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Abstract. — Spatially homogeneous random walks in (Z+)2 with non-zero jump
probabilities at distance at most 1, with non-zero drift in the interior of the quadrant
and absorbed when reaching the axes are studied. Absorption probabilities generating
functions are obtained and the asymptotic of absorption probabilities along the axes is
made explicit. The asymptotic of the Green functions is computed along all different
infinite paths of states, in particular along those approaching the axes.

Résumé (Marches aléatoires dans Z2
+ avec un drift non nul, absorbées au bord)

Dans cet article, nous étudions les marches aléatoires du quart de plan ayant des
sauts à distance au plus un, avec un drift non nul à l’intérieur et absorbées au bord.
Nous obtenons de façon explicite les séries génératrices des probabilités d’absorption au
bord, puis leur asymptotique lorsque le site d’absorption tend vers l’infini. Nous calcu-
lons également l’asymptotique des fonctions de Green le long de toutes les trajectoires,
en particulier selon celles tangentes aux axes.
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342 I. KURKOVA & K. RASCHEL

1. Introduction

Random walks in angles of Zd conditioned in the sense of Doob’s h-transform
never to reach the boundary nowadays arouse enough interest in the mathe-
matical community as they appear in several distinct domains.

An important class of such walks is the so-called “non-colliding” random
walks. These walks are the processes (Z1(n), . . . , Zk(n))n≥0 composed of k

independent and identically distributed random walks that never leave the
Weyl chamber W = {z ∈ Rk : z1 < · · · < zk}. The distances between these
random walks U(n) = (Z2(n) − Z1(n), . . . , Zk(n) − Zk−1(n)) give a k − 1 di-
mensional random process whose components are positive. These processes
appear in the eigenvalue description of important matrix-valued stochastic pro-
cesses: see [7] for an old well-known result on the eigenvalues of the process
version of the Gaussian Unitary Ensemble and e.g. [5], [20], [19], [11], [13].
They are found in the analysis of corner-growth model, see [17] and [18].
Moreover, interesting connections between non-colliding walks, random ma-
trices and queues in tandem are the subject of [28]. Paper [8] reveals a
rather general mechanism of the construction of the suitable h-transform for
such processes. But processes whose components are distances between in-
dependent random walks are not the only class of interest. In [21], random
walks with exchangeable increments and conditioned never to exit the Weyl
chamber are considered. In [29], the authors study a certain class of ran-
dom walks, namely (Xi(n))1≤i≤k = (|{1 ≤ m ≤ n : ξm = i}|)1≤i≤k, where
(ξm, m ≥ 1) is a sequence of i.i.d. random variables with common distribution
on {1, 2, . . . , k}. The authors identify in law their conditional version with a
certain path-transformation. In [26] and [27], O’Connell relates these objects
to the Robinson-Schensted algorithm.

Another important area where random processes in angles of Zd conditioned
never to reach the boundary appear is “quantum random walks”. In [2], Biane
constructs a quantum Markov chain on the von Neumann algebra of SU(n)
and interprets the restriction of this quantum Markov chain to the algebra of
a maximal torus of SU(n) as a random walk on the lattice of integral forms
on SU(n) with respect to this maximal torus. He proves that the restriction
of the quantum Markov chain to the center of the von Neumann algebra is a
Markov chain on the same lattice obtained from the preceding by conditioning
it in Doob’s sense to exit a Weyl chamber at infinity. In [3], Biane extends
these results to the case of general semi-simple connected and simply connected
compact Lie groups, the basic notion being that of the minuscule weight. The
corresponding random walk on the weight lattice in the interior of the Weyl
chamber can be obtained as follows: if 2l is the order of the associated Weyl
group, one draws the vector corresponding to the minuscule weight and its l−1
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conjugates under the Weyl group ; then one translates these vectors to each
point of the weight lattice in the interior of the Weyl chamber and assigns to
them equal probabilities of jumps 1/l.

For example, in the case U(3), the Weyl chamber of the corresponding Lie
algebra sl3(C) is the “angle π/3”, that is to say the domain of (R+)2 delimited
on the one hand by the x-axis and on the other by the axis making an angle
equal to π/3 with the x-axis. One gets a spatially homogeneous random walk
in the interior of the weights lattice, as in the left-hand side of Picture 1,
the arrows designing transition probabilities equal to 1/3. In the cases of
the Lie algebras sp4(C) or so5(C), the Weyl chamber is the angle π/4, see the
second picture of Figure 1 for the transition probabilities. Both of these random
walks can be of course thought as walks in (Z+)2 with transition probabilities
drawn in the third and fourth pictures of Figure 1. Biane shows that the

Figure 1. The walks on weights lattice of classical algebras—above,
sl3(C) and sp4(C)-–can be viewed as random walks on Z+

d

suitable Doob’s h-transform h(x, y) for these random walks is the dimension of
the representation with highest weight (x − 1, y − 1). In [1], again thanks to
algebraic methods, he computes the asymptotic of the Green functions Gx,y for
the random walk with jump probabilities 1/3 in the angle π/3 on the Picture 1,
absorbed at the boundary, x, y →∞ and y/x → tan(γ), γ lying in ∈ [�, π/2−�],
� > 0. The asymptotic of the Green functions as y/x → 0 or y/x → ∞ could
not be found by these technics.

In [3] Biane also studies some extensions to random walks with drift: these
are spatially homogeneous random walks in the same Weyl chambers, with the
same non-zero jump probabilities as previously, but now these jump probabili-
ties are admitted not to be all equal to 1/l, so that the mean drift vector may
have positive coordinates. Due to Choquet-Denis theory, in [3], he finds all
minimal non-negative harmonic functions for these random walks. Neverthe-
less this approach seems not allow to find the Martin compactification of these
random walks, nor to compute the asymptotic of the Green functions along
different paths.
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344 I. KURKOVA & K. RASCHEL

In [14], Ignatiouk-Robert obtains, under general assumptions and for all
d ≥ 2, the Martin boundary of some random walks in the half-space Zd−1×Z+

killed on the boundary. In this paper and in [15], Ignatiouk-Robert proposes a
new large deviation approach to the analysis of the Martin boundary combined
with the ratio-limit theorem for Markov-additive processes. Ignatiouk-Robert
and Loree develop this original approach in a recent paper [16] and apply it
with success to the analysis of spatially homogeneous random walks in (Z+)2

killed at the axes, under hypotheses of unbounded jump probabilities (more
precisely, having exponential decay) and non-zero drift. They compute the
Martin compactification for these random walks and therefore obtain the full
Martin boundary. These methods seem not to be powerful for a more detailed
study, as for the computation of the asymptotic of the Green functions, or for
the computation of the absorption probabilities at different points on the axes,
or for the enumeration of lattice walks (see [4] and references therein for the
study of this last problem for lattice walks on (Z+)2 by analytic methods).

They also seem to be difficult to generalize to the random walks with zero
drift.

In this paper we would like to study in detail the spatially homogeneous
random walks (X(n), Y (n))n≥0 in (Z+)2 with jumps at distance at most 1. We
denote by P(X(n + 1) = i0 + i, Y (n + 1) = j0 + j | X(n) = i0, Y (n) = j0) =
p(i0,j0),(i+i0,j+j0) the transition probabilities and do the hypothesis:
(H1) For all (i0, j0) such that i0 > 0, j0 > 0, p(i0,j0),(i0,j0)+(i,j) does not depend

on (i0, j0) and can thus be denoted by pij.

(H2) pij = 0 if |i| > 1 or |j| > 1.
(H3) The boundary {(0, 0)} ∪ {(i, 0) : i ≥ 1} ∪ {(0, j) : j ≥ 1} is absorbing.

(H4) In the list p11, p10, p1−1, p0−1, p−1−1, p−1,0, p−11, p0−1 there are no three

consecutive zeros.

The last hypothesis (H4) is purely technical and avoids studying degenerated
random walks.

In a companion paper we gave a rather complete analysis of such random
walks under a simplifying hypothesis that also
(H2�) p−11 = p11 = p1−1 = p−1−1 = 0.
This hypothesis made the analysis more transparent for several reasons. First,
the problem to find the generating functions of absorption probabilities, defined
in (1) and (2) below, could be reduced to the resolution of Riemann boundary
value problems on contours inside unit discs, where these functions are holo-
morphic, being generating functions of probabilities. These contours under
general hypothesis (H2) may lie outside the unit disc, so that we are obliged
first to continue these functions as holomorphic, then to exploit this continu-
ation. Secondly, the conformal gluing function responsible for the conversion
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between Riemann boundary value problem and Riemann-Hilbert problem we
are faced with, has a particularly nice form. Thirdly, this hypothesis corre-
sponds to an easy group of Galois automorphisms in terms of the book [9],
as it is of order four. Fourthly, under (H2�), in the case of non zero drift,
the asymptotic of the Green functions G

n0,m0
i,j (recall that these are the mean

numbers of visits to (i, j) starting from (n0, m0)) could be found very easily by
means of Paper [22].

Let Mx =
�

i,j ipi,j , My =
�

i,j jpi,j be the coordinates of the mean drift
vector. If Mx > 0, My > 0, the time τ of absorption by the axes for this
random walk is infinite with positive probability for any initial state (n0, m0),
n0, m0 > 0. It is immediate that the suitable Doob’s h-transform conditioning
the process never to reach the axes is of course this probability and also that
this h-transformed process is equal in distributional limit to the conditional
process given {τ > k} as k → ∞. What is the suitable h-transform under
the hypothesis Mx = My = 0 and does this last statement stay true in this
case ? The answer to this question in [30] under (H2�) came from the study
of the exact tail’s asymptotic of τ as k → ∞. Namely it was shown that
P(n0,m0)(τ > k) ∼ Cn0m0k

−1, where C does not depend on n0, m0 and n0m0

is the unique non-negative harmonic function. Since extensions of these results
on τ when (H2�) is relaxed are rather voluminous, we restrict ourselves in this
paper to the case of positive drift:

(M) Mx =
�

i,j ipi,j > 0, My =
�

i,j jpi,j > 0,

and postpone to a future work the study of the random walks with zero drifts
in the Weyl chambers of sl3(C) and sp4(C).

It is the book [9] that gave us the main tool of analysis and has there-
fore inspired this paper. This book studies the random walks in (Z+)2 under
assumptions (H1) and (H2) but not (H3): the jump probabilities from the
boundaries to the interior of (Z+)2 are there not zero and the x-axis, the y-axis
and (0, 0) are three other domains of spatial homogeneity. Moreover, the jumps
from the boundaries are supposed such that the Markov chain is ergodic. The
authors G. Fayolle, R. Iasnogorodski and V. Malyshev elaborate a profound
and ingenious analytic approach to compute the generating functions of sta-
tionary probabilities of these random walks. This approach serves as a starting
point for our investigation and by this reason plays an absolutely crucial role:
preparatory Subsections 2.1, 2.2 and 2.3 proceed along the book [9] applied for
the random walks killed at the boundary.
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In Subsection 2.4, using this analytic approach, we analyze the absorption
probability.Let

(1)
h

(n0,m0)
i = P(n0,m0) (to be absorbed at (i, 0)) ,

�h(n0,m0)
j = P(n0,m0) (to be absorbed at (0, j)) ,

h
(n0,m0)
00 = P(n0,m0) (to be absorbed at (0, 0)) .

be the probabilities of being absorbed at points (i, 0), (0, j) and (0, 0) starting
from (n0, m0). Let h

n0,m0(x) and h̃
n0,m0(y) be their generating functions,

initially defined for |x| ≤ 1 and |y| ≤ 1:

(2) h
n0,m0 (x) =

�

i≥1

h
n0,m0
i x

i
, �hn0,m0 (y) =

�

j≥1

�hn0,m0
j y

j
.

When no ambiguity on the initial state can arise, we drop the index (n0, m0)
and write hi, h̃j , h00, h(x), h̃(y) respectively.

In Section 3 the generating functions h(x), h(y) and h00 are computed. Sub-
section 3.1 gives the first integral representation of these functions on a smooth
curve, which is almost directly deduced from [9]. In Subsection 3.2 we look
closer at the conformal gluing function and transform this representation into
one on a real segment, that suits better for further analysis, see Theorem 13.

In Section 4 we deduce the asymptotic of the absorption probabilities hi and
h̃j as i → ∞ and j → ∞. We show that hi ∼ C(n0, m0)p−i

i
−3/2, with some

(made explicit) p > 1 and a constant C(n0, m0). This constant C(n0, m0) is
also made explicit and turns out to depend quite interestingly on the “group of
Galois automorphisms” of the random walk (in the sense of Definition 3), see
Theorem 17.

In Section 5 we compute the asymptotic of the Green functions G
n0,m0
i,j that

is of the mean number of visits to (i, j) starting from (n0, m0) as i, j → ∞,
j/i → tan(γ) where γ ∈ [0, π/2].

In the case of γ ∈]0, π/2[, thanks to [22] and [25], it is not a difficult task:
the procedure used in [22] for the Green functions asymptotic (and in fact devel-
oped much earlier in [25] for the stationary probabilities’ asymptotic) of the ran-
dom walks in the quadrant under the simplifying hypothesis (H2�) in the interior
and with some non-zero jump probabilities from the axes can be rather easily
generalized to our random walks under (H2). To state the result, let (u(γ), v(γ))
be the unique solution of grad(φ(u, v))/|grad(φ(u, v))| = (cos(γ), sin(γ)) on
φ(u, v) =

�
i,j pije

iu
e
jv = 1. Let sx(tan(γ)) = exp(u(γ)) and sy(tan(γ)) =

exp(v(γ)). Then G
n0,m0
i,j ∼ Ci

−1/2
�
sx(tan(γ))n0sy(tan(γ))m0−h(sx(tan(γ)))−

h̃(sy(tan(γ)))−h00

�
sx(j/i)−i

sy(j/i)−j , the constant C does not depend on n0,
m0, i, j and is made explicit, see Theorem 24.
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It is a more delicate task to study the asymptotic of the Green functions
G

n0,m0
i,j in the case of j/i → 0 (or j/i → ∞) that has not been completed in

previous works. This is the subject of Subsection 5.2. In Theorem 26 we prove
that G

n0,m0
i,j ∼ C0i

−1/2
j/i

�
m0sx(0)n0sy(0)m0−1 − h̃

�(sy(0))
�
sx(j/i)−i

sy(j/i)−j

where C0 is independent of n0 and m0 and is made explicit. The explicit
expression of m0sx(0)n0sy(0)m0−1 − h̃

�(sy(0)) in terms of the parameters pij

depends interestingly on the order of the “group of Galois automorphisms”, see
Remark 27. The result for j/i →∞ follows after exchanging i and j. The limit
of G

n0,m0
i,j /G

n1,m1
i,j , as i, j > 0, j/i → 0 is the same as the limit h

n0,m0
i /h

n1,m1
i

when i → ∞ from Section 4. Furthermore the limits of G
n0,m0
i,j /G

n1,m1
i,j when

j/i → tan(γ), γ ∈ [0, π/2], provide explicitly all harmonic functions of the
Martin compactification. This leads in particular to the result recently obtained
in [16] that the Martin boundary is homeomorphic to [0, π/2].

Acknowledgements. — We would like to thank Professor Bougerol for pointing
out the interest and relevance of the topic discussed in this paper and for the
numerous and stimulating discussions we had concerning the random walks
under consideration.

Thanks to Professor Biane for clarifying the results he obtained on “Quantum
random walks” and for the interesting discussions we had together around this
topic.

Many thanks also to M. Defosseux and F. Chapon for the generosity with
which they shared their mathematical knowledge with us.

2. Analytic approach

2.1. A functional equation. — Define
(3)

G (x, y) =
�

i,j≥1

G
n0,m0
i,j x

i−1
y

j−1 =
�

i,j≥1

E(n0,m0)




�

n≥0

1{(X(n),Y (n))=(i,j)}



x
i−1

y
j−1

,

the generating function of the Green functions. With the notations of Section 1,
we can state the following functional equation:

(4) Q (x, y)G (x, y) = h (x) + �h (y) + h00 − x
n0y

m0 ,

where Q is the following polynomial, depending only on the walk’s transition
probabilities:

(5) Q (x, y) = xy

�
�

i,j

pijx
i
y

j − 1

�
.
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Prima facie, Equation (4) has a meaning in {x, y ∈ C : |x| < 1, |y| < 1}. The
proof of (4) comes from writing that for k, l, n ∈ (Z+)2,

P((X(n + 1), Y (n + 1)) = (k, l)) =
�

i,j≥1

P ((X (n) , Y (n)) = (i, j)) p(i,j),(k,l)+

+
�

i≥1

P ((X (n) , Y (n)) = (i, 0)) δ
(i,0)
(k,l) +

�

j≥1

P ((X (n) , Y (n)) = (0, j)) δ
(0,j)
(k,l) +

+ P ((X (n) , Y (n)) = (0, 0)) δ
(0,0)
(k,l) ,

where δ
(i,j)
(k,l) = 1 if i = k and j = l, otherwise 0. It remains to multiply by x

k
y

l

and then to sum with respect to k, l, n.

2.2. The algebraic curve Q (x, y) = 0. — The polynomial (5) can be written
alternatively:

(6) Q (x, y) = a (x) y
2 + b (x) y + c (x) = �a (y) x

2 +�b (y)x + �c (y) ,

where

a (x) = p11x
2 + p01x + p−11, �a (y) = p11y

2 + p10y + p1−1,

b (x) = p10x
2 − x + p−10,

�b (y) = p01y
2 − y + p0−1,

c (x) = p1−1x
2 + p0−1x + p−1−1, �c (y) = p−11y

2 + p−10y + p−1−1,

d (x) = b (x)2 − 4a (x) c (x) , �d (y) = �b (y)2 − 4�a (y)�c (y) .

We will now build the algebraic function Y (x) defined by Q(x, y) = 0. Note
first that Q(x, y) = 0 is equivalent to (b(x) + 2a(x)y)2 = d(x), so that the
construction of the function Y is equivalent to that of the square root of the
polynomial d. We need the following precisions on the roots of d:

Lemma 1. — (1) d is a third or fourth degree polynomial, whose all roots are

real and mutually distinct. (2) We call its roots the xi, i ∈ {1, . . . , 4}, with

eventually x4 = ∞ if deg(d) = 3. It turns out that there are two possibil-

ities: either the modulus of the roots are mutually distinct and in this case

we enumerate the roots in such a way that |x1| < |x2| < |x3| < |x4|, or

there are two pairs of roots and inside of each pair the roots are opposed one

from the other, in this case we enumerate them 0 < x2 = −x1 < x3 = −x4.

This last case corresponds to the walks having transition probabilities such that

p11 + p−1−1 + p1−1 + p−11 = 1. (3) Moreover, |x1| < 1, |x2| < 1 and |x3| > 1,
|x4| > 1. (4) x2 and x3 are positive. (5) x1 = 0 (resp. x4 = ∞) if and only if

p
2
−10−4p−11p−1−1 = 0 (resp. p

2
10−4p11p1−1 = 0). (6) If p

2
−10−4p−11p−1−1 �= 0

(resp. p
2
10 − 4p11p1−1 �= 0) then sign(x1) = sign(p2

−10 − 4p−11p−1−1) (resp.

sign(x4) = sign(p2
10 − 4p11p1−1)).
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Proof. — All these properties are proved in [9]. Note here that it is thanks
to the hypothesis (H4), made in Section 1, that the polynomial d is of degree
three or four.

There are two branches of the square root of d. Each determination leads
to a well defined (i.e. single valued) and meromorphic function on the complex
plane C appropriately cut, that is, in our case, on C\[x1, x2]∪[x3, x4]. If x4 < 0,
then [x3, x4] means [x3,+∞[∪]−∞, x4]. We can write the analytic expression
of these two branches Y0 and Y1 of Y : Y0(x) = Y−(x) and Y1(x) = Y+(x)
where:

Y± (x) =
−b (x) ±

�
d (x)

2a (x)
.

Just above, and in fact throughout the whole paper, we chose the principal
determination of the logarithm as soon as we use the complex logarithm ; in
this case to define the square root.

We now extend the domain of determination of Y from C to its Riemann
surface S, so that Y becomes single-valued on S. Since there are two deter-
minations of the square root of d (opposed one from the other), the Riemann
surface S is formed by S0 and S1, two copies of the Riemann sphere C ∪ {∞}
cut along [x1, x2] and [x3, x4] and joined across lines lying above these cuts.
This gives a two-sheeted covering surface of C∪{∞}, branched over x1, . . . , x4.
By opening out the cuts in the two sheets we see that the Riemann surface
associated to Y is homeomorphic to a sphere with one handle attached, that
is a Riemann surface of genus one, a torus. For more details about the con-
struction of Riemann surfaces see for instance Book [31]. In a similar way, the
functional equation (4) defines also an algebraic function X(y). All the results
concerning X(y) can be deduced from those for Y (x) after a proper change of
the parameters, namely pij �→ pji.

To conclude this part, we give a lemma that clarifies some properties of the
functions X and Y , useful in the sequel. It is proved in [9].

Lemma 2. — (1) Y0(1) = c(1)/a(1) and Y1(1) = 1. (2) Y0({x ∈ C : |x| =
1}) ⊂ {y ∈ C : |y| < 1} and Y1({x ∈ C : |x| = 1} \ {1}) ⊂ {y ∈ C : |y| > 1}.
(3) For all x in this cut plane, |Y0(x)| ≤ |Y1(x)|, with equality only on the

cuts. (4) Suppose that x4 > 0 and that the walk is non degenerated, see the

hypothesis (H4). If p1−1 = 0, then limx→∞ xY0(x) ∈] −∞, 0[ and if p1−1 > 0
then limx→∞ Y0(x) ∈]−∞, 0[.
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2.3. Galois automorphisms and meromorphic continuation

Notation. — In this part and throughout the whole paper, ı denotes the com-
plex number: ı

2 = −1.
The Riemann surface S associated to the algebraic function Y is naturally
endowed with a covering map π : S → C ∪ {∞}, such that for all x ∈
C \ [x1, x2] ∪ [x3, x4], π

−1(x) is composed of two elements, say s0 and s1, such
that si ∈ Si, i = 0, 1 and {Y (s0), Y (s1)} = {Y0(x), Y1(x)}. In the same way the
Riemann surface S̃ associated to X is endowed with a map π̃ : S̃ → C ∪ {∞},
such that for all y ∈ C \ [y1, y2] ∪ [y3, y4], π̃

−1(y) is composed of two elements,
say s̃0 and s̃1, such that s̃i ∈ S̃i, i = 0, 1 and {X(s̃0), X(s̃1)} = {X0(y), X1(y)}.

The surfaces S and S̃ having the same genus, we consider from now on
only one surface T , conformally equivalent to S and S̃, with two coverings π

and π̃. One can say that each s ∈ S has two (not independent) “coordinates"
(x(s), y(s)) such that x(s) = π(s) and y(s) = π̃(s) and of course Q(x(s), y(s)) =
0 for all s ∈ T .

We construct on T the following covering automorphisms ξ and η defined in
the previous notations by ξ(s0) = s1 and η(s̃0) = s̃1. Thanks to (6), for any
s = (x, y) ∈ T , ξ and η take the following explicit expressions:

(7) ξ (x, y) =

Å
x,

c (x)

a (x)

1

y

ã
, η (x, y) =

Å�c (y)

�a (y)

1

x
, y

ã
.

ξ and η are of order two: ξ
2 = id, η

2 = id. In [24] and [9], for reasons explained
there, they are also called Galois automorphisms.

Definition 3. — The group of the random walk H is the group generated by

ξ and η.

Being generated by a finite number of elements of order two, H is a Coxeter
group. In fact, H is simply a dihedral group, since it is generated by two
elements. Define δ = ηξ. Then the order of H is equal to 2 inf{n ∈ N∗ : δ

n =
id}, it can be eventually infinite. The finiteness of this group, and in that event
its order, will turn out to be decisive in the sequel, notably in Subsection 2.4
and Section 4.

As implied in [9], it is quite difficult to characterize geometrically the walks
having an associated group H of order 2n, except for little orders. That is how
in [9] is proved that H is of order four if and only if

(8) ∆ =

�������

p11 p10 p1−1

p01 −1 p0−1

p−11 p−10 p−1−1

�������
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is equal to zero. In particular this is the case of the walks having transition
probabilities verifying p10 +p−10 +p01 +p0−1 = 1, that we have studied in [30].
It is also proved in [9] that the the walks with transition probabilities p−11 +
p10 + p0−1 = 1, in the Weyl chamber of sl3(C), see Figure 2, have a group
of order six for any values of the parameters. As for the walks in the Weyl
chamber of sp4(C), see Figure 1, they have, except for exceptional values of
the parameters, a group of order infinite. We add here that the walks with
p11 = p10, p−1−1 = p−10, p11 + p−1−1 = 1/2, drawn in Figure 2, have a group
of order eight.

Figure 2. Random walks having groups of order four, six and eight respectively

We will now continue the functions h and h̃, initially defined on the unit disc,
to C \ [x3, x4] and C \ [y3, y4] as holomorphic functions. This continuation will
have a twofold interest. First, in Section 3, we will have, in order to find explicit
expressions of h and h̃, to solve a boundary value problem, with boundary
condition on closed curves that lie in the exterior of the unit disc. Secondly in
Section 5, when we will calculate the asymptotic of the Green functions, the
quantity x

n0y
m0 − h(x)− h̃(y)− h00 will naturally appear, evaluated at some

(x, y)-–in fact, the saddle-point—that is not in D(0, 1)2.

To do this continuation, we will use a uniformization of the curve {(x, y) ∈
C2 : Q(x, y) = 0}. Being a Riemann surface of genus one, we already know that
Q = 0 is homeomorphic to some quotient C/Γ, where Γ is a two-dimensional
lattice, that is to say to a parallelogram whose the opposed edges are identified.
In [9], such a lattice Γ and also a bijection between C/Γ and Q = 0 are made
explicit. Indeed, the authors find there ω1 ∈ ıR and ω2 ∈ R, two functions
φ and ψ, such that {(x, y) ∈ C2 : Q(x, y) = 0} = {(x(ω), y(ω)), ω ∈ C/Γ},
where x(ω) = φ(℘1,2(ω), ℘�1,2(ω)), y(ω) = ψ(℘1,2(ω), ℘�1,2(ω)), Γ = {n1ω1 +
n2ω2, n1, n2 ∈ Z} and ℘1,2 is the classical Weierstrass elliptic function associ-
ated to the periods ω1 and ω2, that are equal to:

(9) ω1 = ı

� x2

x1

dx�
−d(x)

, ω2 =

� x3

x2

dx�
d(x)

, ω3 =

� x1

X(y1)

dx�
d(x)

,
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ω3 ∈]0, ω2[ being a period that will turn out to be quite important in the sequel.
The functions φ and ψ are also made explicit: for instance, if x4 �= ∞, then
it is possible to take φ(p, p

�) = x4 + d
�(x4)/(p − d

��(x4)/6) and if x4 = ∞,
φ(p, p

�) = (6p− d
��(0))/d

���(0).

ω   /2

4

1

3 2

x
3

y
3

x
4

y

x
2

y
2

x
1

y
1

1
ω

ω
3

+
22

ω   /2 ω   /2 ω   /2 ω   /2

Figure 3. Location of the cuts on the covering surface

Moreover, on C/Γ, the automorphisms ξ and η take the following particularly
nice form:

(10) ξ (ω) = −ω, η (ω) = −ω + ω3, δ (ω) = η (ξ (ω)) = ω + ω3.

In particular, the group H has a finite order if and only if ω3/ω2 ∈ Q and in
this case the order is given by 2 inf{n ∈ N∗ : nω3/ω2 ∈ N}.

Any function f of the variable x (resp. y) defined on some domain D ⊂ C
can be lifted on {ω ∈ C/Γ : x(ω) ∈ D} (resp. {ω ∈ C/Γ : y(ω) ∈ D}) by
setting F (ω) = f(x(ω)) (resp. F (ω) = f(y(ω))). In particular we can lift
the generating functions h and h̃ and we set H(ω) = h(x(ω)) and H̃(ω) =
h̃(y(ω)), well defined on {ω ∈ C/Γ : |x(ω)| ≤ 1} and {ω ∈ C/Γ : |y(ω)| ≤ 1}
respectively. In particular, on {ω ∈ C/Γ : |x(ω)| ≤ 1, |y(ω)| ≤ 1}, using (4),
we have H(ω) + H̃(ω) + h00 − x(ω)n0y(ω)m0 = 0. Applying several times
the Galois automorphisms ξ and η to any point of this domain and laying
down H(ω) = H(ξ(ω)), H̃(ω) = H̃(η(ω)) the authors of [9] prove the following
fundamental proposition.

Proposition 4. — The functions H and H̃ can be continued as meromorphic

functions on respectively (C/Γ) \ [0, ω1] and (C/Γ) \ [ω3/2, ω3/2 + ω1].
Furthermore,

H (ω) = H (ξ (ω)) , ‹H (ω) = ‹H (η (ω)) , ∀ω ∈ C/Γ,

H (ω) + ‹H (ω) + h00 − x (ω)n0
y (ω)m0 = 0, ∀ω ∈ [ω3/2, ω2]× [0, ω1/ı] .

Corollary 5. — The function h and h̃ can be continued into meromorphic

functions on C \ [x3, x4] and C \ [y3, y4] respectively.
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2.4. Absorption probability. — In the next section we will find explicitly h(x),
h̃(y) and h00 that will provide of course the absorption probability h(1)+h̃(1)+
h00. However, this expression is usable difficultly. In this subsection we prove
that in a special case of finite groups of the random walk (see Definition 3)
the probability of absorption takes a particularly nice form, see Corollary 8.
Furthermore, in the case of the group of any order, Proposition 9 gives the
precise exponential asymptotic of the absorption probability as n0, m0 →∞.

We first note that the quantity H(ω)+ H̃(ω)+h00−x(ω)n0y(ω)m0 , for ω in
[0, ω3/2]× [0, ω1/ı], can be considerably simplified in some cases, namely when
the group is finite (i.e. ω2/ω3 ∈ Q+) and when in addition ω2/ω3 ∈ N. This
is for example the case of the walks such that ∆ = 0, for which ω2/ω3 = 2-–
indeed, we have already seen that both assertions ∆ = 0 and ω2/ω3 = 2 are
equivalent to the fact that H is of order four; this is also the case of the walk
in the Weyl chamber of sl3(C), see Figure 2, since in this case the group is of
order six, hence ω2/ω3 is equal to 3/2 or 3, and by a direct calculation we show
that ω2/ω3 = 3. On the other hand, this is not the case of the walk whose
transition probabilities are represented on the right part of Figure 2: although
the group is of order eight, we don’t have ω3 = ω2/4 but ω3 = 3ω2/4.

Proposition 6. — Suppose that ω2/ω3 ∈ N ; in particular this implies that

H is of order 2ω2/ω3. Then if ω ∈ [0, ω3/2]× [0, ω1/ı],
(11)
H (ω)+‹H (ω)+h00−x (ω)n0

y (ω)m0 = −
�

w∈ H

(−1)l(w)
x (w (ω))n0

y (w (ω))m0
,

where l(w) is the length of the word w, that is the smallest r for which we can

write w = s1 · · · sr, with si equal to ξ or η.

Proof. — The key point of the proof of Proposition 6, that also explains why
we have done the hypothesis ω2/ω3 ∈ N, is that in this only case, the funda-
mental domain χ0 = [0, ω2/(2n)[×[0, ω1/ı[ and the domain [0, ω3/2[×[0, ω1/ı[
of Proposition 4 coincide (by χ0 is a fundamental domain we mean that each
ω ∈ C/Γ is conjugate under H to one and only one point of χ0).

Let us first give a proof in the case of the groups of order four. Note that
H + H̃ +h00 = H(ξ)+ H̃(η)+h00, since H (resp. H̃) is invariant w.r.t. ξ (resp.
η), thanks to Proposition 4. So H+H̃+h00 = H(ξ)+H̃(ξ)+h00+H(η)+H̃(η)+
h00−(H(η)+H̃(ξ)+h00). Using once again the invariance properties of H and
H̃, we can write H+H̃+h00 = H(ξ)+H̃(ξ)+h00+H(η)+H̃(η)+h00−(H(ξη)+
H̃(ηξ) + h00). Since the order of H is four, ξη = ηξ and the previous equation
becomes: H + H̃ + h00 = H(ξ) + H̃(ξ) + h00 + H(η) + H̃(η) + h00 − (H(ξη) +
H̃(ξη)+h00). If ω ∈ χ0, then w(ω) ∈ (C/Γ)\χ0 for all w ∈ H \{id}. Indeed, we
will prove in Lemma 7 that χ0 is a fundamental domain. In addition, thanks to
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Proposition 4, the functional equation H(ω)+ H̃(ω)+h00−x(ω)n0y(ω)m0 = 0
is verified in [ω3/2, ω2[×[0, ω1/ı[ which coincides with (C/Γ) \ χ0. In other
words, we can replace H(w(ω)) + H̃(w(ω)) + h00 by x(w(ω))n0y(w(ω))m0 for
any of three elements w ∈ H \ {id}. Proposition 6 is thus proved in the case
of the groups H of order four.

In the general case ω2/ω3 = n, for k ∈ {1, . . . , n − 1}, denote by w1,k and
w2,k the two reduced words of length k, i.e. the words s1 · · · sk and s2 · · · sks1,
where for r ≥ 1, s2r = ξ and s2r−1 = η, and denote by wn the only word of
length n. The fact that there is only one word of length n follows from the
equality inf{n ∈ N∗ : δ

n = id} = inf{n ∈ N∗ : s1s2 · · · sn = s2 · · · sns1}. Then,
by induction, we prove that

H (ω) + ‹H (ω) =
n−1�

k=1

(−1)k+1
�
H (w1,k (ω)) + ‹H (w1,k (ω))

+ H (w2,k (ω)) + ‹H (w2,k (ω))
�

− (−1)n
�
H (wn (ω)) + ‹H (wn (ω))

�
.

Since H = {id, w1,1, w2,1, . . . , w1,n−1, w2,n−1, wn} and since [0, ω3/2[×[0, ω1/ı[
is a fundamental domain, if ω ∈ [0, ω3/2[×[0, ω1/ı[= [0, ω2/(2n)[×[0, ω1/ı[ then
thanks to Proposition 4, for any w ∈ H \ {id}, H(w(ω)) + H̃(w(ω)) + h00 =
x(w(ω))n0y(w(ω))m0 . Moreover, l(wn) = n and for k ∈ {1, . . . , n − 1} and
i ∈ {1, 2}, l(wi,k) = k, so (11) is proved.

Lemma 7. — Suppose that the group H is finite of order 2n. Then for any

k ∈ {0, . . . , 2n − 1}, the domain χk = [kω2/(2n), (k + 1)ω2/(2n)[×[0, ω1/ı[ is

a fundamental domain, i.e. each ω ∈ [0, ω2[×[0, ω1/ı[ is conjugate under H to

one and only one point of χk.

Proof. — Denote by Λµ = µ + [0, ω1] the vertical segment with abscissa µ.
Then, with (10), we can describe the actions of ξ and η on these segments. So,
for any µ in [0, ω2], ξ(Λµ) = Λω2−µ. Also, if µ ∈ [0, ω3], then η(Λµ) = Λω3−µ

and if µ ∈]ω3, ω2] then η(Λµ) = Λω3+ω2−µ. Of course, we also know the action
of the elements of H on the domains χk = [kω2/(2n), (k+1)ω2/(2n)[×[0, ω1/ı[,
since we know how these automorphisms act on the boundaries of these sets.

Suppose first that k is even. Then the ∪n−1
p=0 δ

p(χk) = ∪n−1
q=0 χ2q. In par-

ticular, there exists m ∈ {0, . . . , n − 1} such that δ
m(χk) = χ0. Thanks

to (10), we have ξ(χ0) = χ2n−1, so ξ(δm(χk)) = χ2n−1. Also, ∪n−1
p=0 δ

p(χ2n−1) =

∪n−1
q=0 χ2q+1. Of course, (∪n−1

q=0 χ2q+1) ∪ (∪n−1
q=0 χ2q) = [0, ω2[×[0, ω1/ı[ and H =

{id, δ, . . . , δ
n−1

, ξδ
m

, δξδ
m

, . . . , δ
n−1

ξδ
m}, for any m ∈ {0, . . . , n − 1}. For ex-

ample, in Figure 4 are represented the domain χ0 and its images under H in
the particular case ω3 = ω2/n. Lemma 7 is thus proved if k is even. The proof
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/(2n)

δ(χ) 2 (χ)
n−1

ηχ δδ

ω2

1ω

(χ)(χ)(χ)(χ) ηδ ηδ
n−1

ω2

Figure 4. χ0 = [0, ω2/(2n)[×[0, ω1/ı[ is a fundamental domain

is quite similar in case of odd k, so we omit it.

Corollary 8. — Suppose that ω2/ω3 ∈ N. Then the probability of being ab-

sorbed is equal to:

Pn0,m0 ((X, Y ) is absorbed) = h (1) + �h (1) + h00 = 1−
�

w∈ H

(−1)l(w)
fn0,m0 (w (1, 1)) ,

where fn0,m0(x, y) = x
n0y

m0 and the automorphisms of H are here defined by

using (7).

Proof. — The proof is simply based on the fact that the point lying over (1, 1)
belongs to [0, ω3/2]× [0, ω1/ı], so that Corollary 8 is an immediate consequence
of Proposition 6.

We can therefore easily calculate the probability of being absorbed for the
walks verifying ∆ = 0, since in this case the group is of order four and ω2/ω3 =
2. In particular, we find again Proposition 28 of [30]. Corollary 8 applies
also to the walk in the Weyl chamber of sl3(C), see the walk whose transition
probabilities are drawn in the middle of Figure 2, since in this case ω2/ω3 = 3.

In the general case, the probability of being absorbed, h00 + h(1) + h̃(1),
verifies the following inequality.

Proposition 9. — The probability of being absorbed can be bounded from

above and below as follows:

A/2 ≤ h00 + h(1) + �h(1) ≤ A,(12)

A =

Å
p1−1 + p0−1 + p−1−1

p11 + p01 + p−11

ãn0

+

Å
p−1−1 + p−10 + p−11

p11 + p10 + p1−1

ãm0

.
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Proof. — We begin by writing the following equality:

2
�
h00 + H (ω) + ‹H (ω)

�

= h00 + H (ξ (ω)) + ‹H (ξ (ω)) + h00 + H (η (ω)) + ‹H (η (ω))

+ H (ω)−H (η (ω)) + ‹H (ω)− ‹H (ξ (ω)) ,

obtained by using the invariance properties of H and H̃ claimed in Proposi-
tion 4. In particular, if ω ∈ [0, ω3/2]× [0, ω1/ı], then ξ(ω) and η(ω) belong to
ω ∈ [ω3/2, ω2] × [0, ω1/ı], so that using once again Proposition 4, we obtain
that 2(H(ω) + H̃(ω) + h00) is equal to:
(13)
x (ξ (ω))n0

y (ξ (ω))m0 + x (η (ω))n0
y (η (ω))m0 + H (ω)−H (η (ω)) + ‹H (ω)− ‹H (ξ (ω)) .

In particular, if we take ω lying over (1, 1), that belongs to [0, ω3/2]× [0, ω1/ı],
as said in the proof of Corollary 8, and if we use that for this ω, x(η(ω)) =
c(1)/a(1), y(ξ(ω)) = c̃(1)/ã(1), we obtain:

2
Ä
h00 + h (1) + �h (1)

ä
= A + h (1)− h (�c (1) /�a (1)) + �h (1)− �h (c (1) /a (1)) .

Then, using that c(1)/a(1) > 0 and c̃(1)/ã(1) > 0 (what implies that
h(c̃(1)/ã(1)) > 0 and h̃(c(1)/a(1)) > 0) allows to get the lower bound, and
using that c(1)/a(1) < 1 and c̃(1)/ã(1) < 1 (what is equivalent to the positivity
of the two drifts, in accordance with our assumption (M)), added to the fact
that h and h̃ are increasing, allows to get the upper bound.

3. Explicit form of the absorption probabilities generating functions

3.1. Riemann boundary value problem with shift. — Using the notations of Sub-
section 2.2, we define the two following curves:

(14) L = Y0

��
−−−→
x1, x2←−−−

��
, M = X0

��
−−−→
y1, y2←−−−

��
.

Just above, we use the notation of [9]:
�
−→
u, v
←−

�
stands for the contour [u, v]

traversed from u to v along the upper edge of the slit [u, v] and then back to u

along the lower edge of the slit.
In [9] is proved that the curves L and M are quartics, symmetrical w.r.t. the

real axis, closed and simple, included in C \ [y1, y2] ∪ [y3, y4] and C \ [x1, x2] ∪
[x3, x4] respectively.

The reason why we have introduced these curves appears now: the functions
h and h̃, defined in (2), verify the following boundary conditions on M and L:

∀t ∈ M : h (t)− h
�
t
�

= t
n0Y0 (t)m0 − t

n0
Y0

�
t
�m0

,(15)

∀t ∈ L : �h (t)− �h
�
t
�

= X0 (t)n0
t
m0 −X0

�
t
�n0

t
m0

.
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The way to obtain these boundary conditions is described in [9], so we refer to
this book for the details. The function h, as a generating function of probabil-
ities, is well defined on the closed unit disc and with Corollary 5 is continuable
into a meromorphic function on C\ [x3, x4], domain that contains the bounded
domain delimited by M. Now we have the problem to find h holomorphic inside

M, continuous up to the boundary M and verifying the boundary condition (15).
In addition h(0) = 0.

Problems with boundary conditions like (15) are called Riemann boundary
value problems with shift. The classical way to study this kind of problems
is to reduce them to Riemann-Hilbert problems, for which there exists a suit-
able and complete theory. The conversion between Riemann problems with
shift and Riemann-Hilbert problems is done thanks to the use of conformal
gluing functions, notion defined just above. For details about boundary value
problems, we refer to [23].

Definition 10. — Let C be a simple closed curve, symmetrical w.r.t. the real

axis. Denote by G C the interior of the bounded domain delimited by C . w

is called a conformal gluing function (CGF) for the curve C if (i) w is mero-

morphic in G C , continuous up to its boundary (ii) w establishes a conformal

mapping of G C onto the complex plane cut along a smooth arc U (iii) for all

t ∈ C , w(t) = w(t).

For the walks such that p10 + p−10 + p01 + p0−1 = 1, that we have studied
in [30], we easily see that L and M are simply the circles C(0, (p0−1/p01)1/2)
and C(0, (p−10/p10)1/2) and the functions p01t + p0−1/t and p10t + p−10/t are
proper CGF.

In the general case, it is very pleasant to notice that we still have the ex-
istence and even the explicit expression of suitable CGF for the curves L and
M. The following result is due to [9]. Define for t ∈ C

(16) w(t) = ℘1,3

�
−ω1 + ω2

2
+ x

−1 (t)
�

,

where the ωi, i = 1, 2, 3 are defined in (9), ℘1,3 is the classical Weierstrass
function associated to the periods ω1 and ω3, x

−1 is the reciprocal function
of the uniformization built in Subsection 2.3, we recall that it was x(ω) =
x4+d

�(x4)/(℘1,2(ω)−d
��(x4)/6) if x4 �= ∞ and x(ω) = (6℘1,2(ω)−d

��(0))/d
���(0)

if x4 = ∞, ℘1,2 being the Weierstrass function with periods ω1 and ω2.
Then w is single-valued and meromorphic on G M, continuous up to its

boundary and establishes a conformal mapping of the domain G M onto the
domain C \ U , where U = [w(X(y1)), w(X(y2))]. Moreover, on G M, w has one
pole of order one, it is at x2.
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Proposition 11. — Let M be the curve defined in (14). w, defined in (16),
is a CGF for M.

Proposition 11 and the different properties mentioned above it are proved
in [9]. Then, following Subsection 5.4 of this book—though making use of the
index lightly different—we obtain the following integral representation of the
function h.

Proposition 12. — Let M be the curve defined in (14) and Mu = M∩{t ∈ C :
Im(t) ≥ 0}. The function h admits in G M the following integral representation,

the function w being defined in (16):

h (x) =
1

2πı

�

Mu

�
t
n0Y0 (t)m0 − t

n0
Y0

�
t
�m0

�Å w
� (t)

w (t)− w (x)
− w

� (t)

w (t)− w (0)

ã
dt.

3.2. Integral representation of the generating functions. — In this subsection, we
simplify the integral representation of h obtained in Proposition 12 for several
reasons: indeed, this formulation does not highlight the singularities of h and
hardly allows to obtain the asymptotic of the absorption probabilities, further-
more it makes appear h asymmetrically as an integral on Mu. Before stating,
in Theorem 13, the final result, we give the definition:

(17) µm0 (t) =
1

(2a (t))m0

�(m0−1)/2��

k=0

Ç
m0

2k + 1

å
d (t)k (−b (t))m0−(2k+1)

.

The function µm0 is such that for all t ↓ [x1, x2] (resp. t ↑ [x1, x2]),Y0(t)m0 −
Y0(t)m0 is equal to −2ı(−d(t))1/2

µm0(t) (resp. 2ı(−d(t))1/2
µm0(t)).

Theorem 13. — The function h admits, on G M, the following integral repre-

sentation:

(18)

h (x) = x
n0Y0 (x)m0 +

1

π

� x2

x1

t
n0µm0 (t)

Å
w
� (t)

w (t)− w (x)
− w

� (t)

w (t)− w (0)

ã»
−d (t)dt.

where the function w is defined in (16), µm0 in (17).

The function h appears in (18) at the first sight as the sum of a function
holomorphic on C \ [x1, x2] ∪ [x3, x4] and an other function holomorphic on
C \ {w−1(w([x1, x2])) ∪ [x3, x4]}, set that is included in C \ [x1, x2] ∪ [x3, x4].
We will later split this representation into two terms (25) and (26), where the
first one is holomorphic in [x1, x2] by Lemma 18 and the second one is also
holomorphic in [x1, x2] by (30) and (32), so that this representation gives in
fact that h is holomorphic in the neighborhood of [x1, x2], what we already
knew, since Lemma 1 implies that x1 and x2 lye in the unit disc.
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Proof. — We start by expressing the integral obtained in Proposition 12 as an
integral on a closed contour, namely M. Making the change of variable t �→ t

and using that on M, w(t) = w(t), we obtain

(19) h (x) =
1

2πı

�

M
t
n0Y0 (t)m0

Å
w
� (t)

w (t)− w (x)
− w

� (t)

w (t)− w (0)

ã
dt.

Then we transform (19) into an integral on the cut [x1, x2]. To do this,
start by remarking that the function of two variables (t, x) �→ w

�(t)/(w(t) −
w(x))− (x2−x)/((x2− t)(t−x)) is continuable into a holomorphic function in
G M

2. This property comes from the fact that w is one to one in G M and has a
pole of order one at x2. In particular, the function φ, initially well defined on
G M

2 \ {(y, y) : y ∈ G M} by

(20) φ (t, x) =
w
� (t)

w (t)− w (x)
− w

� (t)

w (t)− w (0)
− x

t (t− x)
,

is continuable into a holomorphic function in G M
2, again denoted by φ.

Consider now the contour H � = M�∪ S1
�∪ S2

�∪ C1
�∪ C2

�∪ D1
�∪ D2

� , represented
in Figure 5.

ε

X(y  )1 X(y  )2x x 21

M
ε

S S 21
ε ε

D D1 1
εε

1
ε

C C 2
ε

2D

Figure 5. Contour of integration

A consequence of the holomorphy of φ in G M
2 is that for all x ∈ G M:

�

H �

t
n0Y0 (t)m0

φ (t, x) dt = 0.

In particular, letting � → 0 and using the definition of µm0 given in (17), we
obtain that:

(21)
1

2πı

�

M
t
n0Y0 (t)m0

φ (t, x) dt =
1

π

� x2

x1

t
n0µm0 (t) φ (t, x) dt.
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Furthermore, the residue theorem implies that for all x in the bounded domain
delimited by H �:

1

2πı

�

H �

t
n0−1

Y0 (t)m0

t− x
dt = x

n0−1
Y0 (x)m0

.

So, letting � → 0 and using the definition of µm0 yield:

(22)
1

2πı

�

M

t
n0−1

Y0 (t)m0

t− x
dt = x

n0−1
Y0 (x)m0 +

1

π

� x2

x1

t
n0−1

µm0 (t)

t− x
dt.

Note that to obtain (21) and (22) we have used that the integral on S1
� ∪ S2

�

of a function holomorphic in the neighborhood of S1
� ∪ S2

� goes to zero with �,
since the two contours S1

� and S2
� get closer of the same contour but covered

in the two opposite directions. For C1
� and C2

� , we have used that the integral
of a function integrable goes to zero as the length of the contour goes to zero.
Finally, Theorem 13 follows from (20), (21) and (22).

In the particular case ∆ = 0 and x4 > 0, we can quite simplify the integral
representation found in Theorem 13. We have the following result, already
mentioned but not proved in [30]:

Proposition 14. — Suppose that ∆ = 0 and that x4 > 0. Then we have the

equality:

(23)

h (x) =
x

π

� x4

x3

(tn0 − σ (t)n0)
µm0 (t)

t (t− x)

»
−d (t)dt + xP∞

�
x �→ x

n0−1
Y0 (x)m0

�
(x) ,

where if f is a function meromorphic at infinity, P∞(f) denotes the principal

part at infinity of f , that is to say the polynomial part of the Laurent expansion

at infinity of f , σ(t) = (l1 + l2)/2 + ((l2 − l1)/2)2/(t− (l1 + l2)/2), l1 < 0 and

l2 > 0 being the roots of the second degree polynomial b(x)a�(x)− b
�(x)a(x). In

particular, the probabilities of absorption are in this case easily made explicit,

by expanding in (23) 1/(t− x) according to the powers of x.

The proof of Proposition 14 is postponed to the end of Section 4, since
necessary notations introduced there and some facts shown in the proofs of
Lemmas 18 and 19 will shorten it.

Of course, by a similar analysis, we obtain integral representations of the
function h̃. Also, to get the quantity h00-–as yet unknown—we evaluate Equa-
tion (4) at some (x, y) in {(x, y) ∈ C2 : |x| < 1, |y| < 1, Q(x, y) = 0}, for
example (1− �, Y0(1− �)), where � is small enough, see Lemma 2.
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4. Asymptotic of the absorption probabilities

In this part, we will study the asymptotic of the absorption probabilities,
defined in (1). For that purpose we need to study the properties of the function
w defined in (16), notably in relation with the finiteness of the group H : we
will have to distinguish the cases for which ω2/ω3 ∈ N from the other cases.

Proposition 15. — The function w, defined on G M by (16), can be contin-

ued ; this continuation is meromorphic on C if ω2/ω3 ∈ N, meromorphic on

C \ [x3, x4] and algebraic in the neighborhood of [x3, x4] if ω2/ω3 /∈ N. In every

case, w has a simple pole at x2 and �ω2/(2ω3)� double poles at points lying in

]x2, x3[∩(C \ G M). The behavior of w at x3 depends strongly on the group H :

(i) Suppose first that ω2/ω3 ∈ 2N. Then w has a simple pole at x3.

(ii) Suppose now that ω2/ω3 ∈ 2N + 1. Then w is holomorphic at x3.

(iii) Suppose at last that ω2/ω3 /∈ N. Then w has an algebraic singularity at

x3, and more precisely in the neighborhood of x3, w can be written as

w1(t) + w2(t)(x3 − t)1/2
, where w1 and w2 are holomorphic functions in

the neighborhood of x3 and w2(x3) �= 0.

Proof. — The explicit formula (16) of w shows that we have to study the
reciprocal function of the uniformization x(ω). With Subsection 2.3 we get
x(ω) = t if and only if ℘1,2(ω) = f(t), where if x4 �= ∞ then f(t) = d

��(x4)/6+
d
�(x4)/(t − x4) and if x4 = ∞ then f(t) = (d��(0) + d

���(0)t)/6. Moreover,
by construction, in both cases, f(X(y1)) = ℘1,2((ω2 + ω3)/2), f(X(y2)) =
℘1,2((ω1 + ω2 + ω3)/2), f(x1) = ℘1,2(ω2/2), f(x2) = ℘1,2((ω1 + ω2)/2) and
f(M) = ℘1,2([(ω2 + ω3)/2, (ω2 + ω3)/2 + ω1]). In particular, f is an automor-
phism of C and maps G M onto ]ω2/2, ω2/2 + ω3/2[×]0, ω1/ı[, see Figure 3.

Recall that on a fundamental parallelogram [0, ω2[×[0, ω1/ı[, ℘1,2 takes each
value twice. Also, in [0, ω2/2[×[0, ω1/ı[ or in [ω2/2, ω2[×[0, ω1/ı[ ℘1,2 is one
to one. For these reasons and since ω3 < ω2, we obtain the existence of a
function t �→ ω(t) defined on C, two-valued for t ∈ R \ [x2, x3], one-valued
everywhere else, that verifies, for all t ∈ C, ℘1,2(ω(t)) = f(t) ; moreover ω(C) =
[ω2/2, ω2]× [0, ω1/ı].

We show now that though ω is two-valued on R \ [x2, x3], w is single-valued
on C \ [x3, x4]. We do this by studying precisely the equation ℘1,2(ω) = f(t)
at points t where it has more than one solution:

– For t ∈ [x4, x1], the two values of ω(t), say ω1(t) and ω2(t), verify: ω1(t) ∈
[ω2/2, ω2], ω2(t) ∈ [ω1 + ω2/2, ω1 + ω2] and ω2(t)− ω1(t) = ω1.

– For t ∈ [x1, x2], the two values of ω(t) are such that: ω1(t), ω2(t) ∈
[ω2/2, ω2/2 + ω1] and ω1(t)− (ω1/2 + ω2/2) = (ω1/2 + ω2/2)− ω2(t).

– For t ∈ [x3, x4], the two values of ω(t) verify: ω1(t), ω2(t) ∈ [ω2, ω2 + ω1]
and ω1(t)− ω2/2 = ω2/2− ω2(t).
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Using respectively the facts that ℘1,2 is even and ω1 periodic, w is in fact
single-valued on [x1, x2] and [x4, x1] respectively, hence on C \ [x3, x4].

To show that w has a simple pole at x2, we can for instance use an explicit
expression of ω(t). For example, for all t ∈ [x2, X(y2)],

ω (t) =
ω1 + ω2

2
+

� f(t)

f(x2)

dz�
4 (z − f (x1)) (z − f (x2)) (z − f (x3))

.

Making an expansion of this quantity in the neighborhood of zero, using that
℘1,3(ω) = 1/ω

2 + O(ω2) and that ℘1,3 is even on C, as well as (16), we obtain
that

w (t) =
(f (x1)− f (x2)) (f (x2)− f (x3))

f � (x2) (x2 − t)
+ �w(t),

where ŵ is holomorphic in the neighborhood of x2.
We will now study the behavior of the function w in the neighborhood of x3.

Define R = [0, ω3] × [−ω1/(2ı), ω1/(2ı)] and note that ω(C) − (ω1 + ω2)/2 =
[0, ω2/2]× [−ω1/(2ı), ω1/(2ı)].

We will consider separately the three cases ∆ = 0, ∆ < 0 and ∆ > 0. First
of all let us show that ∆ < 0 (resp. ∆ = 0, ∆ > 0) implies ω3 > ω2/2 (resp.
ω3 = ω2/2, ω3 < ω2/2). We already know from Subsections 2.3 and 2.4 that
∆ = 0 is equivalent to ω2/ω3 = 2. As a consequence, we obtain that to prove
that ∆ < 0 (resp. ∆ > 0) is equivalent to ω3 > ω2/2 (resp. ω3 < ω2/2), it
suffices to prove that there exists one walk verifying simultaneously ∆ < 0 and
ω3 > ω2/2 (resp. ∆ > 0 and ω3 < ω2/2). Indeed, using the continuity of ω2,
ω3 and ∆ w.r.t. the parameters pij and the intermediate value theorem, we
obtain the results for all walks. We have already seen that the second walk of
Figure 2 (i.e. p−11 + p10 + p0−1 = 1) is such that ω2/ω3 = 3. Moreover, in this
case, ∆ = p−11p10p0−1 > 0. Also, we can verify by a direct calculation starting
from (9) that the walk p−1−1 + p10 + p01 = 1 verifies ω2/ω3 = 3/2 ; moreover,
for this walk ∆ = −p−1−1p10p01 < 0.

(i) Suppose that ∆ = 0. Then ω2/ω3 = 2 and R = ω(C) − (ω1 + ω2)/2, so
that by the same analysis as the one done just above for x2, we find that w has
a pole of order one at x3.

(ii) Suppose now that ∆ < 0. Then ω3 > ω2/2 and ω(C) − (ω1 + ω2)/2 is
strictly included in R, in such a way that w has no poles except at x2 and is
two-valued on [x3, x4], for any (finite or infinite) order of the group H .

(iii) Suppose at last that ∆ > 0. This implies ω3 < ω2/2, thus ω(C)− (ω1 +
ω2)/2 contains strictly R. Moreover, we can write, with n = �ω2/ (2ω3)�:

ω (C)− ω1 + ω2

2
=

n−1�

k=0

(kω3 + R) ∪ �R, �R = [nω3/2, ω2/2]× [−ω1/ (2ı) , ω1/ (2ı)] .
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This equality, added to the fact that ℘1,3 has, on the fundamental parallel-
ogram [0, ω3[×[0, ω1/ı[, only one pole, at zero and of order two, shows that w

has �ω2/(2ω3)� double poles at points lying in ]x2, x3[∩(C \ G M).
Consider the particular case ω2/ω3 ∈ 2N. Then the rectangle R̂ is reduced

to one point and ω([x3, x4])− (ω1 + ω2)/2 is congruent to [−ω1/(2ı), ω1/(2ı)],
so that for the same reasons as in the case ∆ = 0, we see that w has a simple
pole at x3.

Consider next the other particular case ω2/ω3 ∈ 2N + 1. Then ω([x3, x4])−
(ω1 + ω2)/2 is congruent to ω3/2 + [−ω1/(2ı), ω1/(2ı)], in the neighborhood of
which ℘1,3 is holomorphic, so w has no pole at x3 in this case.

If ω2/ω3 /∈ N, then ω([x3, x4])− (ω1 + ω2)/2 is congruent neither to ω3/2 +
[−ω1/(2ı), ω1/(2ı)] nor to [−ω1/(2ı), ω1/(2ı)], in particular w has no pole at x3.

Consider now more global aspects and show that w is meromorphic on C if
and only if ω2/ω3 ∈ N.

Recall from the beginning of the proof that for t ∈ [x3, x4], the two values of
ω(t) are such that ω1(t), ω2(t) ∈ [ω2, ω2 + ω1] and ω1(t)−ω2/2 = ω2/2−ω2(t).
In addition, we have shown just above that if ω2/ω3 ∈ 2N (resp. ω2/ω3 ∈
2N+1), then ω([x3, x4])−(ω1 +ω2)/2 is congruent to [−ω1/(2ı), ω1/(2ı)] (resp.
ω3/2 + [−ω1/(2ı), ω1/(2ı)]). But ω �→ ℘1,3(ω) and ω �→ ℘1,3(ω3/2 + ω) are
even functions, so that in both cases w is single-valued and meromorphic in
the neighborhood of [x3, x4].

Suppose now that ω2/ω3 /∈ N. Since ω(x3) = ω1/2 + ω2, then w(t) =
℘1,3(ω2/2 + (ω(t)− ω(x3))). On the other hand, if ω is close to zero, we have:

℘1,3 (ω2/2 + ω) = ℘1,3 (ω2/2)+
+∞�

k=1

℘
(2k)
1,3 (ω2/2)

(2k)!
ω

2k +ω

+∞�

k=0

℘
(2k+1)
1,3 (ω2/2)

(2k + 1)!
ω

2k
.

Also, by a similar calculation as the one done when we have studied the behavior
of w in the neighborhood of x2, we obtain:

ω (t)− ω (x3) =

� f(x3)

f(t)

dz�
(z − f (x1)) (z − f (x2)) (z − f (x3))

= −
Å −f

� (x3) (x3 − t)

4 (f (x3)− f (x2)) (f (x3)− f (x1))

ã1/2

(1 + (t− x3) w̌ (t)) ,

where w̌ is holomorphic in a neighborhood of x3. Thus, in a neighborhood of
x3, we can write w(t) as the sum w(t) = w1(t) + w2(t)(x3 − t)1/2, where w1

and w2 are holomorphic in a neighborhood of x3 and

w1 (x3) = ℘1,3 (ω2/2) ,(24)

w2 (x3) = −
Å −f

� (x3)

4 (f (x3)− f (x2)) (f (x3)− f (x1))

ã1/2

℘
�
1,3 (ω2/2) .
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This closes the proof of Proposition 15.

Remark 16. — As a consequence of Proposition 15, the CGF w is a rational

function in the particular cases ω2/ω3 ∈ N. The theory of transformation of

elliptic functions gives a constructive way to write the expression of w on C.

Indeed, if we note ℘1,2,n the Weierstrass function associated to the periods ω1

and ω2/n, then the following formula, that can be found in [31],

℘1,2,n (ω) =
n−1�

k=1

�
℘1,2 (ω + kω2/n)− ℘1,2 (kω2/n)

�
+ ℘1,2 (ω) ,

allows to express ℘1,3(ω) in terms of ℘1,2(ω) and ℘
�
1,2(ω), using also addition

formulas for the Weierstrass function ℘1,2. In practice, that is what we use.

For instance, after some calculations, this method gives a suitable CGF for the

second walk of Figure 2, with transition probabilities verifying p−11 + p10 +
p0−1 = 1:

w (t) =
t

(t− x2)
Ä
t− (p−11p0−1/ (p2

10x2))
1/2

ä2 .

We are now ready to state and prove the main result of Section 4 on the
asymptotic of the absorption probabilities.

Notation. — Throughout the whole paper, for two sequences (ak)k and (bk)k

we will write ak ∼k→+∞ bk or ak ∼ bk if limk→+∞ ak/bk = 1.

Theorem 17. — We recall that for k ∈ N∗
, hk denotes P(n0,m0) (to be ab-

sorbed at (k, 0)).

Suppose first that p11 + p−1−1 + p1−1 + p−11 < 1.
• If ω2/ω3 ∈ 2N, then hk ∼k→+∞ h1,k+h2,k, h1,k and h2,k being defined in (27)
and (28).
• If ω2/ω3 ∈ 2N + 1, then hk ∼k→+∞ h1,k, h1,k being defined in (27).
• If ω2/ω3 /∈ N, then hk ∼k→+∞ h1,k +h2,k, h1,k and h2,k being defined in (27)
and (29).

Suppose now that p11 + p−1−1 + p1−1 + p−11 = 1.
• If k and n0 + m0 don’t have the same parity, then hk = 0, since (k, 0) is not

reachable.

• If they have the same parity, then we obtain the asymptotic of hk by multi-

plying by two the one of hk in the case p11 + p−1−1 + p1−1 + p−11 < 1, and this

in the three cases ω2/ω3 ∈ 2N, ω2/ω3 ∈ 2N + 1 and ω2/ω3 /∈ N.

tome 139 – 2011 – no 3



RANDOM WALKS IN (Z+)2 WITH NON-ZERO DRIFT 365

By Theorem 13 and thanks to (20), h can be split as h = h1 + h2, where

h1 (x) = x
n0Y0 (x)m0 +

x

π

� x2

x1

t
n0−1

µm0 (t)

t− x

»
−d (t)dt,(25)

h2 (x) =
1

π

� x2

x1

t
n0φ (t, x) µm0 (t)

»
−d (t)dt.(26)

Theorem 17 is an immediate consequence of Lemmas 18 and 19 below on the
asymptotic behavior of Taylor coefficients of h1 and h2 respectively.

Lemma 18. — The function h1, initially defined in C\[x1, x2]∪[x3, x4] by (25),
admits a holomorphic continuation in C \ [x3, x4]. We still note h1 the con-

tinuation of this function and we set h1(x) =
�+∞

k=0 h1,kx
k
. Suppose first that

p11 + p−1−1 + p1−1 + p−11 < 1 ; then

(27) h1,k ∼
m0x

n0+1/2
3

4
√

π

Å −d
� (x3)

a (x3) c (x3)

ã1/2 Å
c (x3)

a (x3)

ãm0/2 1

k3/2xk
3

, k →∞.

Suppose now that p11 +p−1−1 +p1−1 +p−11 = 1 ; then the process can hit (k, 0)
if and only if k and n0 + m0 have the same parity. Therefore hk = 0 if k and

n0 + m0 don’t have the same parity. If they have the same parity, then h1,k is

equivalent to two times the right member of (27).

Lemma 19. — The function h2, defined in (26), is holomorphic in C \
(w−1([x1, x2]) \ [x1, x2]) and we set h2(x) =

�+∞
k=0 h2,kx

k
. Suppose first that

p11 + p−1−1 + p1−1 + p−11 < 1 ; in addition,

(i) If ω2/ω3 ∈ 2N, then:

(28)

h2,k ∼ −
m0x

n0
2 x

1/2
3

4
√

π

Å
d
� (x2)

a (x2) c (x2)

ã1/2 Å
−Res (w, x2)

Res (w, x3)

ã1/2 Å
c (x2)

a (x2)

ãm0/2 1

k3/2xk
3

,

k →∞, where for i = 2, 3, Res(w, xi) denotes the residue of the function

w at xi, where from Proposition 15 it has a pole (of order one).

(ii) If ω2/ω3 ∈ 2N + 1, then h2,k = o(h1,k).
(iii) If ω2/ω3 /∈ N, then the following asymptotic holds as k goes to infinity:

(29)

h2,k ∼
√

x3℘
�
1,3 (ω2/2)

�
−f � (x3)�

π (f (x3)− f (x2)) (f (x3)− f (x1))

Ç� x2

x1

w
� (t) t

n0µm0 (t)
�
−d (t)

(w (t)− ℘1,3 (ω2/2))2
dt

å
1

k3/2xk
3

,

where if x4 �= ∞ then f(t) = d
��(x4)/6 + d

�(x4)/(t − x4) and if x4 = ∞
then f(t) = (d��(0) + d

���(0)t)/6.

Suppose now that p11 + p−1−1 + p1−1 + p−11 = 1 ; if k and n0 + m0 don’t have

the same parity, then h2,k = 0. If they have the same parity and if ω2/ω3 ∈ 2N
(resp. ω2/ω3 ∈ 2N+1, ω2/ω3 /∈ N), then the asymptotic of h2,k is given by two
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times the right member of (28) (resp. is negligible w.r.t. (27), is given by two

times the right member of (29)).

Proof of Lemma 18. — Suppose first that x4 > 0. Apply the residue theorem
at infinity on the contour C �, represented at the left of Figure 6. So we obtain
that for all x inside the infinite domain delimited by C �,

1

2πı

�

C�

t
n0−1

Y0 (t)m0

t− x
dt = x

n0−1
Y0 (x)m0 − P∞

�
x �→ x

n0−1
Y0 (x)m0

�
(x) ,

where P∞(x �→ x
n0−1

Y0(x)m0) is the principal part at infinity of the meromor-
phic function at infinity x �→ x

n0−1
Y0(x)m0 , see Proposition 14 for more details

about the principal part at infinity of a function. Furthermore, by definition
of µm0 ,

lim
�→0

1

2πı

�

C�

t
n0−1

Y0 (t)m0

t− x
dt

=− 1

π

� x2

x1

t
n0−1

µm0 (t)
�
−d (t)

t− x
dt +

1

π

� x4

x3

t
n0−1

µm0 (t)
�
−d (t)

t− x
dt.

Therefore the function h1 is just equal to:
(30)

h1 (x) =
x

π

� x4

x3

t
n0−1

µm0 (t)
�
−d (t)

t− x
dt + xP∞

�
x �→ x

n0−1
Y0 (x)m0

�
(x) .

Moreover, thanks to Lemma 2, we obtain that the degree of the polynomial
defined by the principal part above is equal to n0 if p1−1 �= 0, −∞ if p1−1 = 0
and n0 ≤ m0, n0−m0 if p1−1 = 0 and n0 > m0. In any case, if k is larger than
this degree, then the following equality holds:

(31) h1,k =
1

π

� x4

x3

µm0 (t)
�
−d (t)

tk+1−n0
dt.

We can then easily obtain the asymptotic of this integral as k goes to infin-
ity, using Laplace’s method, see e.g. [6] page 275. We make an expansion of
the numerator of the integrand in (31) in the neighborhood of x3, we obtain
µm0(t)(−d(t))1/2 = µm0(x3)(−d

�(x3))1/2(t− x3)1/2 + (t− x3)3/2
f(t), where f

is holomorphic at x3. Classically, the second term in the previous sum will lead
to a negligible contribution, so to get (27), it suffices therefore to use one hand
that � x4

x3

√
t− x3

tk
dt =

√
π

2

1

x
k−3/2
3

1

k3/2
+ O

Å
1

k5/2

ã
,

and on an other hand to simplify µm0(x3), using for this (17) and the fact that
d(x3) = 0.

tome 139 – 2011 – no 3



RANDOM WALKS IN (Z+)2 WITH NON-ZERO DRIFT 367

4

ε
C

x x x1 2 3 x

R

x x x x1 2 34

C
ε, R

−

+

C
ε,

Figure 6. Contours of integration in the cases x4 > 0 and x4 < 0 respectively

Suppose now that x4 < 0 and suppose in addition that p11 +p−1−1 +p1−1 +
p−11 < 1. In this case, Y0 is no more meromorphic at infinity and has no
principal part at infinity, the previous argument does not run anymore. How-
ever, we will show that the asymptotic (27) is still correct. To that purpose, fix
R > −x4 and apply the classical residue theorem on the contour C �,R described
in the right side of Figure 6. After that � has gone to zero, we obtain

x
n0−1

Y0(x)m0 = − 1

π

� x2

x1

t
n0−1

µm0 (t)
�
−d (t)

t− x
dt(32)

+
1

π

� R

x3

t
n0−1

µm0 (t)
�
−d (t)

t− x
dt + fR (x) ,

where fR is defined by:

fR (x) =
1

2πı

�

C(0,R)

t
n0−1

Y0 (t)m0

t− x
dt +

1

π

� x4

−R

t
n0−1

µm0 (t)
�
−d (t)

t− x
dt,

The first (resp. the second) Cauchy-type integral in the sum defining fR is
holomorphic in the disc D(0, R) (resp. D(0,−x4)) so that fR is holomorphic in
D(0,−x4). Moreover, since we have supposed p11 + p−1−1 + p1−1 + p−11 < 1,
Lemma 1 yields x3 < −x4. In particular, this implies that, as k goes to
infinity, the kth coefficient of the Taylor series at zero of fR is o(1/r

k), where
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x3 < r < −x4. These coefficients will be therefore negligible w.r.t. those of

1

π

� R

x3

t
n0−1

µm0 (t)
�
−d (t)

t− x
dt.

We calculate the asymptotic of the coefficients of the function above using
Laplace’s method, as in the case x4 > 0, the asymptotic (27) is thus still valid.

If p11 + p−1−1 + p1−1 + p−11 = 1 (which implies, see Lemma 1, that x4 =
−x3 < 0), then the process can reach (k, 0) if and only if k and n0 + m0 have
the same parity. In particular, if k and n0 + m0 don’t have the same parity
then hk = 0. Besides, we can show that in this case h1,k = 0, using that
[x4, x1] = [−x3,−x2] and the fact that Y0, Y1 and w are odd functions. If
they have the same parity, then the asymptotic of the coefficients of fR is no
more negligible: indeed, thanks to Lemma 1, x3 = −x4 and after the use of
µm0(−t) = (−1)m0−1

µm0(t), see (17), we obtain:
(33)

1

π

� x4

−R

t
n0−1

µm0 (t)
�
−d (t)

t− x
dt =

(−1)n0+m0

π

� R

x3

t
n0−1

µm0 (t)
�
−d (t)

t + x
dt.

For this reason, if k and n0+m0 have the same parity, we obtain that the asymp-
totic of h1,k is given by two times (27), using once again Laplace’s method.

Proof of Lemma 19. — This proof is based on the following principle, known
as Pringsheim Theorem: the asymptotic of the coefficients of a Taylor series at
0 can be found starting from the precise knowledge of the first singularity of
this Taylor series ; here “the first singularity" means the singularity the nearest
in modulus from zero. So we have to find the first singularity of the function
h2, defined in (26). To do this, we have to find the singularities of the function
φ, defined in (20), that appears in the integral defining h2. Grosso modo, φ,
as a function of two variables, can have singularities of two different kinds:
either they are fixed in the sense that for all t (resp. all x) the function φ of
the variable x (resp. t) has the same singularities, and in this case the set of all
the singularities can be written as a direct product, or they are movable in the
sense that the set of the singularities can not be written as a direct product.
In our case, according to w is meromorphic or not, these two possibilities can
arise, eventually simultaneously. Indeed, if w is not meromorphic, x3 will be a
fixed singularity of φ, hence also a singularity of h2, and {(t, x) ∈ C2 : w(t) =
w(x)} \ {(y, y) : y ∈ C} is the set of movable singularities of φ ; in particular if
we define x̂ = inf{x ∈]x2,+∞[: w(x) ∈ w([x1, x2])}, then inf{x3, x̂} is the first
singularity of h2.

In our case, we will show that if ω2/ω3 ∈ 2N, then x̂ = x3, and if ω2/ω3 ∈
2N + 1 or ω2/ω3 /∈ N, then x̂ > x3.
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We first suppose that p11 + p−1−1 + p1−1 + p−11 < 1 and we will say at the
end of the proof how to adapt our arguments to the walks having transition
probabilities such that p11 + p−1−1 + p1−1 + p−11 = 1.

Suppose first that ω2/ω3 ∈ 2N. In this case, we obtain lim
x

>→x2
w(x) =

lim
x

<→x3
w(x) = −∞, thanks to Proposition 15. More generally, from Propo-

sition 15 and its proof we deduce that there exists a holomorphic function σ

defined at least in a neighborhood of [x2, x3] such that σ ◦ σ = id, σ(x3) = x2

and w ◦ σ = w.
In addition, we have already seen that the function (t, x) �→ w

�(t)/(w(t) −
w(x))− (x2 − x)/((x2 − t)(t− x)) is holomorphic in G M

2, in particular in the
neighborhood of (x2, x2) and more generally in the neighborhood of {(y, y) :
y ∈ G M}, but it is not holomorphic at (x2, x3) and in fact is not holomorphic
at every point of {(y, σ(y)) : y ∈ G M}. On the other hand, the function
(t, x) �→ w

�(t)/(w(t)−w(x))− (x2− x)/((x2− t)(t− x))− σ
�(t)(x3− x)/((x3−

σ(t))(σ(t) − x)) is holomorphic in the neighborhood of {(y, σ(y)) : y ∈ G M}.
This is why the function

(34) �φ (t, x) = φ (t, x)− σ
� (t) x

σ (t) (σ (t)− x)

is holomorphic in a neighborhood of [x1, x2]×{x ∈ C : |x| < R} where R > x3

and in particular for all t ∈ [x1, x2], x �→ φ̂(t, x) is holomorphic on {x ∈ C :
|x| < R}. Therefore, the kth coefficient of the Taylor series at zero of the
function

1

π

� x2

x1

�φ (t, x)µm0 (t) t
n0

»
−d (t)dt

is o(1/R
k) with R > x3 ; in particular it is exponentially negligible w.r.t. to

(27) and (28). In other words, it remains to evaluate the contribution of the
coefficients of g2, defined by

g2 (x) =
x

π

� x2

x1

σ
� (t) µm0 (t) t

n0

σ (t) (σ (t)− x)

»
−d (t)dt(35)

= −x

π

� σ(x1)

x3

σ (t)n0
µm0 (σ (t))

t (t− x)

»
−d (σ (t))dt,

where the second equality above comes from the change of variable u = σ(t).
Then, we apply Laplace’s method, and we will obtain (28) as soon as we
will have proved that σ

�(x3) = Res(w, x2)/Res(w, x3). To do this, start
by differentiating the equality w(t) = w(σ(t)), we obtain that σ

�(x3) =
limx→x3 w

�(t)/w
�(σ(t)), what implies σ

�(x3) = limx→x3 Res(w, x3)(σ(t) −
x2)2/(Res(w, x2)(t − x3)2). Since σ

�(x3) �= 0 it follows that σ
�(x3) =

Res(w, x2)/Res(w, x3).
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Suppose now that ω2/ω3 ∈ 2N + 1. In this case, since w has a pole at x2

but is holomorphic at x3 by Proposition 15, the function φ is continuous on
[x1, x2]×{x ∈ C : |x| < R} where R > x3 and for all t ∈ [x1, x2], x �→ φ(t, x) is
holomorphic on {x ∈ C : |x| < R}. This is why the kth coefficient of the Taylor
series at zero of h2 is in this case o(1/R

k), with R > x3, that is, in particular
h2,k = o(h1,k)

Consider now the general case, namely ω2/ω3 /∈ N. In Proposition 15, we
have shown that in the neighborhood of x3, w can be written as w1(x) +
w2(x)(x3 − x)1/2, where w1 and w2 are functions holomorphic at x3, and their
values at x3 are made explicit in (24). In particular, in the neighborhood of
x3, we can write h2(x) = f(x) + g(x)(x3 − x)1/2, with f and g holomorphic in
the neighborhood of x3, and with (26),

(36) g (x3) =
w2 (x3)

π

� x2

x1

w
� (t)

(w (t)− w (x3))
2 t

n0µm0 (t)
»
−d (t)dt.

We can now easily find the asymptotic of the coefficients of the Taylor se-
ries at 0 of the function h2, following Pringsheim Theorem, mentioned at the
beginning of the proof and summarized below: if F (z) =

�
k ckz

k is a func-
tion (i) holomorphic in the open disc of radius r (ii) having a holomorphic
continuation at every point of the circle of radius r except r (iii) having at r

an algebraic singularity in the sense that in the neighborhood of r, F can be
written as F (z) = F0(z) +

�d
i=1 Fi(z)(1− z/r)θi where the Fi, i ≥ 0, are holo-

morphic functions in the neighborhood of r, not vanishing at r for i ≥ 1, the
θ1 < · · · < θd are rational but not integer, then the asymptotic of the coefficients
of the Taylor series at 0 can easily be calculated: ck ∼ F1(r)rk

/(Γ(−θ1)kθ1+1)
as k → +∞, Γ being the classical Gamma function.

So, using Pringsheim Theorem with F = h2-–thanks to Corollary 5, or from
the current proof, h2 is continuable holomorphically through every point of the
circle C(0, x3) except x3 ; this is here that we use the hypothesis p11 +p−1−1 +
p1−1 + p−11 < 1: indeed, under this assumption, h2 is holomorphic at −x3,
F1 = g, r = x3, F1(r) = g(x3) written in (36), θ1 = 1/2 and using the fact that
Γ(−1/2) = −2

√
π, we get immediately the announced asymptotic.

Suppose now that p11 + p−1−1 + p1−1 + p−11 = 1, and note that for these
walks, we can equally have ω2/ω3 ∈ 2N, ω2/ω3 ∈ 2N+1 or ω2/ω3 /∈ N. In fact,
as in the proof of Lemma 18, we have, as well as the contribution of the point
x3, to take under account the one of the point x4, equal in this case to −x3. So
we do the same analysis, but then we have in addition a term like (35) or (36)
with x4 instead x3. By doing the change of variable t �→ −t, as in (33), we
obtain that if k and n0 + m0 don’t have the same parity, then the contribution
is zero, and if they have, then the asymptotic of h2,k is given by two times (29),

tome 139 – 2011 – no 3



RANDOM WALKS IN (Z+)2 WITH NON-ZERO DRIFT 371

using once again Laplace’s method and an adaptation of Pringsheim Theorem
for odd and even functions.

Remark 20. — If ω2/ω3 ∈ 2N + 1, then ω2/2 is congruent to ω3/2 and in

particular ℘
�
1,3(ω2/2) vanishes, what proves differently that there is in this case

a negligible contribution of the integral (26) to the asymptotic of the coefficients

of h.

Theorem 17 can be summarized as follows.

Proposition 21. — The absorption probabilities hi admit the following

asymptotic as i goes to ∞:

hi ∼
(−x3d

� (x3))
1/2

4π1/2a (x3)

ñ
m0

Å
c (x3)

a (x3)

ã(m0−1)/2

x
n0
3 − �h�

ÇÅ
c (x3)

a (x3)

ã1/2
åô

1

i3/2xi
3

.

Proof. — We chose to do the proof in the general case, namely ω2/ω3 /∈ N,
since the ideas of the proof in the cases ω2/ω3 ∈ 2N and ω2/ω3 ∈ 2N + 1 are
rather similar.

We will need the following consequence of Proposition 4 and Corollary 5:
for all x ∈ C \ [x3, x4],

(37) h (x) = x
n0Y0 (x)m0 − �h (Y0 (x))− h00.

Then, use one hand the explicit expression of h, given in (18) of Theorem 13,
and on the other hand (37) just above. We obtain:

�h (Y0 (x))+h00 = − 1

π

� x2

x1

t
n0µm0 (t)

Å
w
� (t)

w (t)− w (x)
− w

� (t)

w (t)− w (0)

ã»
−d (t)dt.

Differentiating this equality w.r.t. x, we get:

�h� (Y0 (x)) = −w
� (x)

Y
�
0 (x)

1

π

� x2

x1

t
n0µm0 (t)

w
� (t)

(w (t)− w (x))2

»
−d (t)dt.

Since we have supposed ω2/ω3 /∈ N, we know from Proposition 15 that w

has at x3 an algebraic singularity, so that we can write w as the sum w(x) =
w1(x)+w2(x)(x3−x)1/2, where w1 and w2 are holomorphic at x3, moreover the
values of w1(x3) and w2(x3) are given in (24). In addition, using the explicit
expression of Y0, we obtain that d(x)1/2

Y
�
0(x) goes to −d

�(x3)/(4a(x3)) as x

goes to x3. Also (x3 − x)1/2
w
�(x) goes to −w2(x3)/2 as x goes to x3. So we

obtain:

�h� (Y0 (x3)) = �h�
ÇÅ

c (x3)

a (x3)

ã1/2
å

=
2a (x3) w2 (x3)

(−d� (x3))
1/2

1

π

� x2

x1

t
n0µm0 (t)

w
� (t)

(w (t)− w (x3))
2

»
−d (t)dt.
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With this last equality, (27) and (29), we have proved Proposition 21.

We are now ready to prove Proposition 14, where we have given an explicit
expression of h in the particular case ∆ = 0 and x4 > 0.

For this we need two preliminary results, stated in Lemmas 22 and 23.
Before, recall that in [9], the authors find the explicit expression of the curve
M, defined in (14) ; more precisely they make explicit q, q1 and q2, three
polynomials of degree two, such that M is equal to {u + iv ∈ C : q(u, v)2 −
q1(u, v)q2(u, v) = 0}. In [30] is observed that these polynomials can be written
as:
(38)�������

p11 1 p1−1

p01 −2u p0−1

p−11 u
2 + v

2
p−1−1

�������
,

�������

1 p10 p1−1

−2u −1 p0−1

u
2 + v

2
p−10 p−1−1

�������
,

�������

p11 p10 1

p01 −1 −2u

p−11 p−10 u
2 + v

2

�������
.

Lemma 22. — If ∆ = 0, then there exist α ∈ R and β ∈ R \ {0} such that

q = αq1 and q2 = βq1.

Proof. — Take the following notations: q(u, v) = ηq,2(u2 + v
2) + ηq,1u + ηq,0,

q1(u, v) = −ηq1,2(u2+v
2)+ηq1,1u+ηq1,0, q2(u, v) = ηq2,2(u2+v

2)+ηq2,1u−ηq2,0.
Of course, we get the explicit expression of these coefficients by expanding the
determinants (38). In particular, we immediately notice that ηq1,2, ηq1,0, ηq2,2

and ηq2,0 are positive. Also, from straightforward calculations we obtain

ηq1,0

ηq1,2
− ηq2,0

ηq2,2
=

∆

ηq1,2ηq2,2
,

ηq1,1

ηq1,2
− ηq2,1

ηq2,2
=

2p10∆

ηq1,2ηq2,2
.

This immediately yields that if ∆ = 0 then there exists β �= 0 such that
q2 = βq1.

In turn, this fact and the equality q(u, v) = p01q2(u, v) + p0−1q1(u, v) + ∆u,
which is a Cramer relationship, consequence of (38), entail that there exists α,
eventually zero, such that q = αq1.

Let l1 < 0 and l2 > 0 be the two roots of q1(x, 0). Then, thanks to Lemma 22,
M is simply the circle of center γ = (l2 + l1)/2 and radius ρ = (l2 − l1)/2.

The following result, that is a generalization of a straightforward result con-
cerning the walks verifying p10 + p−10 + p01 + p0−1 = 1, will also be useful in
the proof of Proposition 14.

Lemma 23. — Suppose here that ∆ = 0 and denote by l1 < 0 and l2 > 0 the

two roots of q1(x, 0), γ = (l2+l1)/2 and ρ = (l2−l1)/2. Then (x2−γ)(x3−γ) =
(x1 − γ)(x4 − γ) = ρ

2
.
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Proof. — Define l̃i = Y (xi) = �i(|c(xi)/a(xi)|)1/2, i ∈ {1, . . . , 4}, with �2 =
�3 = −�1 = −�4 = 1. From (47) of Subsection 5.1, it can be deduced that
they are the four roots of P̃l(y) = q̃(y, 0)2 − q̃1(y, 0)q̃2(y, 0), the polynomial q̃

(resp. q̃1, q̃2) being obtained by making in q (resp. q1, q2), defined in (38), the
change of parameters pij �→ pji. Of course, we could prove an analogous of
Lemma 22 that would be: if ∆ = 0 then P̃l has two double roots ; in particular
l̃2 = l̃3, so that, a and c being positive for positive values of the argument,
c(x2)/a(x2) = c(x3)/a(x3). In addition, by a direct calculation, we notice that
c(x)/a(x) = c(y)/a(y) if and only if x and y are joined together by:

(p1−1p01 − p0−1p11) xy + (p1−1p−11 − p−1−1p11) (x + y)

+ (p0−1p−11 − p−1−1p01) = 0.

• If p1−1p01 − p0−1p11 �= 0, then the polynomial q(x, 0) is non zero and
thanks to Lemma 22, l1 and l2 are the two roots of q(x, 0) ; in other words they
are the roots of (p1−1p01−p0−1p11)x2+2(p1−1p−11−p−1−1p11)x+(p0−1p−11−
p−1−1p01). Therefore, using the root-coefficient relationships, we have x2x3 −
(x2 + x3)(l1 + l2)/2 + l1l2 = 0, what exactly means that (x2 − γ)(x3 − γ) = ρ

2.
• If p1−1p01 − p0−1p11 = 0 then q(x, 0) is the null polynomial. Indeed, in

this case, deg(q) ≤ 1 ; in addition, thanks to Lemma 22, there exists β ∈ R
such that q = βq1. Since deg(q1) = 2, β = 0 and q is the null polynomial. In
particular, we have, for all x and y, c(x)/a(x) = c(y)/a(y) which leads to the
equality a = δc, where δ is some positive constant. In such cases, x2 and x3 are
easily calculated since they are the two roots of −b(x)− 2(a(x)c(x))1/2, which
is a polynomial of degree two. So, it suffices to calculate explicitly x2, x3, also
l1, l2, and to notice that (x2 − γ)(x3 − γ) = ρ

2.
With the same arguments, we show that (x1 − γ)(x4 − γ) = ρ

2.

Proof of Proposition 14. — Proposition 14 will result from the three following
facts.

(1) First, since M is a circle of center γ and radius ρ and thanks to Lemma 23,
we easily verify that the function w(t) = (x2 − γ)/(t − x2) − (x3 − γ)/(t −
x3) is a suitable CGF for the curve M. In particular, the function σ(t) =
γ + ρ

2
/(t − γ), defined in Proposition 14, lets w invariant ; also, σ

�(x3) =
Res(w, x2)/Res(w, x3) = −(x2 − γ)/(x3 − γ).

(2) Then, the key point is that since ∆ = 0, the function φ̂ defined in (34)
is equal to zero. So, h(x) is equal to the sum h1(x) + g2(x), h1 being defined
in (30) and g2 in (35).

(3) Moreover, once again thanks to Lemma 23, σ(x1) = x4, so that the
integral (35) is an integral between x3 and x4. Moreover, by a direct calculation,
we can show that if P stands for a, b or c, then P (σ(t)) = (ρ/(t− γ))2P (t). In
particular, d(σ(t)) = (ρ/(t− γ))4d(t) and µm0(σ(t)) = ((t− γ)ρ)2P (t).
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Bringing together all these facts, we obtain (23).

5. Asymptotic of the Green functions

In this section we find the asymptotic of the Green functions G
n0,m0
i,j =

En0,m0

��
n≥0 1{(X(n),Y (n))=(i,j)}

�
if i, j > 0 and j/i → tan(γ) where γ ∈

[0, π/2].

5.1. Case γ ∈]0, π/2[. — As it has been said in the introduction, in the case
γ ∈]0, π/2[ the procedure is essentially the same as in [22] and [25], we just
outline some details that are different.

It follows from (4) that by Cauchy formula, for � small enough,

G
n0,m0
i,j =

1

(2πı)2

�

|x|=1−�

h (x)

xi

Ç�

|y|=1−�

dy

Q (x, y) yj

å
dx(39)

+
1

(2πı)2

�

|y|=1−�

�h (y) + h00

yj

Ç�

|x|=1−�

dx

Q (x, y)xi

å
dy(40)

− 1

(2πı)2

�

|y|=1−�

1

yj−m0

Ç�

|x|=1−�

dx

Q (x, y)xi−n0

å
dy.(41)

Then we apply the residue theorem at infinity to each inner integral above.
Since Q(x, y) = a(x)(y − Y0(x))(y − Y1(x)) = ã(y)(x − X0(y))(x − X1(y)),
we have to know the positions of Yi(x) and Xi(y) w.r.t. the circle C(0, 1 − �)
when |x| = |y| = 1 − �. In fact, we will prove that for any x, y such that
|x| = |y| = 1− � and � > 0 small enough:

(42) |Y0 (x)| < 1−�, |Y1 (x)| > 1−�, |X0 (y)| < 1−�, |X1 (y)| < 1−�.

Thanks to a proper change of parameters, it suffices of course to prove the
first two inequalities. We already know from Lemma 2 that Y1({x ∈ C : |x| =
1} \ {1}) ⊂ {y ∈ C : |y| > 1} and Y0({x ∈ C : |x| = 1}) ⊂ {y ∈ C : |y| <

1}. In particular, by continuity, this immediately leads to the first inequality
in (42), for sufficiently small values of �. This also entails that there exists
θ0(�), going to 0 as � goes to 0, such that for all x = (1 − �) exp(ıθ) with
θ ∈]θ0(�), 2π − θ0(�)[, |Y1(x)| > 1− �. To conclude, it suffices to show that for
all x = (1− �) exp(ıθ) with θ ∈]− θ0(�), θ0(�)[, |Y1(x)| > 1− �. For this we will
prove that there exists a neighborhood of 1, independent of �, where the curves
Y1({x ∈ C : |x| = 1 − �}) and Y1({x ∈ C : |x| = 1}) don’t intersect ; then we
will also show that Y1(1− �) > Y1(1) = 1. In order to show that the two above
curves don’t intersect, remark that if they do, this means that Y1(x) = Y1(x̂),
with some x, x̂ such that |x| = 1, |x̂| = 1 − �. This last equality is equivalent
to x̂x = c̃(Y1(x))/ã(Y1(x)). Since Y1(1) = 1 and c̃(1)/ã(1) ∈]0, 1[, the previous
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equality is not possible in a neighborhood of 1 for x and x̂. To prove that
Y1(1 − �) > 1, we remark that an explicit calculation shows that Y1(x) > 1 if
and only if a(x)+b(x)+c(x) < 0. But the polynomial a+b+c goes to ∞ when
x → ±∞ and has two real roots, 1 and c̃(1)/ã(1) < 1, so that Y1(1− �) > 1.

Hence the inner integral of (39) (resp. of (40), (41)) equals the residue at
Y1(x) (resp. at X1(y)) with the constant −2πı, the residue at infinity being
zero. Then, letting � → 0, G

n0,m0
i,j is represented as the sum of the simple

integrals
(43)

G
n0,m0
i,j = − 1

2πı

�

|x|=1

h (x)

d (x)1/2
xiY1 (x)j

dx− 1

2πı

�

|y|=1

�h (y) + h00 −X1 (y)n0
y

m0

�d (y)1/2
X1 (y)i

yj
dy.

These integrals are typical to apply the saddle-point method, see [10].
To find the suitable saddle-point for ln(xY1(x)tan(γ)) or equivalently for

ln(X1(y)ytan(γ)), let us first have a closer look on the critical points of χγ,0

and χγ,1, defined by

(44) χγ,0 (x) = xY0 (x)tan(γ)
, χγ,1 (x) = xY1 (x)tan(γ)

, γ ∈ ]0, π/2[ .

The equations χ
�
γ,0(x) = 0 and χ

�
γ,1(x) = 0 are equivalent to

±d (x)1/2 (a (x) c (x)− x (a� (x) c (x)− a (x) c
� (x)) tan (γ) /2)(45)

= x tan (γ) (a (x) c (x) b
� (x)− b (x) (a� (x) c (x) + a (x) c

� (x)) /2) .

Taking the square of both sides, we obtain that P (γ, x) = 0, where P (γ, x) is
the eight degree polynomial:

(46) P (γ, x) = − (a (x) c (x) + x tan (γ) r (x)) d (x) + (x tan(γ))2 Pl (x)

where we note

(47) Pl (x) = r (x)2 − r1 (x) r2 (x) = lim
γ→π/2

P (γ, x)

(x tan (γ))2

and

(48) r = ac
� − a

�
c, r1 = ba

� − b
�
a, r2 = cb

� − c
�
b.

Note that with the notations (38), r(x) = q(x, 0) and for i = 1, 2, ri(x) =
qi(x, 0).

The eight roots of the polynomial P (γ, x) are the four critical points of
χγ,0(x) and those four of χγ,1(x), γ ∈]0, π/2[. It is immediate that in the
limiting case γ = 0 its roots are the branch points xi, i ∈ {1, . . . , 4} and the
roots of a and c. If γ = π/2, two of its roots are 0, two equal ∞ and four of
them are the X(yi), i ∈ {1, . . . , 4}, that are roots of Pl(x).
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Note that under the restricted hypothesis (H2�) the critical points can be
made explicit. The polynomial (46) equals (tan(γ)2 − 1)x2

P1,4(γ, x)P2,3(γ, x),
where P1,4(γ, x) and P2,3(γ, x) are polynomials of second degree, namely:

P1,4 (γ, x) = p10x
2 − 1+(1−(1−tan(γ)2)(1−4p0−1p01+4p−10p10 tan(γ)2))1/2

1−tan(γ)2 x + p−10,

P2,3 (γ, x) = p10x
2 − 1−(1−(1−tan(γ)2)(1−4p0−1p01+4p−10p10 tan(γ)2))1/2

1−tan(γ)2 x + p−10.

The saddle-point for the first integral in (43) is the biggest root of P2,3(γ, x).
This is the (unique) critical point of χγ,1(x) such that x > 0 and Y1(x) > 0.
In [22] it has been characterized as the solution of (49) below. Let us do it
under (H2). We need to introduce the function φ(u, v) =

�
i,j pije

iu
e
jv for

(u, v) ∈ R2. The equation Q(x, y) = 0 with x, y > 0 is equivalent to φ(u, v) = 1
with u = ln(x), v = ln(y). If x > 0 is the critical point of χ0,γ(x) such
that Y0(x) > 0 (resp. the one of χ1,γ(x) such that Y1(x) > 0), then after some
algebraic manipulations with u = ln(x) and v = ln(Y0(x)) (resp. v = ln(Y1(x)))
we see that the equation (45) is equivalent to

(49)
∂φ (u, v) /∂u

∂φ (u, v) /∂v
= tan (γ) .

Then either

(50)
grad (φ (u, v))

|grad (φ (u, v))| = (cos (γ) , sin (γ))

or

(51)
grad (φ (u, v))

|grad (φ (u, v))| = (cos (γ + π) , sin (γ + π)) .

The mapping (u, v) �→ grad(φ(u, v))/|grad(φ(u, v))| is a homeomorphism from
D = {(u, v) ∈ R2 : φ(u, v) = 1} to the unit two-dimensional sphere, see [12].
Hence, for any γ ∈ [0, π/2] there is one solution of (50) on D, called (u(γ), v(γ))
and one solution of (51) on D, called (u(γ + π), v(γ + π)). Thus the positive
critical point of χγ,0(x) with Y0(x) > 0 and the one of χγ,1(x) with Y1(x) > 0
are among e

u(γ) and e
u(γ+π). In addition e

u(γ) (resp. e
u(γ+π)) is critical for

χi,γ(x) if and only if e
v(γ) (resp. e

v(γ+π)) equals Yi(eu(γ)) (resp. Yi(eu(γ+π)),
i = 0, 1. We verify that e

v(γ) = Y1(eu(γ)) and e
v(γ+π) = Y0(eu(γ+π)), so that

e
u(γ) is the critical point of χγ,1(x) and e

u(γ+π) is the one of χγ,0(x). Indeed,
for i = 0, 1,

(52)
∂φ

∂v

Ä
u (γ) , Yi

Ä
e
u(γ)

ää
=

î
2Yi

Ä
e
u(γ)

ä
a

Ä
e
u(γ)

ä
+ b

Ä
e
u(γ)

äó
Yi

Ä
e
u(γ)

ä−1
.

Moreover, on [x2, x3], 2a(x)Y1(x) + b(x) = d(x)1/2 and 2a(x)Y0(x) + b(x) =
−d(x)1/2, so that (52) is negative for Y = Y0, positive for Y = Y1, what
answers to the problem.
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Notation. — We put sx(tan(γ)) = e
u(γ) and sy(tan(γ)) = Y1(eu(γ)).

The mapping γ �→ (sx(tan(γ)), sy(tan(γ))) is a homeomorphism between
[0, π/2] and {(x, y) ∈ C2 : x > 0, y > 0, Q(x, y) = 0}.

We note that sx(0) = x3, sy(0) = Y (x3) and sx(∞) = X(y3), sy(∞) = y3.
When γ runs [0, π/2], sx(tan(γ)) monotonously decreases from x3 to Y (x3) and
sy(tan(γ)) monotonously increases from Y (x3) to y3.

Obviously the unique critical point of χ̃γ,1(y) = X1(y)ytan(γ) with y > 0 and
X1(y) > 0 is sy(tan(γ)) defined above and X1(sy(tan(γ)) = sx(tan(γ)).

Theorem 24. — Let γ ∈]0, π/2[. If j/i → tan(γ), then

G
n0,m0
i,j =

sx (tan(γ))n0
sy (tan(γ))m0 − h (sx (tan(γ)))− �h (sy (tan(γ)))− h00

sx (j/i)i
sy (j/i)j

Å
C (γ)√

i
+ O

Å
1

i
√

i

ãã
,

where the constant C(γ), that does not depend on (n0, m0), is equal to:

C(γ) = (2π)−1/2 �d (sy (tan (γ)))−1
sy (tan(γ))

Ç
− d2

dy2

ß
X1 (sy (tan(γ)) y)

sx (tan(γ))
y
tan(γ)

™����
y=1

å−1/2

.

Proof. — One appropriately shifts the contour of integration |x| = 1 (resp.
|y| = 1) in the first term of (43) (resp. the second) to a contour Γγ (resp.
Γ̃γ) passing through sx(tan(γ)) (resp. sy(tan(γ))), which is the saddle-point of
order one. Γγ is the contour of steepest descent (i.e. Im(xY1(x)tan(γ)) = 0 on
it) in a neighborhood of sx(tan(γ)) and outside this neighborhood it remains
“higher" than sx(tan(γ)) in the sense of the level curves of the function χγ,1.
The construction of Γγ is done as in [22] and [25], therefore we omit the details.
Likewise, we construct the contour Γ̃γ .

Then by Cauchy theorem, the first (resp. the second) term in (43) equals
the integral over Γγ (resp. over Γ̃γ), whose asymptotic is computed by the
saddle-point method.

5.2. Asymptotic of the Green functions in the cases γ = 0, π/2. — For that pur-
pose, we first need to know the behavior of sx(j/i)− sx(0) and sy(j/i)− sy(0)
when j/i is in a neighborhood of 0.

Lemma 25. — Let Pl be the polynomial defined in (47). As j/i → 0, the

following expansions hold:

sx (0)− sx (j/i) =
x

2
3Pl (x3)

−d� (x3) a (x3) c (x3)
(j/i)2 + O

�
(j/i)3

�
,(53)

sy (j/i)− sy (0) =
x3Pl(x3)1/2

2a(x3)3/2c(x3)1/2
j/i + O

�
(j/i)2

�
.(54)
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Proof. — Start by proving (53). One hand, using (46), we obtain that
P (arctan(j/i), x3) = sx(j/i)2Pl(x3) ; on the other hand, by definition of
P (arctan(j/i), x) and also with (46), we have P (arctan(j/i), x3) = (x3 −
sx(j/i))R(j/i), with R(0) = −d

�(x3)a(x3)c(x3) �= 0. Equation (53) follows
immediately. Then, to prove (54), start by remarking that Y1(x) − Y1(x3) =
b(x3)/(2a(x3)) − b(x)/(2a(x)) + d(x)1/2

/(2a(x)), so that in the neighborhood
of x3, Y1(x)−Y1(x3) = f(x)+(−d

�(x3)1/2
/(2a(x3)))(x3−x)1/2(1+g(x)), with

f and g holomorphic in the neighborhood of x3 where they take the value 0.
Moreover, for all j/i ∈ [0,∞], sy(j/i) = Y1(sx(j/i)), see Subsection 5.1. This
yields sy(γ) − sy(0) = (−d

�(x3))1/2
/(2a(x3))(x3 − sx(γ))1/2 + O(x3 − sx(γ)).

Finally, using (53), we obtain (54).

Theorem 26. — Suppose first that p11 + p−1−1 + p1−1 + p−11 < 1. Then the

Green functions admit the following asymptotic as i →∞, j > 0 and j/i → 0:

(55) G
n0,m0
i,j =

C0

Ä
m0sx (0)n0

sy (0)m0−1 − �h� (sy (0))
ä

sx (j/i)i
sy (j/i)j

j

i
√

i

�
1 + o (1)

�
,

where the constant C0 is equal to:

(56) C0 =

Å
2

π

ã1/2
s
�
y (0) sx (0)1/2

Ä
−�d (sy (0)) X

��
1 (sy (0))

ä1/2
,

sx(0) = x3, sy(0) = Y1(x3) and s
�
y(0) is obtained from Lemma 25.

The analogous result as j → ∞, i > 0 and j/i → ∞ holds after the proper

change of parameters.

Suppose now that p11 + p−1−1 + p1−1 + p−11 = 1. If n0 + m0 and i + j

don’t have the same parity then G
n0,m0
i,j = 0 ; if they have the same parity, the

asymptotic of G
n0,m0
i,j is given by two times the right member of (55).

Remark 27. — Theorem 17 and Proposition 21 give immediately an explicit

expression for m0sx(0)n0sy(0)m0−1 − h̃
�(sy(0)) in the three cases ω2/ω3 ∈ 2N,

ω2/ω3 ∈ 2N + 1 and ω2/ω3 �∈ N that we do not list here.

Proof. — We detail the proof in the case p11 + p−1−1 + p1−1 + p−11 < 1 and
explain at the end what changes if p11 + p−1−1 + p1−1 + p−11 = 1. G

n0,m0
i,j

appears in (43) as the sum of two integrals, one on the contour |x| = 1, the
other on |y| = 1. Using Cauchy Theorem we will move these contours up
to sx(j/i) and sy(j/i) respectively in a such way that the asymptotic of the
integrals on the new contours will be calculated by the saddle-point method.
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In order to define these new contours of integration, we need to introduce the
following—eventually multivalued—functions:

κj/i (x) = ln (x) +
j

i
ln

Å
Y1 (sx (j/i) x)

sy (j/i)

ã
,(57)

�κj/i (y) = ln

Å
X1 (sy (j/i) y)

sx (j/i)

ã
+

j

i
ln (y) .

According to Subsection 5.1, the function κj/i (resp. κ̃j/i) has, for all j/i > 0,
a critical point at 1 where it equals 0. Consider now the functions xj/i(t) and
yj/i(t) defined in neighborhoods Vx,j/i(0) and Vy,j/i(0) of 0 by

(58) κj/i

�
xj/i (t)

�
= t

2
, �κj/i

�
yj/i (t)

�
= t

2
,

and sign(Im(xj/i(t))) = sign(t), sign(Im(yj/i(t))) = sign(t). These last re-
lationships are fixed in order to define xj/i and yj/i not ambiguously. By
inverting the relationships (58), we obtain the explicit expression of xj/i and
yj/i. Here, inverting means using the so-called Bürman-Lagrange formula, see
e.g. [6], that allows to write the coefficients of the Taylor series of a recipro-
cal function as integrals in terms of the direct function. As j/i → 0, then
sy(j/i) → sy(0) ∈]y2, y3[. We may define

�ρ = inf
j/i∈[0,1]

inf {y3/sy (j/i)− 1, 1− y2/sy (j/i)} ,

which verifies ρ̃ > 0 and κ̃j/i is holomorphic in the disc D(1, ρ̃) for all j/i ∈
[0, 1]. Using the Bürman-Lagrange formula we see that the radius of Vy,j/i(0)
does not vanish as j/i → 0: yj/i(t) is in fact defined and holomorphic in D(0, ρ),
ρ being positive and independent of j/i ∈ [0, 1]. Moreover, the functions xj/i(t)
and yj/i(t) are joined together by:

(59) xj/i (−t) =
X1

�
sy (j/i) yj/i (t)

�

sx (j/i)
, yj/i (−t) =

Y1

�
sx (j/i) xj/i (t)

�

sy (j/i)
.

This is a consequence of the automorphy relationships proved in [9]: for x

(resp. y) exterior to some curve (what is the case here), X1(Y1(x)) = x (resp.
Y1(X1(y)) = y). For this reason and the fact that 1 is a critical point of order
one of κj/i, we obtain that

xj/i(t) ∈ {X1(sy(j/i)yj/i(−t))/sx(j/i), X1(sy(j/i)yj/i(t))/sx(j/i)}.

Then it suffices to calculate the sign of the imaginary part in order
to identify which of the two possibilities happens: we have xj/i(t) =
X1(sy(j/i)yj/i(−t))/sx(j/i). The first equality of (59) shows that xj/i is
holomorphic as well in Vx,j/i(0) = D(0, ρ) for all j/i ∈ [0, 1].
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The functions x̂j/i(t) = sx(j/i)xj/i(t) and ŷj/i(t) = sy(j/i)yj/i(t) determine
of course the paths of steepest descent for ln(xY1(x)j/i) and ln(X1(y)yj/i) re-
spectively. Note that the limiting curve x̂0(t) runs the real line decreasing
from x̂0(ρ) to x̂0(0) = x3 and then increasing from x3 to x̂0(ρ) when t runs
[−ρ, ρ] ; indeed x0(t) = exp(t2). The function ŷ0(t) = Y1(x̂0(−t)) runs the
values Y

−
1 (x̂0(t)) = limx↑x̂0(t) Y1(x) from Y

−
1 (x̂0(ρ)) up to Y1(x3) and then the

values Y
+
1 (x̂0(t)) = limx↓x̂0(t) Y1(x) to Y

+
1 (x̂0(ρ)).

For any ρ small enough we will now define two closed contours Cρ,j/i,x =
xj/i([−ρ, ρ]) ∪ Aρ,j/i,x and Cρ,j/i,y = yj/i([−ρ, ρ]) ∪ Aρ,j/i,y, where Aρ,j/i,x,
Aρ,j/i,y verify the following three properties.

(i) There exists a constant c(ρ) > 0 such that |κj/i(x)| > c(ρ) for any
x ∈ Aρ,j/i,x and any j/i small enough, and such that |κ̃j/i(x)| > c(ρ) for any
y ∈ Aρ,j/i,y and any j/i small enough.

(ii) The first integrand in (43) does not have any singularities in the domain
bounded by |x| = 1 and the contour sx(j/i) Cρ,j/i,x, the second integrand in
(43) does not have any singularities in the domain bounded by |y| = 1 and the
contour sy(j/i) Cρ,j/i,y.

(iii) There exists a constant L(ρ) such that the lengths of the contours
Cρ,j/i,x and Cρ,j/i,y are bounded by L(ρ) for all j/i small enough.

Let us construct such Aρ,j/i,x. We may take for Aρ,0,x the circle of ra-
dius x0(ρ) > 1. Then |κ0(x)| = | ln(x)| = ln(x0(ρ)) > (ln(x0(ρ)))/2 for
any x ∈ Aρ,0,x. Let us then take for Aρ,j/i,x the arc {|xj/i(ρ)| exp(ıθ) :
θ ∈] arg(xj/i(ρ)), 2π − arg(xj/i(ρ))[}. Since x̂j/i(ρ) → x̂0(ρ) = x3 exp(ρ2) as
j/i → 0 and since Y1 has no zero on C (it can be easily shown that under
(H4), Y1 does not vanish on C), the property (i) remains valid for κj/i(x)
with c(ρ) = (ln(x0(ρ)))/4 for all j/i small enough. Furthermore, the singular-
ities of the first integrand in (43) are the zeros of d, i.e. the branch points xi,
i ∈ {1, . . . , 4}. But with Lemma 1, x1 and x2 are inside the unit circle |x| = 1 ;
as for x3 and x4, they are outside sx(j/i) Cρ,j/i,x: x3 is outside this contour by
construction and x4 also lies outside sx(j/i) Cρ,j/i,x for ρ small enough, because
|x4| > x3, since we have supposed p11 + p−1−1 + p1−1 + p−11 < 1, see once
again Lemma 1. So (ii) is verified and (iii) is also and obviously verified. We
can also construct Aρ,j/i,y starting by Aρ,0,y. Since sy(0) is a critical point
of X1, the level line {y ∈ C : |X1(y)| = x3} has a double point at sy(0) and
{y ∈ C : |X1(y)| = x3} \ {sy(0)} has two connected components. Moreover,
thanks to Lemma 28, the circle C(0, sy(0))\{sy(0)} lies in the domain {y ∈ C :
|X1(y)| > x3}. For this reason and since−sy(0) ∈]−y3,−y2[⊂]−|y4|,−|y1|[, one
can clearly construct a contour Aρ,0,y that verifies (i), (ii) and (iii). Then, by
continuity of the different quantities w.r.t. j/i, one can build contours Aρ,j/i,y

verifying (i), (ii) and (iii) for all j/i small enough.
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Let us go back to (43). Before passing from double integrals in (39), (40),
(41) to the simple ones in (43), it will be convenient to subtract the constant
h(x3) from the numerator of (39) and add it to the numerator of (40). Next,
we move the contours |x| = 1 and |y| = 1 to sx(j/i) Cρ,j/i,x and sy(j/i) Cρ,j/i,y ;
thanks to Cauchy theorem and since by construction the contours avoid the
singularities of the integrands, the value of the integrals is not changed. After
the change of variables x �→ xsx(j/i) and y �→ ysy(j/i) in (43), we get G

n0,m0
i,j =

−K
n0,m0
i,j /(sx(j/i)i

sy(j/i)j), where K
n0,m0
i,j is defined by:

K
n0,m0
i,j =

sx (j/i)

2πı

�

Cρ,j/i,x

h (sx (j/i) x)− h (x3)

d (sx (j/i) x)1/2
e
−iκj/i(x)dx

(60)

+
sy (j/i)

2πı

�

Cρ,j/i,y

�h(sy(j/i)y)+h00+h(x3)−X1(sy(j/i)y)n0 (sy(j/i)y)m0

�d(sy(j/i)y)1/2
e
−i�κj/i(y)dy.

We split K
n0,m0
i,j = K

n0,m0
i,j,1 +K

n0,m0
i,j,2 , where K

n0,m0
i,j,1 (resp. K

n0,m0
i,j,2 ) is obtained

from K
n0,m0
i,j by integrating only on the contours xj/i([−ρ, ρ]) and yj/i([−ρ, ρ])

(resp. Aρ,j/i,x and Aρ,j/i,y). We will prove that the asymptotic K
n0,m0
i,j,1 will lead

to the result announced in Theorem 26 and that K
n0,m0
i,j,2 will be exponentially

negligible, see (61).
We start by studying K

n0,m0
i,j,2 . Consider the following two quantities S1,δ

and S2,δ and prove that for δ sufficiently small they are finite.

S1,δ = sup
j/i∈[0,δ]

sup
x∈ Cρ,j/i,x

�����
h (sx (j/i)x)− h (x3)

d (sx (j/i)x)1/2

����� ,

S2,δ = sup
j/i∈[0,δ]

sup
y∈ Cρ,j/i,y

�����
�h (sy (j/i) y) + h00 + h (x3)−X1 (sy (j/i) y)n0 (sy (j/i) y)m0

�d (sy (j/i) y)1/2

����� .

The fact that for δ small enough S1,δ is finite comes from the three following
properties. First, we recall (see Corollary 5 and the proof of Lemma 19) that
h is meromorphic on C \ [x3, x4], holomorphic in D(0, x3) and continuable
holomorphically through every point of C(0, x3) except x3. This is why h(x),
and therefore also (h(x) − h(x3))/d(x)1/2, are bounded in a neighborhood of
every point of the circle C(0, x3) except at x3. Secondly, it can be easily
deduced from the proofs of Lemmas 18 and 19 that in the neighborhood of x3,
h(x) = h(x3)+c(x3−x)1/2+ O(x3−x), where c is some non zero constant. So the
quantity (h(x)−h(x3))/d(x)1/2 is bounded in the neighborhood of x3. Thirdly,
the contours sx(j/i) Cρ,j/i,x avoid, by construction, the branch points x1, x2

and x4. The fact that S2,δ is finite follows similarly: first, by construction, the
contours sy(j/i) Cρ,j/i,y avoid the branch points yi, i ∈ {1, . . . , 4}, also, the
poles of X1 and h̃ being isolated, the contours sy(j/i) Cρ,j/i,y can be chosen
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such that they remain away from these poles. Recalling the properties (i) and
(iii) of Aρ,j/i,x and Aρ,j/i,y we deduce that for any i > 0 and any j/i small
enough,

(61)
���Kn0,m0

i,j,2

��� ≤ (L (ρ) / (2π)) (x3S1,δ + y3S2,δ) exp (−ic (ρ)) .

Let us now turn to K
n0,m0
i,j,1 . Making in (60) the change of variable x = xj/i(t)

and y = yj/i(t), we represent K
n0,m0
i,j,1 as an integral on the segment [−ρ, ρ].

Moreover, using (43) and the following equality—that comes from (4) and (59)
(62)
sx (j/i) x

�
j/i (−t) �d

�
sy (j/i) yj/i (−t)

�1/2
= −sy (j/i) y

�
j/i (t) d

�
sx (j/i) xj/i (−t)

�1/2
,

we obtain that K
n0,m0
i,j,1 =

� ρ

−ρ fj/i(t) exp(−it
2)dt, where

fj/i (t) =
�
h

�
X1

�
�yj/i (t)

��
+ �h

�
�yj/i (t)

�

+ h00 −X1

�
�yj/i (t)

�n0 �yj/i (t)m0
�
�y�j/i (t) �d

�
�yj/i (t)

�−1/2
,

and ŷj/i(t) = sy(j/i)yj/i(t). In addition, the formula (37) yields that fj/i is
equal to:

fj/i (t) =

ñ
�h

�
�yj/i (t)

�
− �h

Ç
c
�
X1

�
�yj/i (t)

��

a
�
X1

�
�yj/i (t)

��
�yj/i (t)

å(63)

−X1

�
�yj/i (t)

�n0

Å
�yj/i (t)m0 −

Å
c(X1(�yj/i(t)))

a(X1(�yj/i(t)))�yj/i(t)

ãm0
ãò

�y�j/i (t) �d
�
�yj/i (t)

�−1/2
.

In particular, this representation (63), added to the—already noticed—
holomorphy of yj/i in D(0, ρ), ρ being independent of j/i ∈ [0, 1], im-
plies that fj/i is holomorphic in a disc of center 0 and of radius pos-
itive and independent of j/i for j/i small enough. Therefore fj/i can
be expanded in its Taylor series in the neighborhood of 0: fj/i(t) =
fj/i(0) + tf

�
j/i(0) + t

2
f
��
j/i(0)/2 + t

3
f
���
j/i(0)/6 + t

4
gj/i(t), where gj/i is also

holomorphic in some centered disc of radius positive and independent of
j/i for j/i sufficiently small. Reducing eventually ρ and δ, we have that
G = supj/i∈[0,δ] supt∈[−ρ,ρ] |gj/i(t)| is finite. Then, applying Laplace’s method,
we obtain the bound
(64)�����K

n0,m0
i,j,1 − 1

2πı

�
π

1/2
fj/i (0)

i1/2
+

π
1/2

f
��
j/i (0)

4i3/2

������ ≤
3π

1/2
G

4i5/2
+ C exp

�
−iρ

2
�
.

with some constant C > 0 for any i, j > 0, j/i ∈ [0, δ].
To conclude the analysis of K

n0,m0
i,j,1 , it remains to evaluate the asymptotic

expansions of fj/i(0) and f
��
j/i(0) as j/i → 0. Taking t = 0 in (63) we derive
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that fj/i(0) is equal to:
(65)
�h (sy (j/i))− �h

Ä
c(sx(j/i))

a(sx(j/i))sy(j/i)

ä
− sx (j/i)n0

Ä
sy (j/i)m0 −

Ä
c(sx(j/i))

a(sx(j/i))sy(j/i)

äm0
ä

�d (sy (j/i))1/2
sy (j/i) y

�
j/i (0) .

Note that since sy(0)2 = c(sx(0))/a(sx(0)) (indeed, sy(0) = Y1(sx(0)) and
sx(0) = x3), then for any suitable function F ,

F (sy(j/i))− F (c(sx(j/i))/(a(sx(j/i)))sy(j/i)) = 2F
�(sy(0))s�y(0)j/i + o(j/i),

s
�
y(0) being obtained from Lemma 25. We use this fact successively

with F (y) = h̃(y) and F (y) = y
m0 to expand the numerator of (65) as

2
�
m0sx(0)n0sy(0)m0−1 − h̃

�(sy(0))
�
s
�
y(0)j/i + o(j/i), j/i → 0. The functions

sx(j/i) and sy(j/i) being continuous on [0,+∞], the Taylor coefficients of
yj/i(t) depend continuously on j/i, so that y

�
j/i(0) → y

�
0(0) as j/i → 0. Let us

compute the value of y
�
0(0). To get it, we differentiate twice (58) ; this yields

(66) y
�
j/i (0)2

d2

dy2

ß
X1 (sy (j/i) y)

sx (j/i)
y

j/i

™����
y=1

= 2.

In addition, an explicit calculation gives:

(67) lim
j/i→0

d2

dy2

ß
X1 (sy (j/i) y)

sx (j/i)
y

j/i

™����
y=1

=
sy (0)2

sx (0)
X
��
1 (sy (0)) .

(66) and (67) imply y
�
0(0) = ı

√
2sx(0)1/2(−X

��
1 (sy(0)))−1/2

sy(0)−1, the ı com-
ing from the fact that X

��
1 (sy(0)) is negative. Hence, we obtain that fj/i(0) =

l1j/i(1 + o(1)), where

(68) l1 = −ı

2
√

2s
�
y (0) sx (0)1/2

Ä
m0sx (0)n0

sy (0)m0−1 − �h� (sy (0))
ä

Ä
−�d (sy (0)) X

��
1 (sy (0))

ä1/2
.

The Taylor coefficients of yj/i(t) depending continuously on j/i, so do those
of fj/i(t). Then f

��
j/i(0) → f

��
0 (0) as j/i → 0. But f(t) is an odd function on

[−ρ, ρ]. To see this, first, remark that (6) yields c(x̂0(t))/(a(x̂0(t))Y1(x̂0(t))) =
Y0(x̂0(t)). Moreover, Y1(x̂0(−t)) = Y0(x̂0(t)), so that x̂0 being even (x̂0(t) is
equal to x3 exp(t2)), the function within the brackets in (63) is odd. In addition,
using (62) we obtain that ŷ

�
0(t)d̃(ŷ0(t))−1/2 = −x̂

�
0(−t)d(x̂0(−t))−1/2. Being

the product of two odd functions, x̂
�
0d(x̂0)−1/2 is even, so that ŷ

�
0d̃(ŷ0)−1/2

is also even. This implies that f0 is odd and as an immediate consequence
f
��
0 (0) = 0 and f

��
j/i(0) = o(1) as j/i → 0. Bringing together (61), (64), the

expansions fj/i(0) = l1j/i(1 + o(1)) and f
��
j/i(0) = o(1) with l1 defined in (68)
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we obtain:
(69)

G
n0,m0
i,j =

−1

sx (j/i)i
sy (j/i)j

Ç
1

2πı

π
1/2

l1j/i (1 + o (1))

i1/2
+ o

Ä
i
−3/2

äå
+ O

�
exp (−ic (ρ))

�
, j/i → 0.

This concludes the proof of the theorem in the case p11+p−1−1+p1−1+p−11 < 1.
We now briefly explain the notable differences in the case p11 + p−1−1 +

p1−1 + p−11 = 1. In this case, all the functions considered are odd or even: for
instance Yi and Xi, i = 0, 1 are odd, d and d̃ are even (see Lemma 28), h and h̃

have the parity of n0 +m0. In particular, it is immediate from (43) that if i+ j

and n0 + m0 don’t have the same parity, then G
n0,m0
i,j = 0. If they have the

same parity, then we can obtain the asymptotic of the Green functions with
essentially the same analysis as in the case p11 + p−1−1 + p1−1 + p−11 < 1,
the only significant change being that we have now to take under account the
contribution of two critical points: (sx(j/i), sy(j/i)), as before, but now also
(−sx(j/i),−sy(j/i)). In particular, the new contour of integration Cρ,j/i,x

(resp. Cρ,j/i,x) have to go at once through sx(j/i) and through −sx(j/i) (resp.
sy(j/i) and through −sy(j/i)), for instance they can be taken symmetrical
w.r.t. the imaginary axis. This fact underlies that the asymptotic of the G

n0,m0
i,j

is, in this case, twice, in accordance with the conclusions of Theorem 26.

The following result has been used in the proof of Theorem 26.

Lemma 28. — If p11+p−1−1+p−11+p1−1 < 1, for all y ∈ C(0, sy(0))\{sy(0)},
|X1(y)| > x3. If p11+p−1−1+p−11+p1−1 = 1, for all y ∈ C(0, sy(0))\{±sy(0)},
|X1(y)| > x3.

Proof. — As a direct consequence of Lemma 1, we obtain that X1 is mero-
morphic in the neighborhood of every point of ]− y3,−y2[, since ]− y3,−y2[⊂
]− |y4|,−|y1|[. Let us now show that

(i) if p11 + p−1−1 + p−11 + p1−1 < 1, then for all y ∈ [y2, y3], |X1(−y)| >

|X1(y)|,
(ii) if p11 + p−1−1 + p−11 + p1−1 = 1, then for all y ∈ [y2, y3] = [−y1,−y4],

X1(−y) = −X1(y).
Start by remarking that X1(y) ≤ 0 (resp. X1(y) ≥ 0) on [y4, y1] (resp.

on [y2, y3]), this is proved in [9]. Thus, on [y2, y3], the unique possibility
to have |X1(−y)| = |X1(y)| is that X1(y) = −X1(−y). After calculation,
we obtain that this is equivalent to (p01y

2 + p0−1)2(p11y
2 + p1−1)(p−11y

2 +
p−1−1)+{(p−10p1−1−p10p−1−1)2+p0−1(p−10p1−1+p10p−1−1)}y2+{p−10p10(1−
2(p1−1p−11+p−1−1p11))+p−10p1−1(p01+p−10p11)+p−10p11(p0−1+p−10p1−1)+
p10p−1−1(p01+p10p−11)+p10p−11(p0−1+p10p−1−1)}y4+{(p10p−11−p−10p11)2+
p01(p10p−11 + p−10p11)}y6 = 0. If p11 + p−1−1 + p1−1 + p−11 < 1 (resp.
p11 + p−1−1 + p1−1 + p−11 = 1), then the previous equality holds for none
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(resp. any) y ∈ [y2, y3]. Therefore (ii) is proved. To prove (i), we remark that
an explicit calculation leads to |X1(−1)| > 1 = X1(1) so that by continuity, for
all y ∈ [y2, y3], |X1(−y)| > |X1(y)|.

We prove now Lemma 28 in the case p11 +p−1−1 +p1−1 +p−11 < 1. We will
show that C(0, sy(0)) ∩ {y ∈ C : |X1(y)| = x3} = {sy(0)}. This suffices since
one hand, this implies that either for all y ∈ C(0, sy(0))\{sy(0)}, |X1(y)| > x3

or for all y ∈ C(0, sy(0))\{sy(0)}, |X1(y)| < x3 ; but on the other hand, thanks
to (i), |X1(−sy(0))| > X1(sy(0)) = x3, so that by continuity we will conclude.
Let y

∗ ∈ C(0, sy(0)) be such that |X1(y∗)| = x3. Setting x̂ = X1(y∗)/x3,
ŷ = y

∗
/sy(0) and using Q(x3, sy(0)) = 0, Q(X1(y∗), y∗) = 0, we obtain

Q̂(x̂, ŷ) = 0, where Q̂(x̂, ŷ) = (
�

i,j p̂ij x̂
i
ŷ

j − 1)x̂ŷ and p̂ij = pijx
i
3sy(0)j . In

particular, for all i and j, p̂ij > 0 and
�

i,j p̂ij = 1, since Q(x3, sy(0)) = 0. But
from elementary considerations about sums of complex numbers, having simul-
taneously

�
i,j p̂ij = 1,

�
i,j p̂ij x̂

i
ŷ

j = 1 and |x̂| = |ŷ| = 1 leads necessarily to
x̂ = ŷ = 1, so that y

∗ = sy(0).
We conclude the proof in the case p11 + p−1−1 + p1−1 + p−11 = 1 by using

similar arguments and the fact that x4 = −x3.

Remark 29. — Thanks to Proposition 21, it is immediate now that for any

n0, m0, n1, m1 > 0 :

(70)

lim
i,j>0,j/i→0

G
n0,m0
i,j

G
n1,m1
i,j

= lim
i→∞

h
n0,m0
i

h
n1,m1
i

=
m0sx (0)n0

sy (0)m0−1 − �hn0,m0
�
(sy (0))

m1sx (0)n1
sy (0)m1−1 − �hn1,m1

� (sy (0))
,

the probabilities of absorption h
n0,m0
i being defined in (1). In addition,

using (37) and Lemma 25, we obtain that as γ goes to zero, the limit

limi,j>0,j/i→tan(γ) G
n0,m0
i,j /G

n1,m1
i,j converges also to the right member of (70).

In other words, the Martin kernel is continuous at 0 and likewise, we verify

that it is also continuous at π/2.
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