approximation towards that.
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THEOREM 1.1. — There exist Xg > 1 and cy > 0 such that, for X > Xy, we
have
X
H{n ~ X|KI(1,1,n) > 0, u*(n) = 1,w(n) < 15}| > COlogX

and

{n ~ X|KI(1,1,n) < 0,u?(n) = 1,w(n) < 15}| > ¢co

X
log X~

The first result of this type was obtained by Fouvry and Michel [3]. They
showed the result with the condition w(n) < 15 replaced by assertion that all
prime factors of n are larger than n'/23-9 (which of course implies the above
with 15 replaced by 23). Sivak-Fischler has improved 1/23.9 to 1/22.29 in [6]
and showed the above theorem with 15 replaced by 18 in [7].

2. The method described

Following [2] and [7] we consider the sum

Z Kl(i}%a n)g (%) u2(n)Ak(n) Z )\d 7
d|n

n

where g(y) is a smooth function supported in the interval [1,2], Ay = (log)* * 1
is the generalized von Mangoldt function and A; are Selberg sieve weights
satisfying

A =1
Ag =0 if d > 2z or p(d) =0,

) Mg < 2¢(@+1 for all d € N,
g = p(d) loigog éd + O, (%) for any n > 0 and d < 277,

where the level 2z = 2X1/ 20(log X)~ B for some large positive constant B.

Recalling that Ax(n) is supported on numbers with at most &k distinct prime
factors, Theorem 1.1 follows once we have proved the following propositions in
which § = flzg(z)dx.

PROPOSITION 2.1. — For every large enough X we have
2

@ Y |K1(1\/vﬁl’”)|g (%) n)Ars(n Z A | > 0.89- §X(log X))
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PROPOSITION 2.2. — For every large enough X there exist sieve weights g
satisfying (2) such that
2

> IWQ (%) p2(m)As(n) [ D Aq ) | <0.81-§X (log X)™.
" d|n

In Section 4 we show how Proposition 2.2 follows from Sivak-Fischler’s work
[7]. In Section 3 we prove Proposition 2.1 still following Sivak-Fischler’s ar-
guments that go back to [3]. Our improvement comes from introducing the
following lemma which might have other applications.

LEMMA 2.3. — Assume that the sequences (am)m<m and (bm)m<m contained
in [0, 1] become equidistributed with respect to some continuous measures i, and
wy respectively when M — oco. Then

1 1 M 1
(o) | el@)dia(0.3)) < 37 2 @b < (1+o(1) | avetwdna(0.2)

where y;(z) is the smallest solution to the equation uy([yi, 1]) = pa([0,z]) and
yu(x) 1s the largest solution to the equation ([0, y.]) = pa ([0, z]).

REMARK 2.4. — As will be clear from the proof, the bounds are best possible
under the given assumptions. The lower bound can be used to replace the
trivial bound

M
@) % > ambim > (1+ 0(1)) AB(1 — 1a([0, A]) — ([0, B])),

which holds for any A, B € [0, 1].

Proof of Lemma 2.3. — Denote by ¢, the sequence ¢, arranged in increasing
order. Then by the rearrangement inequality (see [4, Theorem 368]),

1 & 1 &
M Z ambm > M Z dmberrw
m=1 m=1
Invoking the equidistribution of the sequence a,,, the right hand side is

1
> (1 —|—0(1))/0 mbM—[MM([O,m])]dﬂa([Oax])-

Now the lower bound follows from the equidistribution of b,,. The upper bound
can be proved similarly since
M M
by < Z Ty O
m=1 m=1
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by the rearrangement inequality. O

3. Proof of Proposition 2.1

In the proof of the lower bound we restrict the summation over n in (3) to
numbers with at most 5 prime factors. More precisely, we will consider the
sum restricted to the union of the sets

P3(X) = {p1paps ~ X|X° < ps < p2 < p1»pi/2Y < p2},
Pa(X) = {p1papspa ~ X|X? < ps <ps <p2 <p1,py/°Y < pops}, and
P5(X) = {p1p2p3paps ~ X|X° < p5s < ps < p3 < p2 < p1,
p/%Y < papspa, (pspaps)'/?Y < po},
where Y = exp(y/log X) and § is a small positive constant. We write further

P; ) )
p; € [Pi,Pi—{—i forz:l,...,j}

Qj(X,Pl,...,Pj):{pyupje@j(X) logX

when P; are such that
X
PA(X,Pr,...,P)| > ——.
| 9( 1 J)| log2]X

Let
Kl(m,m;n)
2¢(n)/n
for (m,n) = 1 and n square-free. By (1) we have |C(m;n)| < 1 and by the
Chinese reminder theorem

(5) C(1;mn) = C(m;n)C(n;m).

C(m;n) =

Next we define some measures that are related to the distribution of values
of C(m;n) in the interval [—1,1]. Following [3] we define a measure u(*) on
[—1, 1] to be the image of the measure pg7 under the mapping § — cos 6, so that
dpMz = 24/1 — 22dz. Further, for j > 1, we define a measure () on [—1,1]
to be the image of u(*) x - -+ x u(*) under the mapping (1, ...,z;) — =1 --- ;.
Then

4 [® 2
p D ([z,z]) = 7/ V1—t3dt = = (x 1—22+ arcsinx)
7 Jo T

and

G (=2, 2]) :u(l)([—x,x])+%/ p9 ([—z/t, z /1)) V1 — t2dt.

x

Now we have the following lemma.
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LEMMA 3.1. — Let j € {3,4,5}. The set

(6) {Cp1;p2--pj)ln=p1---pj € Pj(X, Pyr,..., Pj)}
is equidistributed in [—1, 1] with respect to the measure p9=Y | and the set
(7) {Cp2---pjsp1)ln=p1---pj € Pj(X, Pr,...,Pj)}

is equidistributed in [—1, 1] with respect to the measure p,
Proof. — This follows exactly as [3, Propositions 6.1, 6.2 and 6.3]. O

Now we are ready to attack the sum on the left hand side of (3). First we
restrict the summation to the sets #; giving

SR () womsto) |

d|n

2

225: Z |C(1n|g( )A15 de

j=3 d|n

Hence, by the multiplicity property (5), we need to consider < log? X sums
2

Z |C(p1;p2 - p;)C (P2 P37P1)|9< )A15 ZM
n€P;(X,Py,...,P;)
(8) :(1+o(1))g(P1-~-Pj/X)(log15X)lj(P1,...,Pj)l;(Pl,...,Pj)2
> |C(p1;p2 -+ p;)C (P2~ - pjs p1)l,
’ILGWj(X,Ply-.‘,Pj)

where n = p; -+ - p;,

15
lj(Xal,...,Xaj)z Z (_1)j*|A| (Z a)
a5}

AC{as,... acA
corresponds to the generalized von Mangoldt function, and

X, LX) = Y (—1)|A|<1—2oza>

a€cA

corresponds to the sieve weights Ag.
Let N; = |?;(X, P1,...,P;)|. Previous authors have used Lemma 3.1 and
(4) to conclude that the last sum in (8) is at least

Njzjy;(1 = p([—=5,25]) — p9 D ([~y;,;]))
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for some fixed numbers z; and y;. We take more advantage of the equidistri-
bution result in Lemma 3.1.
Indeed combining Lemma 3.1 with Lemma 2.3, we see that

Z |C(p1;p2"'pj)C(pz"'pj;p1)|
n€P;(X,P1,...,P;)

1
> 1+ 0NN [ o) (1,1,
0
where y;(z) is the unique solution to the equation

p([~z,2]) = p9 (-1, -y U [y, 1]) = 1 — 0V ([~y,y]).

‘We write

R 1 I NS N i
0= [ o u@it (aa) =2 [ oy vi-aa

Then
2
> 1Cmlg (5) Ass(w) Zxd
neP;(X)
Z(1+o C Z ( ) pl,...,pj)l;»(ph...’pj)QlongX

ne?;(
- <1+o<1)>cjgx<1og14X> [ [ e e xe)
(o7 (e D)

dOZQ "’dOlj

(X xar o xas)2
j( ’ ’ ’ )az...a](l_az_..._a])

= (1+0(1))A4;C;X log"* X,

say, where we have substituted p; = X*¢ and used the prime number theorem.
Numerical calculation (") gives

Az > 1.45, Ay > 1.93, As > 0.95,
Cs > 0.0355, Cy > 0.0118, Cs > 0.0039.
Hence
5 .
> 274;C5 > 089
j=3
which finishes the proof of Proposition 2.1. [

One could improve the lower bound slightly by choosing y and z more care-
fully, making numerical calculations more accurately, and introducing more

(1) Mathematica® source code can be found at http://users.utu.fi/ksmato/papers/
signkloost/ or requested from the author.
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sets #;. However, the real difficulty comes from the fact that the upper bound
increases rapidly if one tries to get a result with less prime factors. This seems
to be because of loss coming from an estimate in [7, beginning of Section 3.3.1].

4. Proof of Proposition 2.2

Recall that z = X/?°(log X)~% and let y = X2/5. Then by [7, Theoréme
1.7 and Lemme 4.3] there exists coeflicients (Ag)q>1 satisfying the conditions
(2) such that

Ki(1,1,n) /n

SRR Y () [ S
LS o (3
P(log X, log(2X/y), log z)

log8 z

<gX (1+0(1)) + O4(X (log X)'%),

where P(z,y, z) is a homogenous polynomial of degree 22.

The polynomial P is defined in [7, end of Section 7] in terms of polynomials
Py and P; defined in [7, Lemme 6.1 and 6.3]. Notice that exponents of (-
functions in the definition of P in [7, Lemme 6.3] should correspond those in
the definition of T'Ps ; in [7, equation (50)].

The residues in the definition of P can be calculated using [7, Theoréme A.1]
and mathematical software Mathematica 6. We have

X17X5 4 X17X5 X16X6
P(X17X2’X3):3'173(§_ >+ X5 X5 ! 3(3— )
696320 \m 85 163840 \ 37w
2X36X$ _ 8X, X2 16X22
5 1017457 3730657
Now Proposition 2.2 follows by substituting this and values of y and z into
(9). O
This also finishes the proof of Theorem 1.1. O
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