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by Jacopo Stoppa & Richard P. Thomas

Abstract. — We show that the Hilbert scheme of curves and Le Potier’s moduli

space of stable pairs with one dimensional support have a common GIT construction.

The two spaces correspond to chambers on either side of a wall in the space of GIT

linearisations.

We explain why this is not enough to prove the “DT/PT wall crossing conjecture”

relating the invariants derived from these moduli spaces when the underlying variety

is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory for

such wall crossings, and use it to give a short proof of an identity relating the Euler

characteristics of these moduli spaces.

When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of

the DT/PT wall crossing conjecture, but for general 3-folds it is something different,

as we discuss.

Résumé (Schémas de Hilbert et paires stables : GIT et croisements de murs de caté-

gories dérivées)

Nous montrons que le schéma de Hilbert de courbes et l’espace de modules de

Le Potier de paires stables à support à une dimension, ont une construction GIT

commune. Les deux espaces correspondents aux chambres de par et d’autre d’un mur

dans l’espace de linéarisations GIT.

Nous expliquons pourquoi cela ne suffit pas pour prouver la « conjecture de croi-

sement de murs DT/PT » qui relie les invariants dérivés de ces espaces de modules

quand la variété sous-jacente est un 3-fold. Nous donnons, ensuite, une introduction

simple à une petite partie de la théorie de Joyce sur les croisements de murs de ce type,
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298 J. STOPPA & R. P. THOMAS

et nous nous en servons pour donner une brève démonstration d’une identité reliant

les caractéristiques d’Euler de ces espaces de modules.

Quand le 3-fold est de type Calabi-Yau, l’identité est le pendant, pour la carac-

téristique d’Euler, de la conjecture de croisement de murs DT/PT, mais dans le cas

général elle s’avère être différente de celle-ci, comme nous l’expliquons.

1. Introduction

This paper is motivated by the conjectural equivalence between two curve
counting theories on smooth complex projective threefolds X: the one studied
in [17] and the stable pairs of [21].

MNOP and stable pairs invariants are sheaf-theoretic analogues of Gromov-
Witten invariants, sometimes called DT and PT invariants respectively. The
space of stable maps to X is replaced by suitable moduli spaces of sheaves
supported on curves in X.

Fix β ∈ H2(X, Z) and n ∈ Z. In MNOP theory we integrate suitable
classes against the virtual fundamental class of the Hilbert scheme In(X,β) of
subschemes Z of X in the class [Z] = β with holomorphic Euler characteristic
χ( OZ) = n. The virtual fundamental class comes from thinking of In(X,β) as
a moduli space of sheaves of trivial determinant – namely the ideal sheaves IZ

with Chern character

(1.1)
�
1, 0,−β,−n +

β.c1(X)

2

�
∈ H0

(X)⊕H2
(X)⊕H4

(X)⊕H6
(X).

For stable pair theory we work instead with stable pairs (F, s): F is a pure
sheaf on X with Chern character (0, 0, β,−n + β.c1(X)/2), and s : OX → F is
a section with 0-dimensional cokernel. A special case of the work of Le Potier
[14] constructs the fine moduli space Pn(X, β) as a projective scheme. The
virtual fundamental class comes from thinking [21] of Pn(X,β) as a moduli
space of objects of the derived category of coherent sheaves on X (with trivial
determinant) – namely the complexes I• := { OX → F} with Chern character
(1.1).

Roughly speaking, we think of In(X, β) as parameterising pure curves plus
points (free and embedded) on X. Any Z ∈ In(X,β) contains a maximal
Cohen-Macaulay curve C ⊆ Z (the pure curve: recall that Cohen-Macaulay
means no embedded points) such that the kernel of OZ → OC is 0-dimensional
(the points). Equally loosely we think of stable pairs as parameterising Cohen-
Macaulay curves (the support of the sheaf F ) and free points on the curve (the
cokernel of the section s).

Over the Zariski-open subset of Cohen-Macaulay curves C with no free or
embedded points, the moduli spaces In(X, β) and Pn(X,β) are isomorphic: the
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WALL CROSSING 299

stable pair OX → OC determines and is determined by the kernel ideal sheaf
IC . Indeed I• is quasi-isomorphic to IC .

When ωX
∼= OX , i.e. X is a Calabi-Yau threefold, MNOP and stable pair

invariants take a particularly simple form. Then the virtual dimension is zero
and we get invariants by taking the length of the 0-dimensional virtual cycle:

Ivir
m,β =

�

[Im(X,β)]vir

1,

and
P vir

m,β =

�

[Pm(X,β)]vir

1.

In this case the deformation-obstruction theories [24, 21, 9] used to define
the virtual cycles are self dual in the sense of [2]. This implies that Ivir

m,β , P vir
m,β

are in fact weighted Euler characteristics:

Ivir
m,β = e(Im(X,β), χB

), P vir
m,β = e(Pm(X,β), χB

).

Here the weighting function is Behrend’s integer-valued constructible function
χB [2], which assigns to each point of the moduli space the multiplicity with
which it contributes to the invariants. At smooth points of the moduli space,
χB ≡ (−1)

dim.
We can also form their generating series

ZI,vir
β (X)(t) :=

�

m∈Z
Ivir
m,βtm and ZP,vir

β (X)(t) :=

�

m∈Z
P vir

m,βtm.

The conjectural equivalence between the MNOP and stable pair invariants in
the Calabi-Yau case is then the following.

Conjecture 1.2. — [21] For X a Calabi-Yau threefold,

ZP,vir
β (X) =

ZI,vir
β (X)

ZI,vir
0 (X)

.

Equivalently, for each m ∈ Z we have the following identity (where the right
hand side is a finite sum):

(1.3) Ivir
m,β = P vir

m,β + Ivir
1,0 · P vir

m−1,β + Ivir
2,0 · P vir

m−2,β + · · · .

Here ZI,vir
0 (X) is the generating series of virtual counts of zero dimensional

subschemes of X. By [17, 3, 15, 16] it is in fact

ZI,vir
0 (X)(t) = M(−t)e(X),

where M(t) is the MacMahon function, the generating function for 3-
dimensional partitions.

Using Kontsevich-Soibelman’s identities for χB [13], now proved in some
cases [12], it should now be possible to extend what follows to the weighted
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300 J. STOPPA & R. P. THOMAS

Euler characteristics Ivir
m,β and P vir

m,β . But in this paper we content ourselves
with working with the unweighted Euler characteristics

Im,β := e(Im(X,β)) and Pm,β := e(Pm(X,β)),

which are not deformation invariant. Form their generating series

ZI
β(X)(t) :=

�

m∈Z
Im,βtm and ZP

β (X)(t) :=

�

m∈Z
Pm,βtm.

In Sections 4 and 5 we will give two different proofs of the following topological
analogue of Conjecture 1.2 (first proved by Toda [26] in the Calabi-Yau case,
as discussed below).

Theorem 1.4. — Let X be a smooth projective threefold. Then

ZP
β (X) =

ZI
β(X)

ZI
0 (X)

.

Equivalently for each m ∈ Z we have the following identity (where the right
hand side is a finite sum):

Im,β = Pm,β + I1,0 · Pm−1,β + I2,0 · Pm−2,β + · · · .

Here the Ik,0 = e(Hilb
k X) are the Euler characteristics of the Hilbert

schemes of points on X, and ZI
0 (X) is their generating series. By [5] this

is
ZI

0 (X) = M(t)e(X).

In fact we prove a little more. Fixing a Cohen-Macaulay C in class β,
define In,C to be the Euler characteristic of the subset of In(X,β) consisting
of subschemes whose underlying Cohen-Macaulay curve is C (this is naturally
a projective scheme, see below). Similarly let Pn,C be the Euler characteristic
of the subset (in fact projective scheme) of Pn(X,β) of pairs supported on C.

Theorem 1.5. — Let C ⊂ X be a Cohen-Macaulay curve in a smooth projec-
tive threefold. Then

In,C = Pn,C + e(X)Pn−1,C + e(Hilb
2 X)Pn−2,C + · · · + e(Hilb

n X)P0,C .

We explain in Section 4.2 how to deduce Theorem 1.4 from this by “inte-
grating” over the space of Cohen-Macaulay curves C.

Naively one should think of the above identities as reflecting the decompo-
sition of In(X,β) into a union of the subset of pure Cohen-Macaulay curves
with no free or embedded points, the subset with one free or embedded point,
the subset with two points, etc. Birationally such a decomposition is given by
(1.6) below.
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Remark. — We emphasise that the identity of Euler characteristics in The-
orem 1.4 holds for any threefold. (Only the χB-weighted Euler characteristic
motivation requires the Calabi-Yau condition.) From a virtual class perspective
it is very surprising that the result should hold in the non-Calabi-Yau case, as
we discuss at the end of Section 4. We also show there how to use Theorem
1.5 to add incidence conditions, getting a topological analogue of the DT/PT
conjecture with insertions for general threefolds.

An intermediate step in our proof is given in Section 3, which may also be
interesting in its own right. The main result there is Theorem 3.3, which shows
that the moduli spaces In(X, β) and Pn(X, β) are related by a special wall
crossing in the sense of Geometric Invariant Theory. This result holds in any
dimension. In fact a single wall is crossed, so we get natural morphisms ϕI , ϕP

to the moduli scheme of semistable objects modulo S-equivalence (pointwise
this coincides with the set of polystable objects) on the wall, which we call
SSn(X,β),

(1.6) In(X,β)

ϕI ��

Pn(X,β)

ϕP��
SSn(X,β) =

�n
k=0 Ipur

n−k(X,β)× SkX.

(The latter equality is a stratification by locally closed subschemes). The mor-
phisms ϕI , ϕP have a simple geometric meaning: they separate the pure and
torsion part of a subscheme (respectively the support and cokernel of a stable
pair). This produces a Cohen-Macaulay curve in Ipur

n−k(X,β) (the subset of the
Hilbert scheme consisting of subschemes of pure dimension 1) and a finite num-
ber of points with multiplicity. Compatibly with the general theory of GIT wall
crossings [6, 23], on passing from In(X, β) to Pn(X,β) each irreducible com-
ponent either disappears, appears, or undergoes a birational transformation.
(Since [6, 23] only work with normal quotients they only see this behaviour for
connected components.)

Remark. — As we note at the end of Section 4, our methods also give a
relation between the Euler characteristics of single fibres of ϕI , ϕP . This is a
punctual analogue of Theorem 1.5. Let C be a Cohen-Macaulay curve in A3

and p a closed point. Then one has

(1.7)
�

n≥0

e(ϕ−1
I (C, np))tn = M(t)

�

n≥0

e(ϕ−1
P (C, np))tn.
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302 J. STOPPA & R. P. THOMAS

This holds whether p lies on C or not; in the latter case it is Cheah’s formula
for the punctual Hilbert schemes Hilb

n
(p),

�

n≥0

e(Hilb
n
(p))tn = M(t).

The more fundamental ingredient in our proof is Joyce’s motivic Ringel-Hall
algebra [10]. Theorem 1.4 reflects identities between elements of this algebra
naturally associated to the wall crossing morphisms ϕI , ϕP .

In fact it was immediately clear from [21] that for Calabi-Yau 3-folds X, some
kind of wall crossing formula for the Euler characteristics Im,β , Pm,β should
follow from the full weight of Joyce’s theory (in particular [11]). Working in the
abelian subcategory of Db

(X) given by tilting the usual one by the subcategory
of dimension zero sheaves one could then try to unravel the formulae in [11] in
this special case.

This is hard, however, and would use results from most of Joyce’s intimi-
dating theory. This is because the wall crossing of [21], described in Section
4.4 below, relates ideal sheaves of 1-dimensional subschemes of X to stable
pairs and 0-dimensional sheaves (see for instance (4.8, 4.9) below). These 0-
dimensional sheaves are strictly semistable, and have automorphisms. Joyce
has a theory counting (in the sense of Euler characteristics, but yielding ra-
tional numbers) such things, and a wall crossing involving certain sums over
graphs. Then one should relate this count to the count of ideal sheaves of
0-dimensional subschemes. Toda is not afraid of Joyce’s work and has carried
this out [26], as well as a related (and even harder) set of wall crossings in [27].

A quicker and apparently simpler proof was shown to us by Tom Bridgeland
[4], but using the full force of Kontsevich and Soibelman’s theory [13] (which
is conjectural in parts). This meant that his proof was also something of a
mystery to us. Nagao also found a proof for small crepant resolutions of affine
toric Calabi-Yau 3-folds using all of Joyce’s theory, and one using Kontsevich-
Soibelman [18].

Our original intention was to understand Bridgeland’s work from first prin-
ciples, reducing it to a down-to-earth analysis of the GIT wall crossing between
moduli spaces derived in Section 3. We soon discovered why that was impos-
sible, but managed to find a way to make a similar proof work (at the level of
Euler characteristics) without using Kontsevich-Soibelman’s algebra homomor-
phism, making do instead with Joyce’s (proved, and more easily understood)
virtual Poincaré polynomials on motivic Ringel-Hall algebras. In particular, we
do not need to use Joyce’s counting invariants for strictly semistable objects,
nor his remarkable theory of virtual indecomposables.

So we decided to use this paper as an opportunity to give an elementary
introduction to a small part of Joyce’s work, and explain why it is necessary
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(and GIT is not sufficient) to handle wall crossing formulae. We illustrate this
with a couple of proofs of the wall crossing formula, one along the lines of
Bridgeland’s, the second in Section 5 remarkably short and simple and closer
to the philosophy of stability conditions.

Bridgeland has now found a way to carry out his proof using Joyce’s work
and the weighting χB , thus proving Conjecture 1.2 without assuming any other
conjectures. We decided that this paper still had some value, however, in the
GIT construction, the introduction to Joyce’s work, and the simpler proof that
we give in Section 5 avoiding Joyce’s virtual indecomposables. Finally the
identity of Euler characteristics clearly has independent interest of its own,
regardless of any virtual class motivation.
Acknowledgements. We mainly learnt about the work of Joyce and Kontsevich-
Soibelman from talking to Tom Bridgeland, from his lectures and his preprint
[4]. We also benefitted from stealing his work and that of Yukinobu Toda. We
would like to thank Jim Bryan, Daniel Huybrechts, Dominic Joyce, Davesh
Maulik, Kentaro Nagao, Rahul Pandharipande, Balázs Szendrői and Yukinobu
Toda for useful conversations. Special thanks are due to David Steinberg and
an anonymous referee for carefully reading the manuscript and making many
useful suggestions. The first author thanks Simon Donaldson and the Royal
Society for support during a visit to Imperial College London, and Gang Tian
for a visit to BICMR, Beijing.

2. Coherent systems and pairs

Let (X, OX(1)) be a smooth complex projective scheme of dimension D with
a very ample line bundle. By a sheaf F we always mean a coherent sheaf of
modules over OX . Its Hilbert polynomial with respect to OX(1) is PF (m) :=

χ(F (m)). This is a polynomial in m with degree d = dim(F ) = dim(Supp(F )),
where Supp(F ) ⊂ X is the closed subscheme defined by the kernel of the
canonical section OX → E nd(F ).

Let r(F ) denote the multiplicity of F , that is d! times the leading coefficient
of the Hilbert polynomial PF ,

PF (m) = r(F )
md

d!
+ O(md−1

).

Then the reduced Hilbert polynomial of F is simply

pF =
PF

r
.

The essential reference for the rest of this section is Le Potier [14].
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304 J. STOPPA & R. P. THOMAS

Definition 2.1. — A coherent system on X is a pair (Γ, F ), where F ∈
Coh(X) and Γ ⊂ H0

(F ). A morphism f : (Γ
�, F �) → (Γ, F ) is a morphism of

sheaves F � → F such that f∗(Γ�) ⊂ Γ. The dimension d of a coherent system
(Γ, F ) is the dimension of F ; i.e. d = dim Supp(F ), not dim(Γ).

From the next section we will restrict to the special case dim(Γ) = 1, d = 1.

Definition 2.2. — A coherent system (Γ, F ) with h0
(F ) ≥ 1,dim Γ = 1, d =

1 is called simply a pair. As a slight abuse of notation we also denote this by
(F, s) or [s : OX → F ], where s ∈ H0

(F ) is a nonvanishing section (defined up
to a nonzero scalar multiple).

A coherent system (Γ, F ) does not have an intrinsically defined Hilbert poly-
nomial. Roughly speaking we must prescribe a weight for Γ. Let Q be a positive
rational polynomial.

Definition 2.3. — The reduced Hilbert polynomial of (Γ, F ) with respect to
Q is given by

pQ
(Γ,F ) =

dim(Γ)

r(F )
Q + pF .

Le Potier introduced Gieseker stability conditions for coherent systems.

Definition 2.4. — A coherent system (Γ, F ) is Q-semistable if
• the sheaf F is pure: it has no nontrivial subsheaves of dimension ≤ d−1,
• for any subsheaf F � ⊂ F with 0 < r(F �) < r(F ), setting Γ

�
= Γ∩H0

(F �),
one has the inequality of reduced Hilbert polynomials

pQ
(Γ�,F �) ≤ pQ

(Γ,F ) .

It is Q-stable if in addition the above inequality is strict.

Let PX = χ( OX(m)) denote the Hilbert polynomial of X.

Definition 2.5. — We say a coherent system is (semi)stable if it is PX-
(semi)stable. Similarly a (semi)stable pair is simply a PX-(semi)stable pair.

One can prove that replacing PX by any rational, positive polynomial Q
with deg(Q) ≥ D in the above definition gives the same (semi)stable objects.

An important feature of a semistable (i.e. PX -semistable) coherent system
(Γ, F ) is that Γ must generate F generically. This is proved by applying the
stability inequality to the subsheaf F � ⊂ F given by the image of Γ in F to
show that r(F �) = r(F ); see [14, Proposition 4.4].

In the case of interest to us one can show that semistability coincides with
stability which in turn corresponds to a simple geometric condition.
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Proposition 2.6 ([21] Lemma 1.3). — A pair s : OX → F is semistable if
and only if it is stable, and this holds precisely when

• the 1-dimensional sheaf F is pure,
• the section s has 0-dimensional cokernel.

In this case Supp(F ) is a Cohen-Macaulay curve C.

Let us now discuss the moduli problem. For any scheme S let F be a flat
family of sheaves on X with Hilbert polynomial P parameterised by S, i.e.
a sheaf on X × S which is flat over S. Let p, q denote projections to X,S
respectively. One is tempted to define a family of coherent systems parame-
terised by S simply as a locally free subsheaf of q∗F . However the natural map
q∗F (s)→ H0

(Fs) for a closed point s ∈ S need not be an isomorphism. This
is why the Serre dual notion is used instead. Recall that D := dim X.

Definition 2.7. — A flat family of coherent systems on X parameterised by
S is a sheaf F on X × S, flat over S, together with a locally free quotient of
the sheaf E xtDq (F , p∗ωX).

It is shown in [14, Lemma 4.9] that, for any closed point s ∈ S,

E xtDq (F , p∗ωX)(s) ∼= Ext
D

(Fs, ωX).

We now introduce the usual functor of families,

S �→ Syst
X,Q

(P )(S),

mapping a scheme S to the set of isomorphism classes of flat families of Q-
semistable coherent systems on X whose underlying sheaf has Hilbert polyno-
mial P , parametrised by S. The discussion in [14, Section 4.3] shows that this
is a well defined contravariant functor.

Theorem 2.8. — [14, Theorem 4.12] There is a projective scheme SystX,Q(P )

co-representing the functor Syst
X,Q

(P ). Its closed points are in one-to-one
correspondence with S-equivalence classes of Q-semistable coherent systems.

Definition 2.9. — Let Pβ be the Hilbert polynomial Pβ(m) = m
�

β c1( OX(1))+

n. Le Potier’s space of stable pairs Pn(X, β) is the moduli space SystX,PX
(Pβ).

Remark. — The moduli space Pn(X, β) is fine. This is because stable pairs
have no nontrivial automorphisms. See [21, Section 2.3] for more details.

In order to prove the GIT wall crossing in the next section we need to take
a different point of view. Namely we assume the conclusion of Proposition 2.6
as the definition of stable pairs, and provide an ad hoc construction for their
moduli space which slightly differs from Le Potier’s. This is because we need
to make full use of the special features of the d = 1 case.
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3. GIT wall crossing

Throughout this section Pβ denotes the Hilbert polynomial

Pβ(m) = rm + n,

where the multiplicity r is given by
�

β c1( OX(1)).
Let us clarify what we mean by a GIT wall crossing.

Definition 3.1. — A GIT wall crossing between two projective schemes
M0, M1 is given by a projective scheme N with an action of a reductive
algebraic group G, ample Q-linearisations L0, L1 for the action of G and
t∗ ∈ (0, 1) ∩Q such that, if t ∈ [0, 1] ∩Q and Lt = (1− t) L0 + t L1, then

• for 0 ≤ t < t∗,

N s
( Lt) = N ss

( Lt) = N ss
( L0)

and N // L0
G ∼= M0;

• for t∗ < t ≤ 1,

N s
( Lt) = N ss

( Lt) = N ss
( L1)

and N // L1
G ∼= M1.

Clearly then N // Lt
G ∼= M0 for 0 ≤ t < t∗, N // Lt

G ∼= M1 for t∗ < t ≤ 1.

Remark. — Note that, unlike for example [23] Lemma 3.2, we require semista-
bility to coincide with stability away from t∗.

A GIT wall crossing gives the following well known diagram.

Lemma 3.2. — In the situation of Definition 3.1 there are inclusions

N s
( L0)
��

��

N s
( L1)
�
�

��
N ss

( Lt∗)

inducing morphisms

N // L0
G

ϕ0
��

N // L1
G

ϕ1
��

N // Lt∗G.

The fibre of ϕi over ϕi(G · x) for i = 0, 1 is given by

ϕ−1
i (ϕi(G · x)) = {G · y : G · x ∩G · y �= ∅ in N ss

( Lt∗)}.
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Proof. — The first part is an application of the Hilbert-Mumford criterion.
For the second part we only use the standard description of the quotient map
N → N // Lt∗G in terms of closures of semistable orbits, and the fact that
N ss

( Li) = N s
( Li) for i = 0, 1.

While there exist many trivial GIT wall crossings we are only interested in
those that give interesting morphisms ϕ0, ϕ1.

The MNOP/stable pairs GIT wall crossing can be stated as follows. For
any subscheme Z ∈ In(X,β) let Zpur denote its maximal Cohen-Macaulay
closed subscheme (so Zpur is pure of dimension 1, and OZ → OZpur has finite
kernel). Also let Ipur

n (X,β) ⊂ In(X,β) be the locus of Cohen-Macaulay closed
subschemes, and write SkX for the kth symmetric product.

Theorem 3.3. — There is a GIT wall crossing between the moduli spaces
In(X,β) and Pn(X,β) as in Definition 3.1, for which the following holds.

Write

(3.4) In(X,β)

ϕI
��

Pn(X,β)

ϕP
��

SSn(X,β)

for the wall crossing morphisms to SSn(X,β) := N // Lt∗G. Then there is a
stratification by locally closed subschemes

(3.5) SSn(X,β) =

n�

k=0

Ipur
n−k(X, β)× SkX,

and on closed points ϕI is given by

ϕI([Z]) =

�
Zpur,

�

p

len(IZpur/IZ)p p
�
.

Similarly, for (F, s) ∈ Pn(X,β),

ϕP (F, s) =

�
Supp(F ),

�

p

len(F/ im(s))p p
�
.

Remark. — When X is the (projective over an affine) threefold given by a
small resolution of the threefold ordinary double point {xy = zw} ⊂ C4 the
same result has been proved by Nagao and Nakajima [19] using moduli of
perverse sheaves.
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Example. — Rigid curve. Let C ⊂ X be a smooth rigid curve in the class
β. Then the Hilbert scheme I1+χ( OC)(X,β) contains an irreducible component
I1(X,C) ∼= BlC X. Similarly the space of stable pairs P1+χ( OC)(X,β) contains
a component P1(X,C) ∼= C, and SS1(X, β) contains a component SS1(X,C) ∼=
X. Restricting to these components the triangle (3.4) becomes

BlC X

π
��

C�
�

i��
X

where π, i are respectively the blow up and the inclusion. This may look odd
to the reader familiar with [6], [23] as i is not birational. This happens because
in this case the space N of Definition 3.1 is not connected. At least locally
near C it has two connected components which can be identified respectively
with pairs with onto section and pairs with pure support, as we explain below.
Each of the two GIT quotients selects only one component.

We will see that the relevant N for us contains two distinguished closed
subschemes N I , N P , given by the closure of subschemes parametrising pairs
with surjective section and with pure support, respectively. For simplicity
assume that C is the only curve in the class β. Then in our case N I consists of
structure sheaves of subschemes given by the union of C plus a point (in X\C,
or an embedded point along C) plus the obvious section, while N P consists
of degree 1 line bundles plus section defined by a point on C. Therefore their
intersection is empty. (This is not the general case; when the curve C moves
and singularities develop its genus can change, bubbling off points.)

Example. — Surfaces. When X is a surface the triangle (3.4) takes a special
form. Divisors on a smooth algebraic surface are Gorenstein curves, and stable
pairs supported on a Gorenstein curve C are in one-to-one correspondence with
closed subschemes of C by sending a pair OC → F to the ideal sheaf F ∗ → OC .
For a proof see [22, Proposition B.5].

For a given degree β there exists a unique g (given by the adjunction formula
2g − 2 = β · (KX + β)) such that I1−g(X, β) is the moduli space of divisors
in the class β, with a universal divisor D . Let Hilb

n
(D/I1−g(X,β)) denote

the relative Hilbert scheme of points on the fibres of D → I1−g(X,β). By the
result mentioned above, for any n ≥ 0 there is a one-to-one correspondence

P1−g+n(X, β)→ Hilb
n
(D/I1−g(X,β))
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which is in fact an isomorphism of schemes ([22, Proposition B.8]). The triangle
(3.4) then becomes

I1−g+n(X,β) ∼= I1−g(X, β)×Hilb
n
(X)

µ
��

Hilb
n
(D/I1−g(X,β))

��
I1−g(X,β)× SnX.

Here we are decomposing the Hilbert scheme of curves I1−g+n(X,β) on a sur-
face into a divisorial part I1−g(X, β) and a punctual part Hilb

n
(X) – see for

example [7]. Then µ : I1−g+n(X,β)→ I1−g(X, β)×SnX is the Hilbert to Chow
morphism Hilb

n
(X)→ SnX times by the identity on I1−g(X,β).

We start by constructing the objects of Theorem 3.3. We build on [14,
Chapter 4], but taking advantage of the very special case d = deg(Pβ) = 1. In
brief, the master space N is going to be a closed subscheme of a Quot scheme
times a projective space. Then a suitable choice of linearisation will pick out
either stable pairs or structure sheaves of 1-dimensional subschemes.

3.1. N and G. — There is a general boundedness result for the family of
isomorphism classes of Q-semistable coherent systems (Γ, F ) with prescribed
Hilbert polynomial PF , [14, Theorem 4.11]. In fact we will only use the follow-
ing easier result.

Lemma 3.6. — The set of isomorphism classes of sheaves underlying isomor-
phism classes of stable pairs [s : OX → F ] with PF = Pβ is bounded.

Proof. — The set of (the structure sheaves of) Cohen-Macaulay curves C sup-
porting stable pairs of Hilbert polynomial Pβ is bounded, since they all lie in
the union of a finite number of Hilbert schemes of curves (since arithmetic genus
is bounded on curves in the class β). By the cohomological characterisation of
boundedness (see for instance [8, Lemma 1.7.6]) this gives a uniform m such
that

Hi
(X, OC(m− i)) = 0

for i > 0 (recall that the opposite also holds, i.e. a uniform bound on the
regularity implies boundedness when the family of Hilbert polynomials is finite).
Let the extension

0→ OC → F → Q→ 0

define a sheaf F underlying a stable pair. Since Hi
(Q(k)) = 0 for i > 0 and all

k, we get a surjection

Hi
( OC(k))→ Hi

(F (k))→ 0
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for i > 0 and all k. Choosing k = m− i gives Hi
(F (m− i)) = 0 and therefore a

uniform bound on the regularity of F . As we recalled this implies boundedness
for the family of all F s.

Fix a positive integer m and let V be a fixed vector space of dimension
Pβ(m). We form the rank Pβ(m) locally free sheaf on X

H = V ⊗ OX(−m).

Consider the Quot scheme of quotients of H with Hilbert polynomial Pβ ,

Q = Quot(H , Pβ).

By Lemma 3.6 we can choose m� 0 such that, for any stable pair [s : OX → F ]

with PF = Pβ , the sheaf F (m) is globally generated and Hi
(F (m)) = 0 for

i > 0. Therefore the isomorphism class of F corresponds to a closed point of
Q for m� 0, and this is unique modulo the natural action of SL(V ) on Q. In
other words there is a surjective map

H0
(F (m))⊗ OX(−m)→ F → 0

and we can pick an isomorphism H0
(F (m)) ∼= V . Indeed the group G that

occurs in Theorem 3.3 is SL(V ) for m� 0.
Let us now construct N . Let Rm denote the m-th graded piece of the graded

ring of X,
Rm = H0

( OX(m)).

Lemma 3.7. — For any sheaf F and any positive integer m there is a canonical
injection

F ⊂ F (m)⊗R∗m.

Proof. — The morphism F → F (m)⊗R∗m in question is the element of

Hom(F, F (m)⊗R∗m) ∼= Hom(Rm,Hom(F, F (m)))

given by tensoring s ∈ Rm
∼= Hom( OX , OX(m)) by F . This induces an injection

F ⊂ F (m)⊗R∗m because OX(m) is globally generated.

Thus there is an induced inclusion

H0
(F ) ⊂ H0

(F (m))⊗R∗m.

Let Γ denote the subspace of H0
(F ) generated by s (in this section we some-

times write (Γ, F ) for a pair (F, s)). By the above discussion Γ can be regarded
as a point of the projective space P(V ⊗R∗m) of lines in V ⊗R∗m (uniquely up
to the action of SL(V )).

The upshot of this is that isomorphism classes of pairs [s : OX → F ] with
PF = Pβ are realised as particular geometric points of

B = P(V ⊗R∗m)×Q,
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modulo the action of SL(V ) (and this includes structure sheaves of subschemes
with their canonical section).

We spell out the conditions that a closed point (Φ, F ) ∈ B must satisfy in
order to arise from a pair (Γ, F ) under the correspondence above:

• the natural map V → H0
(F (m)) induced by V ⊗ OX(−m)→ F must be

an isomorphism;
• the subspace Φ of V ⊗R∗m must correspond to a subspace Γ of H0

(F );
• the resulting pair (Γ, F ) must be stable.

The scheme B is too large for the second condition to arise from GIT stability.
Instead our scheme N will be a suitable closed subscheme of B, as we now
explain.

The product X × Q (with projections p, q to X,Q respectively) carries a
universal quotient sheaf F . Lemma 3.6 implies that for m� 0 all stable pairs
with PF = Pβ correspond to geometric points (unique up to the natural action
of SL(V )) of the projective bundle

P := Proj ⊕kSk
�
E xtDq (F , p∗ωX)

�

of rank one locally free quotients of E xtDq (F , p∗ωX) over Q.
The evaluation map V ⊗ OX×Q → F (m) induces V ⊗ OQ → q∗(F (m)). By

relative Serre duality for the morphism q, its dual is a map

E xtDq (F (m), p∗ωX)→ V ∗ ⊗ OQ.

Let T ⊂ Q denote the open subscheme where this morphism is surjective;
by duality this is precisely the open subscheme where the natural map V →
H0

(F (m)) is an isomorphism. The surjective morphisms of sheaves over T

E xtDq (F (m), p∗ωX)|T ⊗Rm

�� ��
V ∗ ⊗Rm ⊗ OT E xtDq (F , p∗ωX)|T

induce, for m� 0, SL(V )-equivariant closed immersions over T

(3.8) P(V ⊗R∗m)× T

��

P|T

��
P
�
q∗(F (m))⊗R∗m

�
|T .

By definition of T the left arrow is in fact an isomorphism, so we regard P|T as
a closed subscheme of P(V ⊗R∗m)×T , and we can rewrite the above conditions
on a closed point (Φ, F ) ∈ P(V ⊗R∗m)×Q in a different form:

• F ∈ T ;
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• (Φ, F ) ∈ P(V ⊗R∗m)× T lies in P|T ;
• (Φ, F ) is stable.

We will see that these conditions do arise from GIT stability in the following
space.

Definition 3.9. — The space N is the scheme-theoretic closure of the locally
closed subscheme

P|T ⊂ P(V ⊗R∗m)× T ⊂ B.

Lemma 3.10. — For m� 0 closed subschemes Z ⊂ X with Hilbert polynomial
PZ = Pβ also correspond to closed points of N , unique up to the action of
SL(V ).

Proof. — We only need to replace the set of isomorphism classes of stable pairs
with PF = Pβ with its union with the set of structure sheaves OZ with their
canonical section 1: OX → OZ such that PZ = Pβ .

The reason why we compactify P|T by embedding into B and taking the
closure rather than working directly with P will be explained below.

3.2. L0 and L1. — For l � m, the Quot scheme Q admits the familiar
Grothendieck embedding

ιl : Q �→ Gr(V ⊗H0
( OX(l −m)), Pβ(l))

into the Grassmannian of Pβ(l) dimensional quotients. Pulling back the Plücker
line bundle on Gr(V ⊗H0

( OX(l−m)), Pβ(l)) (the very ample generator of the
Picard group) gives a very ample line bundle on Q which we denote by ι∗l OGr(1).
We also write OP(1) for the hyperplane bundle of P(V ⊗R∗m).

Definition 3.11. — Let c0, c1 be rational numbers with

0 < c0 <
1

r
< c1.

Then, for i = 0, 1 and l � m, define ample Q-linearisations for the action of
SL(V ) on N by

Li := OP(l) � ι∗l OGr(1)
⊗ci | N .

Remark. — The relative tautological bundle U on P is relatively ample, so
the linearisation U (l)⊗ OGr(1)

⊗c is ample on P for c = c(l)� 0. However for
GIT we need to work with a fixed c, independent of l. This is why we needed
to find a different compactification of P|T where ampleness of Li, i = 0, 1 is
evident. This approach is due to Le Potier, [14, Section 4.8].
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3.3. Application of the Hilbert-Mumford criterion. — Since N is a projective
scheme and the linearisations Li, i = 0, 1 are ample we can apply the Hilbert-
Mumford criterion to find the (semi)stable points for the action. Any 1-
parameter subgroup λ : C∗ �→ SL(V ) is uniquely determined by the decom-
position into weight spaces V =

�
k∈Z Vk. For any quotient

ρ : V ⊗ OX(−m)→ F → 0

with PF = Pβ , define increasing filtrations of V , F respectively by

V≤k =

�

j≤k

Vj ,

F≤k = ρ(V≤k ⊗ OX(−m)).

For Φ ∈ P(V ⊗R∗m) we set

Φ≤k = Φ ∩ (V≤k ⊗R∗m)

and
Φk = Φ≤k/Φ≤k−1.

(Of course dim(Φ≤k) can only jump once!) The quotient objects for the filtra-
tion of F are

Fk = F≤k/F≤k−1

so we find onto maps

ρk : Vk ⊗ OX(−m)→ Fk → 0

and inclusions
Φk ⊂ Vk ⊗R∗m.

Lemma 3.12. — Let (Φ, F ) be a closed point of N . Then

lim
t→0

λ(t) · (Φ, F ) = (⊕kΦk,⊕kFk)

and the Hilbert-Mumford weight µ Li((Φ, F ), λ) is given by the quantity
1

dim(V )

�

k

�
dim(V )

�
ciPF≤k

(l)− dim(Φ≤k)l
�
− dim(V≤k)

�
ciPF (l)− l

��
.

Proof. — The sheaf part of the statement is standard, see for instance Lemmas
4.4.3 and 4.4.4 of [8]. But the Φ part of the statement can be seen as a special
case of this, regarding Φk as a subsheaf of the sheaf Vk ⊗R∗m over a point. We
should only be careful about signs: when we rearrange as in [8] Lemma 4.4.4
to compute the Hilbert-Mumford weight, the sign of terms coming from Φ≤k is
the opposite of the sign of terms coming from F≤k, since we take “subsheaves”
(i.e. subspaces!) of the “sheaf” V ⊗R∗m, rather than quotients.
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Remark. — By this Lemma the weight µ Li((Φ, F ), λ) equals the constant
dim(V )

−1 multiplied by the sum of a finite number of quantities of the form

(3.13) µi
(V �

) = dim(V )(ciPF �(l)− dim(Φ
�
)l)− dim(V �

)(ciPF (l)− l),

where V � ⊂ V , F � ⊂ F is the subsheaf generated by V �, and

Φ
�
= Φ ∩ (V � ⊗R∗m).

Conversely, for any subspace V � ⊂ V , we may define a one parameter subgroup
λ ∈ SL(V ) by λ(t) = tdim(V �)−dim(V )

idV � ⊕ tdim(V �)
idV/V � , whose Hilbert-

Mumford weight µ Li((Φ, F ), λ) for i = 0, 1 is precisely the quantity µi
(V �

)

defined by (3.13).

Proposition 3.14. — A stable pair (F, s) with PF = Pβ and a marking
H0

(F (m)) ∼= V corresponds to a closed point of N which is stable under the
action of SL(V ) linearised on L1.

Conversely, the semistable locus N ss
( L1) coincides with the stable locus

N s
( L1), and a closed point of N s

( L1) corresponds to a stable pair (F, s) with
PF = Pβ and a marking of H0

(F (m)).
Therefore N s

( L1) has the good quotient Pn(X,β) for the action of SL(V ).

Proof. — Let (Γ, F ) be a stable pair. By Lemma 3.12 (and the remark after
its proof) a closed point (Φ, F ) ∈ N belongs to N ss

( L1) if and only if, for
every subspace 0 � V � � V , we have

(3.15) dim(V )(c1PF �(l)− dim(Φ
�
)l) ≥ dim(V �

)(c1PF (l)− l).

Here F � ⊂ F denotes the subsheaf generated by V �. Replacing ≥ by > gives
the corresponding statement for N s

( L1).
When (Φ, F ) = (Γ, F ) represents a stable pair, then setting Γ

�
= Γ∩H0

(F �)
in the above we claim that in fact we always have GIT stability:

dim(V )(c1PF �(l)− dim(Γ
�
)l) > dim(V �

)(c1PF (l)− l).

Since (Γ, F ) is a stable pair, we know a priori that F is pure, so V � generates
a 1-dimensional subsheaf with multiplicity r� > 0. By the choice of c1 it is
enough to prove the inequality of leading order terms

dim(V )(c1r
� − dim(Γ

�
)) > dim(V �

)(c1r − 1).

If dim(Γ
�
) = 0 then we need to prove the inequality

dim(V �
)

dim(V )
<

r�

r

Ç
1

1− 1
c1r

å
.

But
r dim(V �

)

r� dim(V )
=

1 +
χ(F �)
r�m

1 +
χ(F )
rm

,
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and since there are only finitely many possible r� for a fixed r, the term is
converging to 1 as m→∞ uniformly over all F � ⊂ F , which implies the desired
inequality for a uniform m � 0. If on the other hand dim(Γ

�
) = dim(Γ), that

is im(s) ⊂ F �, the assumption that (Γ, F ) is a stable pair says that F/F � is
0-dimensional and so r = r�. Using this information, the inequality to prove
becomes

dim(V )(c1r − 1) > dim(V �
)(c1r − 1),

which follows from dim(V �
) < dim(V ) since c1r > 1.

For the converse, let us first show that for (Φ, F ) ∈ N ss
( L1), the canonical

map V → H0
(F (m)) is an isomorphism, so indeed the quotient V ⊗ OX(−m)→

F → 0 corresponds to a sheaf F plus a marking of H0
(F (m)). We only need

to prove it is injective. Let V � denote its kernel, so that the subsheaf F � it
generates is trivial. Substituting in (3.15) we get

−dim(V ) dim(Φ
�
)l ≥ dim(V �

)((c1r − 1)l + c1χ(F )).

By definition c1 > 1
r , so this is impossible unless V �

= {0}, as required. In
particular

N ss
( L1) ⊂ P(V ⊗R∗m)× T.

By the definition of N , (Φ, F ) is a point in the closure of P|T inside B, which
moreover by the above discussion lies in P(V ⊗ R∗m)× T . But P|T is a closed
subscheme of P(V ⊗ R∗m) × T by the diagram of closed immersions (3.8), so
(Φ, F ) really lies in P|T , i.e. Φ is some subspace Γ ⊂ H0

(F ) generated by a
nontrivial section s. From now on we will therefore write (Γ, F ) in place of
(Φ, F ).

It remains to show that (Γ, F ) is a stable pair (so in particular, by the first
part of the proof, (Γ, F ) ∈ N s

( L1)). To see that F is pure, suppose F � ⊂ F
is a lower dimensional subsheaf. But then F � must be 0-dimensional and so
generated by its global sections, i.e. F � is generated by some proper subspace
V � ⊂ V . In the inequality (3.15) we would get

dim(V )(c1χ(F �)− dim(Γ
�
)l) ≥ dim(V �

)((c1r − 1)l + c1χ(F )),

where Γ
�
= Γ∩H0

(F �). Since c1 > 1
r this can never be satisfied. To see that Γ

generates F generically, suppose that the section s factors through F � ⊂ F with
multiplicity r� (r� > 0 since we have shown that F � must be 1-dimensional).
Then dim(Γ

�
) = 1 and in (3.15) we get

dim(V )((c1r
� − 1)l + c1χ(F �)) ≥ dim(V �

)((c1r − 1)l + c1χ(F )).

This implies
dim(V )(c1r

� − 1) ≥ dim(V �
)(c1r − 1),
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which may be rewritten as

1 ≤ r�

r
− (c1r − 1)

Å
dim(V �

)

dim(V )
− r�

r

ã
.

Now Å
dim(V �

)

dim(V )
− r�

r

ã
=

r�

r

Ç
1

1 +
χ(F )
rm

− 1

å
+

χ(F �)

rm

1

1 +
χ(F )
rm

.

Since 0 < r� ≤ r and χ(F �) ≤ χ(F ) this term is O(m−1
) uniformly over all

subsheaves F � ⊂ F . Therefore

1 + O(m−1
) ≤ r�

r
≤ 1

holds uniformly over all subsheaves F � ⊂ F . Since, for a fixed r, there are only
a finite number of possible r�, this implies r� = r for m� 0. It follows that the
quotient F/F � is 0-dimensional as required.

This proof may be seen as a toy model of the Simpson-Le Potier estimates
[14, Section 4.5], modified to take advantage of the assumption d = 1.

Proposition 3.16. — A structure sheaf OZ with PZ = Pβ, its canonical sec-
tion 1 : OX → OZ → 0, and a marking of H0

( OZ(m)) ∼= V corresponds to a
closed point of N which is stable under the action of SL(V ) linearised on L0.

Conversely the semistable locus N ss
( L0) coincides with the stable locus

N s
( L0), and a closed point of N s

( L0) corresponds to a structure sheaf OZ

with PZ = Pβ and the canonical section 1: OX → OZ → 0.
Therefore N s

( L0) has the good quotient In(X,β) for the action of SL(V ).

Proof. — To a structure sheaf OZ we associate the point (Γ, OZ) ∈ N which
corresponds to the subspace Γ generated by 1 : OX → OZ plus a marking for
H0

( OZ(m)). We claim that for V � ⊂ V generating F � ⊂ OZ the inequality

dim(V )(c0PF �(l)− dim(Γ
�
)l) > dim(V �

)(c0PF (l)− l)

always holds, where Γ
�
= Γ ∩H0

( OZ). As before this proves the first part of
the Proposition. To prove the inequality, by the choice of c0 it is enough to
prove the inequality of leading order terms,

dim(V )(dim(Γ
�
)− c0r

�
) < dim(V �

)(1− c0r).

Note that for a proper subsheaf F � ⊂ F we cannot have dim(Γ
�
) = 1 as the

canonical section is onto. But if dim(Γ
�
) = 0 the above inequality is always

satisfied since by definition of c0 one has 1− c0r > 0.
For the converse, start with (Φ, F ) ∈ N ss

( L0). The inequality

(3.17) dim(V )(c0PF �(l)− dim(Φ
�
)l) ≥ dim(V �

)(c0PF (l)− l)
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holds for any V � ⊂ V generating F � ⊂ F and Φ
�
= Φ∩(V �⊗R∗m) by the Hilbert-

Mumford criterion. We must show that it implies that (Φ, F ) corresponds to
a structure sheaf with its canonical section and the choice of a marking (so in
particular, by the first part of the proof, (Φ, F ) ∈ N s

( L0)). Taking leading
coefficients in (3.17) we find

dim(V )(dim(Φ
�
)− c0r

�
) ≤ dim(V �

)(1− c0r).

As dim(V ) > dim(V �
) this can only hold if

dim(Φ
�
)− c0r

� < 1− c0r.

If dim(Φ
�
) = 1 this would imply r� > r, which is absurd. On the other hand

for dim(Φ
�
) = 0 the inequality is always satisfied, since by the choice of c0 we

have 1− c0r > 0. Now let

π : N ss
( L0)→ N // L0

SL(V )

denote the quotient map. The argument above shows that there is an isomor-
phism

π(N ss
( L0) ∩P|T ) ∼= In(X,β).

Therefore we obtain a locally closed immersion

In(X, β) �→ N // L0
SL(V )

with dense image. Since both schemes are proper and separated this is an
isomorphism.

3.4. The GIT wall crossing (Theorem 3.3).— Let (Φ, F ) be any closed point of
N , and fix the ample Q-linearisation Lt = (1− t) L0 + t L1. To check whether
(Φ, F ) belongs to N ss

( Lt) we will use the Hilbert-Mumford criterion. For any
one parameter subgroup λ : C∗ �→ SL(V ) we have

µ Lt((Φ, F ), λ) = (1− t)µ L0((Φ, F ), λ) + tµ L1((Φ, F ), λ).

Since we already know that N ss
( Li) = N s

( Li) for i = 0, 1 we may assume
that (Φ, F ) is stable with respect to L0 and unstable with respect to L1, or vice
virsa. In the first case say (the other is similar) fix a one parameter subgroup
λ for which

(3.18) µ L0((Φ, F ), λ) · µ L1((Φ, F ), λ) < 0.

Clearly, when (3.18) holds, convexity implies that for any choice of (Φ, F ) and
λ there exists a unique critical value t, 0 < t < 1, with µ Lt((Φ, F ), λ) = 0.

We claim that in fact there exists a unique critical value t∗, 0 < t∗ < 1, such
that when (3.18) holds one has

µ Lt∗ ((Φ, F ), λ) = 0

independently of (Φ, F ) and λ. This will complete the proof.
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By the remark following the proof of Lemma 3.12 we may assume without
loss of generality that µ Li((Φ, F ), λ) has the special form µi

(V �
), i.e.

µ Li((Φ, F ), λ) = dim(V )(ciPF �(l)− dim(Φ
�
)l)− dim(V �

)(ciPF (l)− l)

for i = 0, 1. Reading through the proofs of Propositions 3.14 and 3.16 we see
that the inequality (3.18) can only hold when

• F � is 0-dimensional and dim(Φ
�
) = 0, or

• F � is 1-dimensional, r = r� and dim(Φ
�
) = 1.

The only possible value for t∗ is

t∗ =

Å
1− µ1

(V �
)

µ0(V �)

ã−1

and we must show that this is independent of V �, and moreover that the two
values coincide.

When dim(F �) = dim(Φ
�
) = 0 we get

µ0
(V �

)

µ1(V �)
=

dim(V )c0χ(F �)− dim(V �
)((c0r − 1)l + c0χ(F ))

dim(V )c1χ(F �)− dim(V �)((c1r − 1)l + c1χ(F ))

=
(dim(V )− χ(F ))c0 − (c0r − 1)l

(dim(V )− χ(F ))c1 − (c1r − 1)l

=
rmc0 − (c0r − 1)l

rmc1 − (c1r − 1)l
,

where we have used dim(V �
) = χ(F �). The last expression is clearly indepen-

dent of V �. When dim(F �) = dim(Φ) = 1 and r = r� we get

µ0
(V �

)

µ1(V �)
=

dim(V )((c0r − 1)l + c0χ(F �))− dim(V �
)((c0r − 1)l + c0χ(F ))

dim(V )((c1r − 1)l + c1χ(F �))− dim(V �)((c1r − 1)l + c1χ(F ))

=
(dim(V )− dim(V �

))(c0r − 1)l + c0(dim(V )χ(F �)− dim(V �
)χ(F ))

(dim(V )− dim(V �))(c1r − 1)l + c1(dim(V )χ(F �)− dim(V �)χ(F ))

=
c0(dim(V �

)− χ(F �))− (c0r − 1)l

c1(dim(V �)− χ(F �))− (c1r − 1)l

=
rmc0 − (c0r − 1)l

rmc1 − (c1r − 1)l
,

as required.

Finally we prove the stratification (3.5) for SSn(X,β). By the argument
above the closed points of N ss

( Lt∗)\ N s
( Lt∗) are in one-to-one correspondence

with pairs (F, s) with PF = Pβ such that either

• F is the structure sheaf of a subscheme Z ⊂ X which is not pure, or
• F is pure, but the section s has a nontrivial 0-dimensional cokernel Q.
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By the general theory the closed points of N // Lt∗ SL(V ) are in one-to-one
correspondence with the equivalence classes of the set of sheaves as above under
the equivalence relation induced by the intersection of the closures of SL(V )-
orbits inside N ss

( Lt∗).

Let F be pure with Cohen-Macaulay support C and

0→ OC → F → Q→ 0,

Q �= 0. Any quotient 0 → Q� → Q → Op → 0 onto the structure sheaf of a
closed point p gives a sequence

0→ OC → F � → Q� → 0,

where F � is a subsheaf of F with quotient Op.

Choosing V �
= H0

(F �(m)) induces a one parameter subgroup

λ(t) = tdim(V �)−dim(V )
idV � ⊕ tdim(V �)

idV/V �

in SL(V ) with

lim
t→0

λ(t) · (F, s) = (s⊕ 0, F � ⊕ Op),

µ Lt∗ ((F, s), λ) = 0.

Therefore (s⊕ 0, F � ⊕ Op) lies in the closure of SL(V ) · (F, s) inside N ss
( Lt∗),

and χ(Q�) = χ(Q) − 1. By induction the equivalence class of (F, s) under the
relation above has a unique representative of the form

(s⊕ 0, OC ⊕p O⊕ len(Q)p

p ).

The case when F is a structure sheaf OZ is similar: for any injection Op �→
OZ , where p is a closed point, choosing V �

= H0
( Op) induces λ such that

lim
t→0

λ(t) · (1, OZ) = (1⊕ 0, ( OZ/ Op)⊕ Op),

µ Lt((1, OZ), λ) = 0.

By induction on χ(IZ/IZpur) we obtain a unique representative of the form

(1⊕ 0, OZpur ⊕p Olen(IZ/IZpur )p

p ).
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4. Introduction to wall crossing in the derived category

Throughout this section we fix a Cohen-Macaulay curve C in a threefold
X and work only with those ideal sheaves and stable pairs whose underlying
curve is C. By this we mean that any Z ∈ In(X,β) has an underlying Cohen-
Macaulay curve C ⊂ Z such that IC/IZ is a 0-dimensional sheaf T (where T
stands for “torsion”). Similarly any (F, s) ∈ Pn(X,β) has support on a Cohen-
Macaulay curve C and 0-dimensional cokernel, which we also call T .

So we define
In(X, C) ⊂ In+χ( OC)(X,β)

to be the locus of ideal sheaves IZ ⊂ IC such that IC/IZ is a 0-dimensional
sheaf of length n. By Theorem 3.3 this is the projective scheme ϕ−1

I (C, SnX).
Similarly

Pn(X, C) ⊂ Pn+χ( OC)(X,β)

is the locus of stable pairs (F, s) with scheme theoretic support on C and cok-
ernel of length n. By Theorem 3.3 this is the projective scheme ϕ−1

P (C, SnC).
We denote their Euler characteristics by In,C and Pn,C respectively. (This

differs from their definition in the introduction by a shift in n of χ( OC).) We
prove identities between them which are universal in C, allowing us to further
“integrate” them over all C weighted by the functions In,C and Pn,C . This will
yield identities between the Euler characteristics of the moduli spaces Im(X,β)

and Pm(X,β), giving the Euler characteristic versions of Conjecture 1.2.

4.1. The simplest identity. — The relationship between I1,C and P1,C is very
easy to see. (In the terminology of Theorem 3.3 we are considering the fibres
of ϕI and ϕP over a point of the stratum with k = 1, i.e. we are considering
ideal sheaves and pairs with one free or embedded point.)

For each point x ∈ X consider the space of ideal sheaves IZ in I1(X,C)

such that IC/IZ
∼= Ox. It is P(Hom(IC , Ox)), with IZ being the kernel of

the homomorphism. The moduli space I1(X, C) is the union over x ∈ X of
these projective spaces, each with Euler characteristic

hx := hom(IC , Ox).

Similarly, since stable pairs OX → F with cokernel Ox correspond to extensions
0→ OC → F → Ox → 0, the moduli space P1(X,C) is the union over all x ∈ X
of P(Ext

1
( Ox, OC)). This has Euler characteristic

ex := ext
1
( Ox, OC).

While hx, ex jump as x moves in X, their difference is constant:

hx − ex = 1.
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(This is a Riemann-Roch formula combined with Serre duality; see Lemma 4.10
below.) Therefore “integrating” over all x ∈ X we find that

(4.1) I1,C − P1,C = e(X).

4.2. The general case. — Since P0(X,C) is the single point ( OC , 1), we can
rewrite (4.1) as

I1,C = P1,C + e(X)P0,C .

This is the n = 1 case of Theorem 1.5. Below we will prove the general case,

(4.2) In,C = Pn,C + e(X)Pn−1,C + e(Hilb
2 X)Pn−2,C + · · · + e(Hilb

n X)P0,C ,

relating the Euler characteristics of the fibres of ϕI , ϕP of Theorem 3.3 for
k ≤ n.

We can “integrate” the identities (4.2) over all C. By this we mean we take
weighted Euler characteristics (with either side of (4.2) as weighting function)
over the good open subsets Ipur

χ( OC)(X, β) of the Hilbert schemes Iχ( OC)(X,β)

consisting of only Cohen-Macaulay curves. (Since the holomorphic Euler char-
acteristic of the underlying Cohen-Macaulay curve C can jump in flat families
of subschemes Z, we have to do this over all

�
k Ipur

k (X,β).)
Setting m = χ( OC) + n, this gives Theorem 1.4,

Im,β = Pm,β + e(X)Pm−1,β + e(Hilb
2 X)Pm−2,β + · · · + e(Hilb

m X)P0,β .

However (4.2) will turn out to be much harder to prove than (4.1), and will
require more machinery than just an analysis of the fibres of ϕI , ϕP . We will
work up to this machinery gently, giving a basic introduction to wall crossing.

4.3. Stability and the simplest wall crossing. — The above formula (4.1) is the
prototypical wall crossing formula, as we now explain.

We will be deliberately vague about stability conditions for a number of
reasons. There are plenty of references for this topic, and anyway we do not
strictly need them for more than motivation. The ideal scenario that we would
like to work in has still not been realised: no one has yet managed to produce
Bridgeland stability conditions on the derived category of coherent sheaves on a
projective Calabi-Yau threefold. There are alternative fixes such as the variants
of [1, 25] or stability conditions on abelian categories. The reader could just
think of Gieseker- or slope- stability of vector bundles in what follows, or better
(once we get back to Hilbert schemes and stable pairs) the GIT stability of the
first half of this paper.

The model case that all wall crossings build on, and of which (4.1) is an
analogue, is the following.

Suppose that we have a moduli space of sheaves E which are stable with
respect to some slope function defined on the K-theory. Suppose that we move
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the stability condition so that the phase of a subsheaf A of E has the same
phase as E, and suppose further that the only classes in topological K-theory
whose phases coincide are linear combinations of [A] and [E] (this is called a
codimension one wall in the space of stability conditions).

Then E becomes strictly semistable due to exact sequences of the form

(4.3) 0→ A→ E → B → 0.

As our stability condition passes to the other side of the wall this exact sequence
strictly destabilises E and we lose it from the moduli space. However we can
gain new stable sheaves – nontrivial extensions F in the opposite direction,

(4.4) 0→ B → F → A→ 0.

So long as we do not cross any other walls, and so long as A and B themselves
remain stable on both sides of the wall (for instance if the K-theory classes of
A and B are distinct and primitive then this is guaranteed) then F is indeed
stable and this is the only thing that can happen.

In this case elementary properties of stability show that A and B are simple
(Aut = C∗) and have no homomorphisms between them. In the Calabi-Yau
threefold case, Serre duality therefore forces the vanishing of all Ext groups
between A and B except for

Ext
1
(B,A) ∼= Ext

2
(A, B)

∗ and Ext
2
(B,A) ∼= Ext

1
(A, B)

∗.

The first group governs extensions (4.3), the second controls (4.4).
Therefore on passing through the wall we lose a P(Ext

1
(B,A)) of sheaves

(4.3) and gain a P(Ext
1
(A, B)) of sheaves (4.4). These have Euler charac-

teristics ext
1
(B,A) and ext

1
(A, B) respectively. While we cannot control the

jumping of these numbers as we vary A and B, their difference is the Mukai
pairing of A and B, by Riemann-Roch and vanishing:

ext
1
(B,A)− ext

1
(A, B)=hom(A, B)− ext

1
(A, B) + ext

2
(A, B)− ext

3
(A, B)

= χ(A, B) =

�

X
ch(A∨)ch(B) Td(X).

Therefore each A and B contribute to a change χ(A, B) in the Euler character-
istic of the moduli space of stable sheaves E. Now “integrate” this topological
constant over the moduli spaces M[A] and M[B] of stable sheaves with the same
topological K-theory classes as A and B respectively. The result is that on
crossing the wall the Euler characteristic of the moduli space of stable sheaves
E changes by

(4.5) χ(A, B)e(M[A])e(M[B]).
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4.4. Ideal sheaves and stable pairs. — As explained in [21], Conjecture 1.2 should
be thought of as a similar wall crossing, but in the derived category. For what
follows we will not need the Calabi-Yau condition.

The exact sequences

(4.6) 0→ IZ → IC → T → 0

and

(4.7) 0→ IC → OX → F → T → 0

are equivalent in Db
(X) to the exact triangles

(4.8) T [−1]→ IZ → IC

and

(4.9) IC → I• → T [−1].

(Recall that I• is the complex { OX → F} ∈ Db
(X) with OX in degree 0.)

These are reminiscent of (4.3) and (4.4), but in the derived category instead
of the abelian category of coherent sheaves, with the objects T [−1] and IC

playing the roles of A and B.

Lemma 4.10. — On any threefold X, the only nonzero Ext groups between
T [−1] and IC are

Ext
1
(IC , T [−1]) and Ext

1
(T [−1],IC)

and their Serre duals.
The first is Hom(IC , T ); we denote its dimension by hT . The second is

isomorphic to Ext
1
(T, OC), whose dimension we denote eT . Then

(4.11) hT − eT = χ(IC , T ) = [T ],

where [T ] is the length of the 0-dimensional sheaf T .

Proof. — Because C is Cohen-Macaulay the sheaf IC has homological dimen-
sion one. Therefore Ext

i
(IC , T ) vanishes for i ≥ 2. The only nonzero groups

are Hom(IC , T ) (the first of the groups above) and Ext
1
(IC , T ) (the Serre

dual of the second of the groups above). This establishes the first claim, and
simplifies Riemann-Roch to

χ(IC , T ) = hom(IC , T )− ext
1
(IC , T ).

Since this is a deformation invariant, we can compute it for T ’s support disjoint
from C. In this case we get the same answer by replacing IC by OX , which
yields

χ(IC , T ) = hom( OX , T ) = [T ].
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Finally the exact sequence 0→ IC → OX → OC → 0 gives

Ext
1
(T, OC) ∼= Ext

2
(T, IC) = Ext

1
(T [−1],IC).

This is Serre dual to Ext
1
(IC , T ⊗ ωX) ∼= Ext

1
(IC , T ), so eT = ext

1
(IC , T ).

Therefore χ(IC , T ) = hT − eT as claimed.

This result is compatible with there being a stability condition for which
the stable objects of Chern character (1, 0,−β,−n + β.c1(X)/2) are the ideal
sheaves of In(X,β) on one side of a codimension one wall and the stable pairs
of Pn(X,β) on the other side of the wall. In fact this can be justified using
the variants of stability conditions defined by Bayer [1] and Toda [25], but we
shall just use that (and the GIT stabilities of the first half of this paper) as
motivation.

The first of the above groups, Ext
1
(IC , T [−1]), governs the extensions IZ

in (4.8). Via its isomorphism to Hom(IC , T ) we see the extension IZ as
the kernel of a surjection IC → T as in (4.6). Similarly the second group
Ext

1
(IC , T [−1]) governs the extensions I• in (4.9). Via its isomorphism to

Ext
1
(T, OC) we see this extension I• as entirely equivalent to the extension

0→ OC → F → T → 0.

When T has length 1 we recover the simplest type of wall crossing: A =

T [−1] and B = IC have distinct primitive K-theory classes and so are stable
on both sides of the wall – they do not break up into further pieces. So (4.5)
applies to give the change in invariants as we cross the wall.

Since [T ] = 1, the sheaf T is necessarily the structure sheaf Ox of a point
x ∈ X. Therefore M[A]

∼= X in (4.5), while M[B] is a single point because we
have fixed the curve C. Thus (4.5) becomes precisely (4.1):

I1,C − P1,C = e(X).

Of course putting A = T [−1] and B = IC into the argument that lead to (4.5)
we get precisely the argument we gave to prove (4.1).

4.5. The two point case. — As soon as [T ] = 2 the wall crossing becomes more
complicated. The sheaves T will only be semistable, so they split further into
stable pieces, and their automorphism groups are bigger.

Given any 0-dimensional sheaf T (of any length), the ideal sheaves IZ such
that IC/IZ

∼= T correspond to the surjections IC → T → 0 modulo the
automorphisms of T :

(4.12)
Hom

onto
(IC , T )

Aut(T )
.
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Similarly the stable pairs supported on C whose cokernel is isomorphic to T
form the space

(4.13)
Ext

pure
(T, OC)

Aut(T )
,

where Ext
pure

(T, OC) ⊂ Ext
1
(T, OC) is the subset of those extensions 0 →

OC → F → T → 0 for which the extension F is pure. Just as the surjections
(4.12) correspond to homomorphisms that do not factor through any proper
subsheaf, it is easy to see that the pure extensions are those which do not factor
through any proper quotient T → Q → 0 of T via the map Ext

1
(Q, OC) →

Ext
1
(T, OC).

We apply this to the three possibilities for T of length 2.

(a) T = Ox ⊕ Oy, where x �= y ∈ X.
Setting Hx := Hom(IC , Ox) and Ex := Ext

1
( Ox, OC), (4.12) becomes

(4.14)
��

Hx ⊕Hy

�
\

�
Hx ∪ Hy

���
(C∗ × C∗).

Of course this is just P(Hx)×P(Hy) with Euler characteristic hxhy. Sim-
ilarly the pure extensions (4.13) work out to be P(Ex)×P(Ey) with Euler
characteristic exey. Since hx − ex = 1 = hy − ey we find the difference in
Euler characteristics is

(4.15) hxhy − exey = ex + ey + 1.

(b) T = Ox ⊕ Ox. In this case it is helpful to write Hom(IC , O⊕2
x ) as

Hom(C2, Hx), so that the surjections in the former group correspond
to the rank 2 maps in the latter. Therefore (4.12) becomes

(4.16)
�

Hom(C2, Hx) \
�

{C⊂C2}

Hom(C, Hx)

��
GL(2, C),

i.e. the Grassmannian Gr(2, Hx) of 2-dimensional subspaces of Hx. This
has Euler characteristic hx(hx − 1)/2. In a parallel manner the pure ex-
tensions (4.13) work out to be Gr(2, Ex) with Euler characteristic ex(ex−
1)/2. The difference of these two is

(4.17)

�
hx

2

�
−

�
ex

2

�
= ex.

(c) Finally let T = O2x denote the structure sheaf of a length two subscheme
of X supported at x. (There is a P2 of these.)

Let mx be the maximal ideal of O2x with quotient Ox. Then the
surjections (4.12) are those homomorphisms which do not factor through
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mx, i.e.

(4.18)
�
Hom(IC , O2x) \ Hom(IC ,mx)

��
(C∗ � C),

which is
P(Hom(IC , O2x)) \ P(Hom(IC ,mx))

�
C.

Since e(C) = 1 this has Euler characteristic h2x − hmx , in the obvious
notation. The pure extensions are those which do not factor through the
quotient O2x → Ox, i.e. (4.13) becomes

�
Hom( O2x, OC) \ Hom( Ox, OC)

��
(C∗ × C),

with Euler characteristic e2x−ex. The difference between these two Euler
characteristics is

(4.19) (h2x−hmx)−(e2x−ex) = (h2x−e2x)−(hmx−ex) = 2−1 = 1,

using the apparent coincidence that mx
∼= Ox as abstract sheaves. (We

will return to this point.)
We now “integrate” these differences in Euler characteristics over all length

two sheaves T to calculate I2,C − P2,C .
The sheaves T of cases (a) and (c) together cover Hilb

2
(X); integrating the

1 which appears in (4.15) and (4.19) therefore gives e(Hilb
2
(X)).

From (4.15) this leaves the integral of ex + ey over the space of ( Ox ⊕ Oy)s
(x �= y). Passing to the double cover (i.e. ordering x and y) gives the integral
of 1

2 (ex + ey) over the complement of the diagonal in X × X. By symmetry
this is the integral of ex. Adding in the contribution (4.17) of case (b), i.e.
the integral of ex over the diagonal, we get the weighted Euler characteristic of
X ×X with weight ex pulled back from the first factor.

Integrating over the first factor of the product gives P1,C , then integrating
over the second makes this e(X)P1,C . The final formula is therefore what we
wanted:

I2,C − P2,C = e(X)P1,C + e(Hilb
2 X).

4.6. The theories of Joyce and Kontsevich-Soibelman. — When we started out
on this project we hoped to derive the wall crossing formula by an elementary
analysis of the fibres of the morphisms ϕI , ϕP of (1.6). We were not con-
vinced of the necessity of stacks, or of Joyce’s rather complicated theory (not
to mention the even more complicated, partly conjectural theory of Kontsevich-
Soibelman).

The reader not yet convinced that a new idea is needed is invited to continue
the above analysis for 3 points. It turns out that there is a good reason that
this naive analysis is not sufficient to handle the general case. There is a clever
reordering of the sums involved that exposes a certain symmetry that underpins
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the wall crossing and which has been invisible to us up until now. This leads
naturally into Hall algebras and (a small part of) the theories of Joyce and
Kontsevich-Soibelman.

The reader happy with those works can safely jump to the proof(s) of the wall
crossing formula. For all others (and there is currently no friendly reference)
this section should serve as both motivation and an introduction.

Even in the length two case we found spaces, such as Gr(2, Hx), with Euler
characteristic hx(hx − 1)/2 which is nonlinear in hx. Therefore its interaction
with Serre duality and the (linear!) Riemann-Roch formula was more compli-
cated. We also got terms like P(Hx)× P(Hy) whose Euler characteristic hx.hy

is not even a function of hom(IC , Ox ⊕ Oy) = hx + hy.
By (4.12) these spaces all arise in the following way.
(i) Start with Hom(IC , T ),
(ii) remove the locus of non-onto Homs, and
(iii) divide by the automorphisms of T .

We have good control over (i) by Serre duality and Riemann-Roch:
Hom(IC , T ) ∼= ChT has exponent linear in hT , while on the pairs side
the relevant space is Ext

1
(T, OC) ∼= CeT , and hT − eT = [T ] is topological –

the length of the 0-dimensional sheaf T . The removal of the bad locus (ii)
will be discussed in Section 4.8 below. Finally the quotienting (iii) suggests
two things. Firstly, we should be using stacks, by which we just mean that
we should remember the automorphism group of each point T in the space of
sheaves. And secondly, we should use virtual Poincaré polynomials instead of
Euler characteristics: we cannot compute the Euler characteristic e(X/G) of
a free quotient as e(X)/e(G) if both X and G have zero Euler characteristic,
but we can do this with virtual Poincaré polynomials.

4.7. Virtual Poincaré and Serre polynomials. — Virtual Poincaré polynomials
are defined for all quasi-projective varieties. They are motivic, satisfying
Pt(X\Y ) + Pt(Y ) = Pt(X) and Pt(X × Y ) = Pt(X)Pt(Y ). Therefore they
are determined by their values on smooth projective varieties, for which
they equal the classical Poincaré polynomial Pt(X) =

�
i(−1)

ibi(X)ti.
(Deligne showed that they are then well defined.) In particular they satisfy
Pt(X/G) = Pt(X)/Pt(G) when X → X/G is a Zariski-locally trivial G-bundle,
and limt→1 Pt(X) = e(X).

The spaces that interest us will be unions of affine spaces, whose mixed
Hodge structure is of level 0, so that Pt(X) is in fact a polynomial in q = t2.
(In this case this function of q is the Serre polynomial, counting points over
Fq.) We therefore replace the variable t (which we will recycle for a different
purpose below) by q1/2 and abuse notation by denoting the virtual Poincaré
polynomial by Pq(X) ∈ Z[q1/2

] and calling it the Serre polynomial throughout.
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The Serre polynomial of the affine line C is q = t2, so that of Hom(IC , T )

is qhT . This linearity in the exponent, over which we have the usual control by
Serre duality and Riemann-Roch, will be crucial. When [T ] = 1 the space of
interest to us is P(Hx), whose Serre polynomial is computed via the prescription
(4.12) as

Pq(Hx\{0})
Pq(C∗)

=
qhx − 1

q − 1
= qhx−1

+ qhx−2
+ · · · + q + 1,

the right hand side reflecting its natural cell structure (or its usual Poincaré
polynomial). Taking the limit as q → 1 we recover e(P(Hx)) = hx, essentially
as d

dq

��
q=1

qhT . This was all we required for the 1 point case.
For 2 points we had the 3 cases (a), (b) and (c). In case (a) the Serre

polynomial of (4.14) is

(4.20)
qhx+hy − qhx − qhy + 1

(q − 1)2
= (qhx−1

+ · · · + q + 1)(qhy−1
+ · · · + q + 1),

i.e. the Serre polynomial of P(Hx)× P(Hy), with limq→1 = hx.hy.
In case (b) we take the Serre polynomial of (4.16). Removing the origin in

each of the vector spaces in (4.16) so that the union becomes disjoint, we get
(4.21)
(q2hx − 1)− (q + 1)(qhx − 1)

(q2 − 1)(q2 − q)
=

(qhx−1
+ · · · + q + 1)(qhx−2

+ · · · + q + 1)

q + 1
.

Tending q → 1 gives e(Gr(2, Hx)) = hx(hx − 1)/2.
In case (c) we compute the Serre polynomial of (4.18) to be

(4.22) (qh2x − qhmx )
�
q(q − 1) = qh2x−2

+ · · · + qhmx−1,

with limit h2x − hmx as q → 1.
So all the nonlinearity in the Euler characteristics is coming from taking

the q → 1 limit, in which the automorphisms contribute denominators like
q − 1 (and its nth powers) which effectively differentiate (n times) the nice
controllable terms like qhx which have linear exponents. In the next section we
will avoid such problems by taking limq→1 after applying Riemann-Roch and
Serre duality (in contrast to what we just did).

4.8. Inclusion-exclusion and reordering the sum. — More importantly, to deal
with problem (ii) above and get the calculations to work out in more com-
plicated examples, we need to reorder the relevant sum in a crucial way.

By the inclusion-exclusion principle, write Hom
onto

(IC , T ) as

(4.23) Hom(IC , T ) −
�

{T1<T}

Hom(IC , T1) +

�

{T1<T2<T}

Hom(IC , T1) − · · · ,
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where each < denotes the inclusion of a subsheaf which may be zero but may
not be the whole sheaf. We want to take the Serre polynomial of this, divided
by that of Aut(T ), and then “add up” over all T and take q → 1. (Throughout
this section, “add up”, “sum” or “integrate” are all meant in the sense of taking
Serre polynomials.)

Think of subsheaves T1 < T as extensions 0 → T1 → T → Q1 → 0. Then,
for instance, the sum over all T of the second term in (4.23) can be reordered by
instead summing over all extensions between all 0-dimensional sheaves T1, Q1.
(We can do something similar for all of the terms of (4.23).)

In this way we will see a new symmetry by applying Serre duality and
Riemann-Roch to the extensions between T1 and Q1. Putting T1 and Q1 on an
equal footing (they are both arbitrary 0-dimensional sheaves) also resolves the
asymmetry between mx and Ox that we noted in the 2 point case. We now see
both as Ox, and the sheaves O2x and Ox ⊕ Ox as extensions between Ox and
itself.

As an example we spell out explicitly how this reorders the sum of the terms
(a), (b), (c) in the 2-point case of Section 4.5. We concentrate on the second
term in the inclusion-exclusion (4.23) (the first and third are easier in this case).

So we sum Hom(IC , Ox) over equivalence classes of exact sequences 0 →
Ox → T → Oy → 0 for all x, y ∈ X. Here exact sequences are equivalent if
they differ by the action of some g ∈ Aut T (changing the inclusion by post-
multiplication by g, and the quotient by pre-multiplication by g−1). Under this
Aut(T )-action the stabiliser of an exact sequence is Hom( Oy, Ox) ⊂ Aut(T ),
where Φ ∈ Hom( Oy, Ox) induces the automorphism of T given by idT plus
the composition T → Oy

Φ−→ Ox → T . Therefore when we divide the exact
sequences by Aut(T ) we get the equivalence classes (corresponding to points
in Ext

1
( Oy, Ox)) with a residual action of Hom( Oy, Ox) (acting trivially on

Ext
1
( Oy, Ox), though not on the corresponding extension T ). So for each

x, y ∈ X this sum contributes the motive

(4.24) −Hom(IC , Ox)× Ext
1
( Oy, Ox)

(Aut( Oy)×Aut( Ox))×Hom( Oy, Ox)

to the second term in the inclusion-exclusion (4.23). As usual we are thinking
of the sheaves Oy, Ox as belonging to the stack of 0-dimensional sheaves, i.e.
we are remembering their automorphism groups which act on the extensions
between them. The contribution at the level of Serre polynomials is

(4.25) − qhx
qext1( Oy, Ox)

qhom( Oy, Ox)(q − 1)2
.

We have seen previously how Serre duality and Riemann-Roch applied to the
first exponent hx are important in comparing with the corresponding Ext

pure
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contributions to the Serre polynomial of the space of stable pairs. But now we
can also apply Serre duality and Riemann-Roch to the other terms in (4.25) as
well:

ext
1
( Oy, Ox)− hom( Oy, Ox) = ext

1
( Ox, Oy)− hom( Ox, Oy),

so that
qext1( Oy, Ox)

qhom( Oy, Ox)
=

qext1( Ox, Oy)

qhom( Ox, Oy)
.

This symmetry was invisible before we reordered the sum, but will be important
later.

In analysing (4.24) we treat the zero and nonzero extensions separately, thus
splitting (4.25) into the sum

(4.26) − qhx
1

qhom( Oy, Ox)(q − 1)2
− qhx

qext1( Oy, Ox) − 1

qhom( Oy, Ox)(q − 1)2
.

We begin with the first term, corresponding to the zero extension 0 ∈
Ext

1
( Oy, Ox). Thus the sheaf T is Ox ⊕ Oy and we are in case (a) of Section

4.5 if x �= y and case (b) if x = y. When x �= y, this extension contributes

−qhx
1

(q − 1)2

to (4.26), and indeed this appears in the Serre polynomial of (a) (4.14) as the
second term in the numerator of (4.20). Similarly when x = y it contributes

−qhx
1

q(q − 1)2

to (b) (4.16). And rewriting this as

− (q + 1)qhx

(q2 − 1)(q2 − q)

we see that it appears on the left hand side of (4.21).
This leaves the nonzero elements of Ext

1
( Oy, Ox). For y �= x there are none;

for y = x they contribute the rest of (4.26),

(4.27) − qhx
qext1( Oy, Ox) − 1

qhom( Oy, Ox)(q − 1)2
= −qhx

q3 − 1

q(q − 1)2
= −qhx

q2
+ q + 1

q(q − 1)
,

to the inclusion-exclusion description of Hom
onto

(IC , O2x) of case (c) (4.18).
And indeed multiplying the negative term in (4.22) by (q2

+ q + 1) (the Serre
polynomial of the space P2 of sheaves O2x supported at x) gives precisely (4.27).

The only drawback of the reordering is that (4.25) does not have a finite
limit as q → 1, which is why we must leave taking the limit until last. While
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each of the contributions (4.20, 4.21, 4.22) of (a), (b) and (c) have finite q → 1

limits, (4.25) is a combination of parts of those contributions which do not.

4.9. Hall algebra. — Consideration of spaces like (4.24) suggest that we work
with the Ringel-Hall algebra of Joyce [10]. Namely, we allow ourselves to weight
the stack T of 0-dimensional sheaves by another stack mapping to it, such as

– Hom(IC , · ), the stack whose fibre over T ∈ T is Hom(IC , T ),
– Hom

onto
(IC , · ), the stack whose fibre over T ∈ T is Hom

onto
(IC , T ),

– 1 T , the stack T mapping to T by the identity map.

(So we think of each sheaf T as being weighted by Hom(IC , T ), or its Serre
polynomial qhT , in the first case, or simply 1 in the final case. The second
example is in fact a scheme, since Aut(T ) acts freely.) And we want to be
able to “add” objects T1, T2 in T by taking all of the extensions Ext

1
(T2, T1)

between them and mapping this to T via the universal extension (so that
e ∈ Ext

1
(T2, T1) maps to the sheaf T ∈ T that is defined by the extension

e). This (noncommutative!) addition is the convolution product in the Hall
algebra of stacks over T . As usual we also keep track of automorphisms, and
carry the weights along with the “addition”. The upshot is the following.

Let T 2 be the stack of all short exact sequences 0 → T1 → T → T2 → 0 in
T . Mapping such an extension to T ∈ T defines a map T 2 → T which we
define to be the product 1 T ∗1 T of the stack T with itself. For any other stacks
U → T and V → T we form their product from this one by fibre product:

U ∗ V ��

��

1 T ∗ 1 T ��

(π1,π2)

��

T

U × V �� T × T .

That is, U∗V is the fibre product of U×V → T × T and (π1, π2) : T 2 → T × T ,
where (π1, π2) maps the sequence 0→ T1 → T → T2 → 0 to (T1, T2).

The product ∗ is associative, essentially because 1 T ∗ 1 T ∗ 1 T is the stack
of filtrations T1 < T2 < T3, independently of the order we do the product
in. (Here T1 lies in the first copy of T , T2/T1 in the second, and T3/T2 in the
third.) Its identity is 10, the stack consisting of the zero sheaf with its inclusion
in T .

In this language, the inclusion-exclusion (4.23) becomes the identity

(4.28) Hom
onto

(IC , · ) = Hom(IC , · )−Hom(IC , · ) ∗ 1 T �

+ Hom(IC , · ) ∗ 1 T � ∗ 1 T � + · · · ,
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where T � = T \{0} is the stack of nonzero 0-dimensional sheaves. This is the
inversion of Bridgeland’s generalisation [4] of the Reineke formula

(4.29) Hom(IC , · ) = Hom
onto

(IC , · ) ∗ 1 T

which simply says that any φ ∈ Hom(IC , T ) is a surjection IC → T1 := im φ
followed by an extension 0 → T1 → T → T/T1 → 0. Since 1 T = 10 + 1 T � it
can be inverted via

1
−1
T = 10 − 1 T � + 1 T � ∗ 1 T � − 1 T � ∗ 1 T � ∗ 1 T � + · · · .

(Formally we need to pass to a completion of the Hall algebra to make sense of
this formula, but in our applications a finite truncation will suffice.) Applied
to (4.29) this gives (4.28) and (4.23).

In particular then, as an example, the collection of spaces (4.24), as we allow
Oy to vary over any nonzero sheaf in T , is the stack

Hom(IC , Ox) ∗ 1 T � .

Restricting to finite type algebraic stacks with affine geometric stabilizers
mapping to T , Joyce produces a motivic Ringel-Hall algebra H( T ) with the
above properties, together with an integration map

Pq : H( T )→ Q(q1/2
)[t]

which, for instance, takes any Zariski-locally trivial global quotient A/G ⊂ T n

to the quotient of Serre polynomials (Pq(A)/Pq(G))tn. Here T n ⊂ T is the
stack of 0-dimensional sheaves of length n, and the t is a formal variable to
keep track of this length. (Of course Joyce works in much more generality than
this particular example.)

In particular, then, Pq applied to Hom
onto

(IC , · )→ T gives the series

(4.30) Pq(Hom
onto

(IC , · ))(t) =

�

n

Pq(In(X,C))tn =: ZI
C(X)(q, t),

with limit ZI
C(X)(t) = limq→1 ZI

C(X)(q, t) the usual MNOP generating series
of Euler characteristics of Hilbert schemes In(X,C). Similarly

(4.31) Pq(Ext
pure

( · , OC))(t) =

�

n

e(Pn(X,C))tn =: ZP
C (X)(q, t),

with limit ZP
C (X)(t) = limq→1 ZP

C (X)(q, t) the usual stable pairs generating
series of Euler characteristics of the space Pn(X,C).

In fact by Serre duality and Riemann-Roch, Pq is a Lie algebra homomor-
phism to the abelian Lie algebra Q(q1/2

)[t]:

Theorem 4.32. — Pq(U ∗ V ) = Pq(V ∗ U).
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“Proof”. — This is just a restatement of [10, Equations 80-83]. These equations
appear in the body of the proof of [10, Theorem 6.1], which only holds for
abelian categories of global dimension 1. But in fact this assumption is only
used in the last equality of Equation 83, while Equations 80-82 and the first
equality in Equation 83 hold in general, as Joyce explains (they are proved in
[10, Corollary 5.15] and [10, Proposition 5.14]).

Intuitively, the result should be clear from things we have already seen.
The extensions Ext

1
(T2, T1) between T1 in the image of U → T and T2 in

the image of V → T also have a symmetry Hom(T2, T1), so the left hand
integral is an integral over U × V of Pq(Ext

1
(T2, T1))/Pq(Hom(T2, T1)) =

qext1(T2,T1)−hom(T2,T1).

Similarly the right hand side is an integral over U×V of qext1(T1,T2)−hom(T1,T2).
But since T1, T2 ∈ T are 0-dimensional, their Mukai pairing χ(T1, T2) is zero.
Therefore

(4.33) ext
1
(T2, T1)− hom(T2, T1) = ext

1
(T1, T2)− hom(T1, T2),

by Riemann-Roch and Serre duality.

Remark. — It is important to point out that this theorem is not Joyce’s
Lie algebra homomorphism [10, Theorem 6.12] for the category of coherent
sheaves on a Calabi-Yau threefold. That homomorphism is the derivative at
q = 1 of the above result, and only defined on the Lie subalgebra of virtual
indecomposables, making it much more complicated. Theorem 4.32 is a much
simpler statement for the category T , essentially saying that the Mukai pairing
vanishes. When T is replaced by more general stacks of sheaves and U and
V map to sheaves with constant Mukai pairing m, then the result becomes
Pq(U ∗ V ) = qmPq(V ∗ U).

So this Lie algebra homomorphism is a natural reflection of Serre duality
and Riemann-Roch. But, remarkably, Kontsevich and Soibelman have found
a way to tweak the integration map to lift it to an algebra homomorphism.
This uses the Behrend χB-weighting [2] in a crucial way, and is still conjectural
in parts. This theory is clearly very powerful but we do not use it as we do
not pretend to understand it. Instead we use the following weaker result from
Joyce’s theory.

Theorem 4.34. — If both of limq→1 Pq(U) and limq→1 Pq(V ) exist, then

lim
q→1

Pq(U ∗ V ) = lim
q→1

Pq(U) lim
q→1

Pq(V ).
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“Proof”. — Again this follows directly from [10, Equations 80-83] on taking
the limit q → 1. Conceptually it is very simple. As discussed above, the left
hand side is an integral of qext1(T2,T1)−hom(T2,T1) over U ×V . But this has limit
1 as q → 1.

At first sight this seems to say that on passing to the limit q → 1, all
extension information is lost. Of course this is not the case, since for most U
to which we apply Pq, automorphisms mean that limq→1 Pq(U) does not exist.

4.10. First proof of the topological DT/PT wall crossing. — We now have the
tools to prove Theorem 1.5. We give a proof along the lines that we have
been discussing, for completeness. In the next section we give a shorter and
simpler proof.

As in (4.30),

ZI
C(X)(q, t) = Pq

�
Hom

onto
(IC , · )

�
(t),

which by (4.29) gives

(4.35) ZI
C(X)(q, t) = Pq

�
Hom(IC , · ) ∗ 1

−1
T

�
(t).

Setting C = ∅, i.e. IC = OX , we recover the degree 0 generating series

(4.36) ZI
0 (X)(q, t) = Pq

�
C[ · ] ∗ 1

−1
T

�
(t).

Here C[ · ] is the stack whose fibre over T ∈ T is C[T ], where [T ] is the length
of T . Over strata of T on which hom( OX , T ) = [T ] is constant, Hom( OX , T )

is Zariski-locally equivalent to C[T ]. Therefore they have the same integral.
The analogue of Reineke’s formula (4.29) for Ext

pure is

Ext
1
( · , OC) = 1 T ∗ Ext

pure
( · , OC).

This just says that any extension from T ∈ T to OC is uniquely the composition
of a quotient T → T1 → 0 and a pure extension from T1 to OC – i.e. one which
does not factor through any further quotient of T1.

Therefore,
ZP

C (X)(q, t) = Pq

�
1
−1
T ∗ Ext

1
( · , OC)

�
(t).

By Theorem 4.32 (i.e. the Serre duality and Riemann-Roch formula (4.33)),
this is

Pq

�
Ext

1
( · , OC) ∗ 1

−1
T

�
(t).

By Riemann-Roch and Serre duality for IC (4.11), the stacks Hom(IC , · )

and Ext
1
( · , OC) ⊕ C[ · ] are both Zariski-locally trivial of the same rank over

strata of T on which hom(IC , · ) is constant. Therefore they have the same
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integral Pq. Now C[T ] has Serre polynomial q[T ] and contributes to the coeffi-
cient of t[T ], suggesting the substitution of qt for t in the above formula. So we
consider

ZP
C (X)(q, qt) = Pq

�
Ext

1
( · , OC) ∗ 1

−1
T

�
(qt)

= Pq

��
Ext

1
( · , OC)⊕ C[ · ]� ∗

�
C[ · ]�−1

�
(t)

= Pq

�
Hom(IC , · ) ∗

�
C[ · ]�−1

�
(t).(4.37)

We compare this to (4.35),

ZI
C(X)(q, t) = Pq

�
Hom(IC , · ) ∗

�
C[ · ]�−1 ∗ C[ · ] ∗ 1

−1
T

�
(t)

= Pq(U ∗ V )(t),

where U = Hom(IC , · ) ∗
�
C[ · ]�−1 and V = C[ · ] ∗ 1

−1
T .

By (4.37), limq→1 Pq(U) exists and equals ZP
C (X). By (4.36), limq→1 Pq(V )

exists and equals ZI
0 (X). Therefore by Theorem 4.34 we find that

ZI
C(X)(t) = lim

q→1

�
ZI

C(X)(q, t)
�

= ZP
C (X).ZI

0 (X),

as required.

Remark. — To prove the punctual statement (1.7) it is enough to replace
the category T in the argument above by the category T (p) of 0-dimensional
sheaves supported at p ∈ C (that C ⊂ A3 is now affine causes no difficulties).

4.11. Insertions. — We note that Theorem 1.4 does not require the 3-fold to
be Calabi-Yau. This comes as a surprise to those of us brought up on virtual
cycles. The virtual dimensions of In(X, β) and Pn(X,β) are both

�
β c1(X), so

to get invariants from the virtual class when this is strictly positive we must
use insertions. (We do not currently understand how to fit descendants into
this picture.) In particular one does not expect identities that use the whole
moduli space, as in Thereom 1.4.

However, we are grateful to Rahul Pandharipande for pointing out that one
can incorporate insertions into our result. Since Theorem 1.5 is true for each
curve C at a time, we can manipulate it into a form more reminiscent of the
DT/PT conjectures in the case that

�
β c1(X) > 0.

Let πI : X × In(X,β)→ In(X, β) and πP : X ×Pn(X,β)→ Pn(X,β) be the
obvious projections, and let πX denote the projection from either product to
X. Let Z ⊂ X × In(X,β) denote the universal subscheme, and let F be the
universal sheaf over X × Pn(X, β) [21].
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From any T ∈ Hd
(X, Z) we define a cohomology class µ(T ) ∈ Hd−2

(In(X,β))

by
µ(T ) := πI∗

�
π∗X(T ) ∪ ch2( O Z)

�
,

and similarly µ(T ) ∈ Hd−2
(Pn(X, β)) by

µ(T ) := πP∗
�
π∗X(T ) ∪ ch2(F)

�
.

Fix T = (Ti ∈ Hdi(X, Z))
k
i=1 of total degree

�k
i=1 di =

�
β c1(X) + 2k. We

define the invariants with insertions T by integrating over the virtual cycle:

Ivir
n,β(T) :=

�

[In(X,β)]vir

µ(T1) ∪ · · · ∪ µ(Tk),

and

P vir
n,β(T) :=

�

[Pn(X,β)]vir

µ(T1) ∪ · · · ∪ µ(Tk).

These invariants are then conjectured in [21] to satisfy the identity

Ivir
n,β(T) = P vir

n,β(T) + Ivir
1,0 · P vir

n−1,β(T) + Ivir
2,0 · P vir

n−2,β(T) + · · · .

Dually they can be defined by homology classes Ti on X and the slant
product in place of the cup product. Capping the resulting cohomology classes
with the virtual class loosely corresponds to cutting down the virtual cycle to
those subschemes (respectively pairs) which intersect all of the cycles Ti. So if
we let T denote the cycle of those Cohen-Macaulay curves which intersect all
of the cycles Ti then we think of the insertion invariants as the intersection of
the virtual cycle with the pullback via ϕI (respectively ϕP ) of T.

In place of intersection with the virtual cycle we take as our topological
analogue the Euler characteristic instead:

In,β(T) := e(ϕ∗IT), and Pn,β(T) := e(ϕ∗P T).

Pushing down by ϕI we see that e(ϕ∗IT) is the Euler characteristic of T
weighted by the constructible function In,C . (Similarly for e(ϕ∗P T).) Therefore
integrating Theorem 1.5 over T gives the identity

In,β(T) = Pn,β(T) + I1,0 · Pn−1,β(T) + I2,0 · Pn−2,β(T) + · · · .

With hindsight one can see these identities in the toric computations of
[20]. That such analogies should be true more generally perhaps suggests that
there might be an extension of Behrend’s result for general 3-folds, expressing
insertion invariants as weighted Euler characteristics of cut down moduli spaces.
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5. A short proof of the topological DT/PT wall crossing

Let PC be be the stack (in fact projective scheme) of stable pairs supported
on C, and IC be the subset of the Hilbert scheme consisting of 1-dimensional
subschemes Z such that IC/IZ is 0-dimensional.

Consider the stack of 2-term complexes { OX → F}, where F is supported
on a one-dimensional subscheme whose underlying Cohen-Macaulay curve is
C, and the cokernel of the map is 0-dimensional. Filtering such a complex
by either its maximal 0-dimensional subsheaf or its maximal 0-dimensional
quotient sheaf, this stack can be written as either of

IC ∗ 1 T [−1] = 1 T [−1] ∗ PC .

This is really the Harder-Narasimhan filtration for these complexes in the two
different stability conditions on either side of the wall. Therefore

(5.1) IC = 1 T [−1] ∗ PC ∗ 1
−1
T [−1].

This is nothing but a convenient shorthand to encapsulate the wall crossing
discussed in Section 4.4 (i.e. the triangles (4.8) and (4.9)). This holds in
the abelian category (of perverse sheaves containing T [−1], stable pairs and
ideal sheaves) obtained by tilting the usual one with the torsion subcategory
T . Thus we can again apply Joyce’s theory. Considered inside this abelian
category, we denote T [−1] by S, so that (5.1) gives

(5.2) Pq(IC) = Pq

�
1 S ∗ PC ∗ 1

−1
S

�
.

We would like to commute 1 S past PC ∗ 1
−1
S using Theorem 4.32. However

T [−1] ∈ S has Mukai vector χ(T [−1], · ) = [T ] with anything in PC ∗ 1
−1
S

so Theorem 4.32 has to be modified accordingly. Namely, by [10, Equations
80-83],

Pq

�
1 S ∗ PC ∗ 1

−1
S

�
= Pq

�
PC ∗ 1

−1
S ∗ C[ · ]

S

�
.

(Intuitively: the left hand side is the integral of qext1(T [−1], · )−hom(T [−1], · ) over
S ×

�
PC ∗ 1

−1
S

�
, the right hand side is the integral of q[T ]+ext1( · ,T [−1])−hom( · ,T [−1]).

But these are equal by Serre duality and Riemann-Roch.)
Therefore by Theorems 4.34 and 4.32, the limit q → 1 of (5.2) gives

ZI
C(X) = lim

q→1
Pq(PC). lim

q→1
Pq(1

−1
T ∗ C[ · ]

T )

= lim
q→1

Pq(PC). lim
q→1

Pq(C[ · ]
T ∗ 1

−1
T )

= ZP
C (X).ZI

0 (X),

by (4.36). We explained in Section 4.2 how to integrate this identity over the
space of Cs to give Theorem 1.4, i.e. ZI

β(X) = ZP
β (X).ZI

0 (X).
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