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by Sylvain Barré & Mikaël Pichot

Abstract. — We prove that the braid group B4 on 4 strings, its central quotient
B4/〈z〉, and the automorphism group Aut(F2) of the free group F2 on 2 generators,
have the property RD of Haagerup–Jolissaint.

We also prove that the braid group B4 is a group of intermediate mesoscopic rank
(of dimension 3). More precisely, we show that the above three groups have exponential
mesoscopic rank, i.e., that they contain exponentially many large flat balls which are
not included in flats.

Résumé (Le groupe de tresses B4 est de rang mésoscopique et a la propriété RD)
Nous montrons que le groupe de tresses à 4 brins B4, son quotient central B4/〈z〉,

ainsi que le groupe d’automorphismes Aut(F2) du groupe libre à 2 générateurs, pos-
sèdent la proprété RD de décroissance rapide de Haagerup–Jolissaint.

Nous montrons également que le groupe de tresses B4 est un groupe (de dimen-
sion 3) de rang intermédiaire mésoscopique. Plus précisément, nous montrons que
les trois groupes précédents sont de rang mésoscopique exponentiel, c’est-à-dire qu’ils
contiennent un nombre exponentiel de boules plates qui ne sont pas contenues dans
des plats.
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480 S. BARRÉ & M. PICHOT

1. Introduction

Let n ≥ 2 be an integer. The braid group Bn on n strings is a finitely
presented group generated by n− 1 elementary braids σ1, . . . , σn−1 subject to
the following relations:

– σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n− 2;
– σiσj = σjσi for all 1 ≤ i, j ≤ n− 1 such that |i− j| ≥ 2.

This is the classical Artin presentation of Bn (see e.g. Chapter 10 in [11]).
The group B3 is closely related to the modular group PSL2(Z). The above

presentation shows that the braid z = (σ1σ2)3 is central in B3 and that B3/〈z〉
is generated by the class u of σ1σ2σ1 and v of σ1σ2, where u2 = v3 = z. Thus
B3/〈z〉 = 〈u, v | u2 = v3 = 1〉 = PSL2(Z). In fact the group B3 admits a
proper isometric action with compact quotient on a metric product T3 × R,
where T3 is a trivalent tree, which is the Bass-Serre tree of PSL2(Z).

We are interested here in the 4-string braid groups B4. It was proved by
Brady in [7] that B4 admits a free isometric action with compact quotient on
a CAT(0) simplicial complex Y of dimension 3. The 3-dimensional cells of Y
are Euclidean tetrahedra whose faces are right-angle triangles and the quotient
space Y/B4 contains 16 tetrahedra, identified together along a single vertex. It
is still true that Y splits as a product Y = X×R, where X is now of dimension
2. The complex X can be obtained from a non positively curved complex of
groups whose fundamental group is the quotient of B4 by its center (see [19]).

The existence of a CAT(0) structure on Bn is an open problem for n ≥ 6.
Recall that on B4, the 3-dimensional CAT(0) structure which are minimal (e.g.,
those whose links are isomorphic to that of Y ) can be classified, by geometric
rigidity results due to Crisp and Paoluzzi [19]. On the other hand, Charney [14]
proved that the Deligne complex [20] of B4 is also a CAT(0) space of dimension
3, with respect to the Moussong metric (we remind that the Deligne action of
B4 on this complex is not proper).

1.1. Property RD. — Let now G be an arbitrary countable group. A length on
G is a map | · | : G → R+ such that |e| = 0, |s| = |s−1| and |st| ≤ |s| + |t| for
s, t ∈ G and e the identity element. We recall that G is said to have property
RD ([27]) with respect to a length | · | if there is a polynomial P such that for
any r ∈ R+ and f, g ∈ CG with supp(f) ⊂ Br one has

‖f ∗ g‖2 ≤ P (r)‖f‖2‖g‖2
where Br = {x ∈ G, |x| ≤ r} is the ball of radius r in G, supp(f) is the
set of x ∈ G with f(x) 6= 0, and CG is the complex group algebra of G.
For an introduction to property RD we refer to Chapter 8 in [37]. The above
convolution inequality, usually referred to as the Haagerup inequality (after
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Haagerup [25]), allows to control the operator norm of f acting by convolution
on `2(G) in terms of its `2 norm. Hence, some important consequences of
property RD are of a spectral nature.

When G is finitely generated we have the word length | · |S associated to any
finite generating set S. Then property RD with respect to | · |S is independent
of S so we simply speak of property RD for G is that case.

Our first main result is the following theorem.

Theorem 1. — The following groups have the property RD of Haagerup–
Jolissaint:

1. the braid group B4 on 4 strings;
2. the central quotient B4/〈z〉;
3. the automorphism group Aut(F2) of the free group on 2 generators.

Theorem 1 shows property RD for low indices in two series of groups, namely:
– the braid groups Bn for n ≥ 3;
– the automorphism groups Aut(Fn) for n ≥ 2.

Property RD for these series is an open problem formulated in Section 8 of
[18]. The fact that B3 has property RD was shown very early on by Jolissaint
in [27] and the other cases were left open since then. Shortly after the first
version of the present paper appeared, the question of showing property RD
for all groups Bn has been answered by Behrstock and Minsky (see [6]). More
generally, they established property RD for all mapping class groups. (Recall
that the braid group Bn can be identified to the mapping class group of the
n-punctured disk.) The problem for Aut(Fn), n ≥ 3, remains open.

The proof of Theorem 1 is divided into two steps. The first step relies on
our previous results from [4]:

Theorem 2 ([4, Theorem 5]). — Let G be a group acting properly on a
CAT(0) simplicial complex ∆ of dimension 2 without boundary and whose
faces are equilateral triangles of the Euclidean plane. Then G has property
RD with respect to the length induced from the 1-skeleton of ∆.

We apply Theorem 2 to the quotient B4/〈z〉. By results of [7, 19], this group
acts on a simplicial complex X with the required properties.

The second step uses automaticity of B4, and more precisely, the Thurston
normal forms for braids in B4, which allows to go back to B4 from its central
quotient.

We now show how deduce (3) from (2) in Theorem 1. The group Aut(F2) is
isomorphic to Aut(B4), itself containing Inn(B4) as a subgroup of index 2 (see
[21, 28]). Thus property RD for Aut(F2) follows from the corresponding result
for Inn(B4). Then (3) follows from the fact that Inn(B4) is isomorphic to the
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central quotient of B4. Note that in [32], a faithful action of Aut(F2) = Aut(B4)

on the complex X is constructed.
Details of the proof are in Section 3, after a brief survey on property RD in

Section 2.

1.2. The braid groupB4 as a group of intermediate rank. — Groups and simplicial
complexes appearing in Theorem 2 provide us with a large pool of objects
satisfying intermediate rank properties. See [4] for definitions and concrete
examples. We discuss here the intermediate rank properties of B4 and its
central quotient (denoted G below).

We introduced in [4] a notion of mesoscopic rank for a CAT(0) space X,
which reflects the presence inX of maximal flats portions (where maximal refers
to the dimension, hence the rank terminology) which are (much) larger than
“germs of flats” in X (say, flats of tangent cones) but are not actually contained
in genuine flats of X (i.e. copies of the Euclidean space Rn inside X). We
recall the precise definitions of mesoscopic rank and exponential mesoscopic
rank in Section 5. Following [4] we say that a group G is of (exponential)
mesoscopic rank when there is a proper action of G with compact quotient on
some CAT(0) space which is of (exponential) mesoscopic rank at some point.

Our second main result is as follows.

Theorem 3. — The braid group B4 on 4 strings is of exponential mesoscopic
rank.

For the proof, we first establish that the quotient G of B4 by its center is of
exponential mesoscopic rank, and then extend the result to B4. Note that B3

is an example of a group acting freely and cocompactly on a simplicial complex
as in Theorem 2 (see [8]) but it is not of mesoscopic rank, and more precisely
for any action with compact quotient on a 2-dimensional CAT(0) space X, the
space X cannot be of mesoscopic rank.

In course of proving Theorem 3 we will see that the central quotient G of
B4 is, at the local level, closely related to affine Bruhat-Tits buildings of type
Ã2 (what actually creates some complications in the proof of Theorem 3, since
the latter are not of mesoscopic rank by [4]). We will prove however that these
connections cannot be extended beyond the local level (and specifically beyond
the sphere of radius 1, see the last section of the paper).

Acknowledgments. — We thank Jason Behrstock for communicating us his re-
cent preprint [6] with Yair Minsky as well as the reference [32]. The second
author thanks JSPS for support.
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2. Property of rapid decay

In [25] Haagerup proved that, for any finitely supported functions f, g :

Fn → R defined on the free group Fn on n generators, the convolution product
satisfies the inequality

‖f ∗ g‖2 ≤ (r + 1)‖f‖2‖g‖2
where r is the radius of the support of f , with respect to the usual word-length
metric of Fn. In other words f , viewed as a convolution operator from `2(Fn)

to itself, is bounded with operator norm at most (r + 1)‖f‖2.
Groups satisfying the above inequality with some polynomial P (r) instead

of r+1 are said to have property RD (the precise definition of which we recalled
in the introduction), see [27], where Jolissaint showed that (with respect to the
word length):

– a finitely generated amenable group has property RD if and only if it is
of polynomial growth;

– uniform lattices in a rank 1 Lie group have property RD.

The latter has been extended to all hyperbolic groups in the sense of Gromov
by de la Harpe [26], and subsequently to groups which are hyperbolic relatively
to polynomial growth subgroups by Chatterji and Ruane [17], thereby estab-
lishing property RD for all lattices (uniform or not) in rank 1 Lie groups.

The situation is different for groups of rank ≥ 2. Non uniform lattices in
a higher rank Lie group, typically SL3(Z), are prominent examples of groups
without property RD (cf. [27]). Valette conjectured that all uniform lattices in
higher rank Lie groups have property RD. This is known to hold for uniform
lattices in SL3(Qp) (and other groups acting on triangle buildings), by a well-
known theorem of Ramagge–Robertson–Steger [33] (see also [29]) which was the
first occurrence of property RD in higher rank situations. Their results were
extended by Lafforgue [29] to cover all uniform lattices in SL3(R) and SL3(C).
Chatterji [15] showed then that lattices in SL3(H) and E6(−26) behave similarly.

We refer the interested reader to [37, 18] for more information. A well-known
application of property RD concerns the Baum–Connes conjecture without co-
efficient: by a theorem of Lafforgue [30], groups which satisfy property RD
together with some non positive curvature assumption (called strong bolicity)
also satisfies the Baum–Connes without coefficient. For groups with prop-
erty T, including most hyperbolic groups or cocompact lattices SL3(R) (for
instance), this is the only known approach to the Baum–Connes conjecture.
(The Baum–Connes conjecture is open for SL3(Z).)

In [4] we studied “rank interpolation” for countable groups, that is, inter-
polation of the rank in between the usual rk = 1, 2, . . . integer values. The
main applications presented in [4] are C∗-algebraic in nature and in particular,
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we established property RD for many groups of intermediate rank. This pro-
vided new examples where Lafforgue’s approach to the Baum–Connes could be
applied (in fact for many of these groups—e.g. for groups of rank 7

4—this is
also the only approach that is presently known to work, and the Baum-Connes
conjecture with coefficients is open). See also [5] and [3] for other results on
intermediate rank and property RD. The accent in [4] is on interpolating the
rank between 1 and 2, which includes a large class of groups of interest. In the
present paper we will see that B4 is also a group of intermediate rank.

3. Proof of Theorem 1

The group B4 admits the following presentation:

B4 = 〈a, b, c | aba = bab, bcb = cbc, ac = ca〉.

The pure braid group P4 is the kernel of the surjective homomorphism to the
symmetric group on 4 letters,

B4 → S4,

mapping a braid to the corresponding permutation of its endpoints. It is well-
known that the center of both B4 and P4 is the cyclic group generated by the
element z = (bac)4, which consists in a full-twist braiding of the 4 strings (see
[11, Section 10.B] for instance; this is known to hold for more general Artin
groups [10, 20]). In other words B4 is a central extension of the group

G = B4/〈z〉

by the groups of integers Z = 〈z〉, which gives an exact sequence

1 −→ Z −→ B4 −→ G −→ 1,

and in the same way,

1 −→ Z −→ P4 −→ H −→ 1,

where H = P4/Z is a finite index subgroup of G. The torsion in G corresponds
to the the conjugacy classes of the elements x = bac and y = bac2 and their
powers, where we have x4 = y3 = z (see [19, p. 139] for a geometric proof of
this fact; recall that B4 itself is torsion free). It follows that H is torsion free.

We will need some results of Brady [7] and their extensions in Crisp–Paoluzzi
[19, Section 3]. Let Y be classifying space of B4 constructed in [7]. As recalled
in the introduction, Y is a CAT(0) simplicial complex of dimension 3 whose
3-dimensional faces are Euclidean tetrahedra. The authors of [19] consider the
projection in Y along the z-axis and obtain a 2-dimensional complex X (called
the Brady complex there) together with an action of G (called the standard
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action, in view of [19, Theorem 1]) which commutes to the action of B4 on Σ

under taking projection. The complex Y splits metrically as a product:

Y = X ×R

and X is endowed with an action of G (in Section 4 we will give more details
on these constructions).

As a CAT(0) space, X is a triangle polyhedron, i.e. its faces are equilateral
triangles of the Euclidean plane ([19, p. 140]), and the action of G on X is
proper with compact quotient. Thus H acts freely with compact quotient on
X, so H appears as the fundamental group of the complex

V = X/H

(it can be shown that V has 6 vertices and 32 faces). It follows then from
Theorem 2 that H has property RD with respect to some (hence any) finite
generating set. As H is a finite index normal subgroup of G this implies, by
Proposition 2.1.4 in [27], that G itself has property RD.

Further results of Jolissaint [27] (in particular Proposition 2.1.9 of that
paper, see also Chatterji–Pittet–Saloff-Coste [16, Proposition 7.2]) show that
property RD is stable under certain types of central extensions. We will prove
that these results can be applied to the present situation and this will conclude
the proof of Theorem 1.

Consider the section
κ : G→ B4

of the quotient map π : B4 → G, which identifies G as the subset of braids
in B4 whose central part is trivial. Being a central extension of G, we can
decompose B4 as a product

B4 = Z×c G
where the value at a point (g, h) ∈ G×G of the cocycle

c : G×G→ Z

defining the extension is the exponent of z ∈ G in the central element

κ(g)κ(h)κ(gh)−1

of G.
Our goal is to find a symmetric finite generating set of G such that, for the

corresponding Cayley graph YG of G, we have

|c(g, h)| ≤ n

for every elements g, h ∈ G at distance at most n from the identity in YG. That
this implies property RD for B4 follows from [16, Proposition 7.2].
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Let us fix some notations regarding the Thurston normal form for elements
of B4 (see [22, Chapter 9] and [12]). In what follows we write ∆ = (bac)2 for
the half twist of the four strings.

The braid group B4 can be generated by a set S of 23 elements, which
are in bijective correspondence with the non trivial elements of the symmetric
quotient S4. The half-twist ∆ belongs to S. Furthermore in this presentation,
the monoid B+

4 of positive braids is the submonoid of G generated by S, and
every elements s ∈ B+

4 can be written in a canonical way

s = s1 . . . sn,

called the greedy form of s, where si ∈ S (see [23, 22], for instance one can
consider the right greedy form where the element ∆ appears only on the right
side of the expression s1 . . . sn). This decomposition can be extended to B4: by
[22], every x ∈ B4 can be written as x = s−1t with s, t ∈ B+

4 , in a unique way
(after obvious cancellation in case both s and t start with the same element
r ∈ B+

4 ). Thus any elements x ∈ B4 can be written in a canonical form

x = s−1
n . . . s−1

1 t1 . . . tm,

where si, tj ∈ S. The latter decomposition is called the Thurston normal form
(or the Garside normal form) of x. Following [13], we let

|x| = n+m,

where n and m are given by the normal form. The language associated to
this normal form turns out to give a geodesic biautomatic structure on B4

(see [22, 13]), and if we denote by Y the cayley graph of B4 with respect to
S ∪ S−1, then |x| is the length of a simplicial geodesic in Y from e to x ∈ B4.
In particular for x, y ∈ B4 we have

|xy| ≤ |x|+ |y|

(see [13, Lemma 3.4]).
Let YG be the Cayley graph of G with respect to the generating set π(S ∪

S−1). It is easily seen that

|κ(gh)| ≤ |κ(g)|+ |κ(h)|

since κ(gh) is obtained from the product κ(g)κ(h) by cancellation of the central
factor. In particular

κ(Balln(YG)) ⊂ Balln(Y ),

where Balln(·) is the ball of radius n in the corresponding Cayley graph. On
the other hand, since ∆ ∈ S and z = ∆2, the absolute value of the exponent
of z in the central part of an x ∈ B4 is at most |x|/2 by construction of the
normal form of x.
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Let g, h ∈ G at distance at most n from the identity in YG. By definition,
the value of c(g, h) is the exponent of z in the central part of κ(g)κ(h). Thus

|c(g, h)| ≤ |κ(g)κ(h)|/2 ≤ (|κ(g)|+ |κ(h)|)/2 ≤ n.

This concludes the proof of Theorem 1.

4. Some classical applications of property RD

We present below two classical applications of property RD. The first one
concerns the Baum-Connes conjecture and the second one is about random
walks, which gives use some useful information on random walks on B4. For
further consequences of property RD we refer to Valette’s book [37] and to the
references there.

4.1. Braid groups and the Baum–Connes conjecture. — As is well-known, the
Baum–Connes conjecture with coefficients holds for the n-string pure braid
group Pn, as well as for its finite extension Bn (see [31, 35]). On the other
hand, in the case n = 4, we have property RD and thus the Banach KK-
theory techniques of Lafforgue [30] applies as well. Hence:

Corollary 4. — The groups B4, P4, their respective central quotients, G
and H, and the automorphism group Aut(F2) of the free group F2, satisfy the
Baum–Connes conjecture without coefficient.

The Baum–Connes conjecture (even without coefficients) has a number of
applications. See [37] for more details. The problem of showing the Baum-
Connes conjecture with coefficients for groups acting freely isometrically with
compact quotient on a CAT(0) space satisfying the assumption of Theorem 2
is open.

As far as we know, the Baum–Connes conjecture for the central quotients
of Bn and Pn is open for n ≥ 5, as well as for Aut(Fn) for n ≥ 3.

4.2. `2 spectral radius of random walks onB4. — Another application of property
RD concerns random walks on groups, see Grigorchuk and Nagnibeda [24] and
the end of Section 2.2 in [4] for more details and references.

If G is a countable group endowed with a length, one considers the operator
growth function of G,

Fr(z) =
∑
n

anz
n

where the coefficients an are bounded operators on `2(G) defined by

an =
∑
|x|=n

ux
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with ux, x ∈ G, the canonical family of unitary operators corresponding to G
in C∗r (G) under the regular representation. The radius of convergence ρr of Fr
defined by

1

ρr
= lim sup

n→∞
‖an‖1/nr

is no lower than the radius of convergence of the usual growth series of the
group G with respect to `. Conjecture 2 in [24] states that G is amenable if and
only if ρ = ρr. For groups with property RD (in fact “radial subexponential”
property RD is sufficient, see [4, Proposition 23] and references) we have ρr =√
ρ and thus the above Conjecture 2 holds. One can also deduce the `2 spectral

radius property for every element in the group algebra of G provided G has
(subexponential) property RD, i.e., the fact that the spectral radius of every
element a ∈ CG acting by convolution on `2(G) is equal to

lim
n→∞

‖a∗n‖1/n2

(which also has some important applications, again see the references in [4]).
Thus we obtain:

Corollary 5. — The groups B4, P4, their respective central quotients, G
and H, and Aut(F2), satisfy the `2 spectral radius property. Furthermore for
these five groups the reduced spectral radius ρr and the radius of convergence
ρ of the usual growth series are related as follows:

ρr =
√
ρ < 1,

and thus these groups satisfy Conjecture 2 in [24].

5. Mesoscopic rank

Let X be a piecewise Euclidean CAT(0) simplicial complex of dimension
n ≥ 2, without boundary, and let A be a point of X (see [9] for a general
reference on CAT(0) spaces). We call mesoscopic rank profile of X at A the
function

ϕA : R+ → N

which associate to an r ∈ R+ the number of distinct flat balls of radius r in X
which are centered at A, and which are not included in a flat of X. By a flat in
X (resp. flat subset of X) we mean an isometric embedding of the Euclidean
space Rn in X (resp. of a subset of an Euclidean space Rn with the induced
metric).

We then have the following.

Proposition 6. — Let X be a piecewise Euclidean CAT(0) simplicial com-
plex without boundary and let A be a point of X. Then,
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1. if X is hyperbolic, ϕA is compactly supported;
2. if X is an affine Bruhat-Tits building, ϕA vanishes identically.

We refer to [4, Section 6], where this theorem is stated for triangle polyhedra
but the proof extends to the above general situation (in the first case there is
no flat at all, while in the second, we have in fact that every flat ball is included
in uncountably many flats).

According to Proposition 6, the mesoscopic rank profile trivializes when the
rank takes the usual rk = 1, 2, 3, . . . integer values. The following property
detects spaces of intermediate rank where, more precisely, intermediate rank
occurs (exponentially) in between the local and asymptotic scale in X:

Definition 7. — The space X is said to have exponential mesoscopic rank at
A if the function ϕA converges exponentially fast to infinity at infinity.

Mere mesoscopic rank refers to the fact that the support of ϕA contains a
neighbourhood of infinity. Thus for spaces of mesoscopic rank at a point A,
on can continuously rescale the radius of balls of center A from some constant
C up to ∞, in such a way that all the balls in this family are flat but not
included in flats. When the mesoscopic rank is exponential, the number of
possible choices for these balls varies exponentially with the radius.

Definition 8. — A group G is said to be of exponential mesoscopic rank if
it admits a proper isometric action with compact quotient on a CAT(0) space
which is of exponential mesoscopic rank at least at one point (and thus at
infinitely many points).

The following groups are known to be of exponential mesoscopic rank:
(a) The group denoted Γ./ in [4], and called group of frieze there;
(b) The group of rank 7

4 which is the fundamental group of the complex
denoted V 1

0 in [4];
(c) D. Wise’s non Hopfian group.
We refer to Section 6.1 in [4] for (a) and (b), and [5, 3] for (c). In the present

paper we add further groups to this list, namely B4 and its central quotient.

Remark 9. — Most of the groups of rank 7
4 might be of exponential meso-

scopic rank. Besides the one of Item (b) above, one can get more examples from
the classification of transitive orientable groups of rank 7

4 given in [4, Theorem
4], but we presently have no general (say local or semi-local) criterion ensuring
exponential mesoscopic rank (compare Section 7 below). Another interesting
problem is to prove or disprove the existence of groups of mesoscopic rank for
which the mesoscopic rank profile at some vertex grows faster than polynomials
but slower than exponential functions.
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6. Proof of Theorem 3

We prove that the braid group B4 and its central quotient G = B4/〈z〉 are
of exponential mesoscopic rank, respectively, in Section 6.3 and Section 6.2.

6.1. A closer look at the 4-string complexes Y andX.— Let us first recall in some
more details the description of the Brady action of B4 on Y and its quotient
action of G on X, following [7] and [19]. Consider the following presentation
of B4,

B4 = 〈a, b, c, d, e, f | ba = ae = eb, de = ec = cd,

bc = cf = fb, df = fa = ad,

ca = ac, ef = fe〉,

and let us keep the notations x = bac and y = bac2, so that x4 = y3 = z

generates the center of B4. There are exactly sixteen ways to write x as a
product of three of the generators a, . . . , f . These can be expressed as the
length 3 subwords of the following two words of length 12:

W1 = bcadefbacdfe; W2 = faecfaecfaec,

which are representative for the central element x4 = y3 = z in B4 (see [19,
page 139]). To each of these expressions x = a1a2a3 one associates an Euclidean
tetrahedron whose faces are right-angled triangles, and whose edges have length

|x| =
√

3; |ai| = 1; |a1a2| = |a2a3| =
√

2.

The corresponding labelled tetrahedra can be assembled to form a compact
complex V such that π1(V ) = B4. Then Y = Ṽ is the universal cover of V
with the corresponding deck-transformation action of B4.

The CAT(0) space Y splits as a metric product Y = X × R, where X is
the range of a projection of Y along the z-axis. The image of each tetrahedron
in Y under this projection is an Euclidean equilateral triangle in X and the
action of B4 factors out to a simplicial action of G = B4/〈z〉 on X, which is
proper and cocompact. The Cayley graph of G with respect to the generating
set S = {a, . . . , f} (where the above a, . . . , f are viewed as elements of G under
a slight abuse of notation) is a 4-to-1 cover of the 1-skeleton of X.

Links at vertices in X are represented on Figure 1 below, where the right
hand side representation corresponds to Figure 3 in [7] and Figure 6 in [19].
The equivalent left hand side representation is included for future reference (see
Section 7).

The labellings on these figure corresponds to edges of the generating set S
entering and leaving the given vertex (this depends on the choice of a repre-
sentative of the coset of 〈x〉 in G, but a different choice will simply relabel the
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b− d− b+d+

e−e+

f+f−

f+a+ c− e− c+

e+c+ a+d+

b+d−

b− a− f−
c+

a+

a−

c−

Figure 1. The link L and its labelling

link according to the action of an element of stabilizer of the vertex, see [19, p.
141]).

We call lozenge in X the reunion of two triangles glued along an edge of
valence 2, and restrict from now on the terminology triangle of X to those
equilateral triangles in X which are not included in a lozenge. According to
the description given on p. 160 of [19], the complex X is built out of triangles
and lozenges, all of whose edges being trivalent in X and labelled in the same
way. There are three types of corners: in triangles, all angles labelled by 1,
while in lozenges the angles are labelled 2 or 3 depending of whether it equals
π/3 or 2π/3. Then triangles and lozenges in the complex X are arranged in
such a way that the labelled link at each vertex matches that given on the
following Fig. 2 (our notations differ slightly from those of [19], in particular
our label 3 correspond to 2T−3 and 2T+

3 in [19, Fig. 19]).

11

2

2 3

3
1

11

3 33 3

12

2

12

2

Figure 2. Description of the complex X

6.2. Exponential mesoscopic rank for X and G = B4/〈z〉. — The proof will fol-
low the strategy of [4] (see Section 6.1 and 6.2), with the additional difficulty
that the link L embeds into the incidence graph of the Fano plane (compare
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Section 7). Let us first derive a few elementary lemmas regarding the local
structure of X.

Lemma 10. — Let R be a lozenge of X. Any boundary edge of R is incident to
exactly a triangle and a lozenge R′ 6= R of X. Furthermore, R∪R′ is isometric
to a parallelogram and we will say that R and R′ are aligned in X.

Proof. — Let R be a lozenge of X, e = [A,B] be a boundary edge of R, where
A is the vertex of e whose internal angle in R is 2π/3. The geometry of L shows
that there are two faces incident to e which are not included in R. Inspecting
the link at B, we see that one of these faces is a triangle of X, while the other
is a lozenge whose internal angle at B is 2π/3. This follows from the fact that
every vertex of valence of 3 in L is adjacent to a vertex of valence 2, and the
vertices with valence 2 are at distance ≥ 3 one from the other. Hence the
lemma is proved.

Lemma 11. — Let R be a lozenge of X and A be a vertex of R of internal
angle 2π/3. There are exactly two lozenges R1 and R2 in X such that R∩R1 =

R ∩ R2 = {A} and such that both R ∪ R1 and R ∪ R2 are included in a flat
hexagon of X. (This hexagon contains R and R1 (resp. R and R2) and the
two triangles of X containing A and completing R and R1 (resp. R2) to a local
flat at A.)

Proof. — The assertion follows from the fact that, given a vertex x of valence
2 in L, there are exactly two vertices y and z of valence 2 in L such that (x, y)

on the one hand, and (x, z) on the other, are at distance π in a cycle of L of
length 2π.

Lemma 12. — Let x and y be two trivalent vertex at distance π in L. Then
there are precisely three distinct paths of length π with extremities x and y in
L. Depending on the position of x and y in L these paths are labelled in either
one of the following two ways (with the labelling given by Fig. 2):

– Case I: 2-3, 3-2, and 1-2-1;
– Case II: 1-3, 3-1, and 2-1-2.

Proof. — It is easily seen from the geometry of the link (Fig. 2) that trivalent
points at distance π in L can be joined by simplicial paths whose edges labelling
are:

(a) 1-3 (or 3-1)
(b) 2-3 (or 3-2)
(c) 1-2-1
(d) 2-1-2
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and furthermore that there are precisely three distinct paths between any two
such points. Indeed, the group of labelling preserving automorphisms of L is
homogeneous on trivalent vertices, so we can assume for instance that x = a+

(in the notation of Fig. 1), in which case there are two possibilities for y,
namely y = a− and y = e−. The lemma follows, where case I corresponds to
y = a− and case II to y = e−.

We call singular geodesic in X a CAT(0) geodesic of X which is included in
the 1-skeleton of X (viewed with respect to the triangle/lozenge simplicializa-
tion, in particular, all edges of singular geodesics are of valence 3). It is easy to
see that for u = a or u = c, and every vertex A in X, the vertices uiA, i ∈ Z,
belong to a singular geodesic of X. Indeed, since the labellings of the link at
each vertex uiA are given by permuting letters of L, it is sufficient to show that
the points of L with label u− and u+ are trivalent vertices at distance π in L,
which straightforward. We will denote this geodesic by uZA.

Recall that a subset S of X is called a (flat) strip if it is isometric to a
product I ×R ⊂ R2 where I is a compact interval of R. The boundary of S
is a reunion of two parallel geodesics of X, say d and d′, and is denoted (d, d′).
The height of S is the CAT(0) distance between d and d′.

The following lemma asserts that singular geodesic inX all appear as branch-
ing locus of flat strips of X. This property is reminiscent of affine Bruhat-Tits
buildings (say, of dimension 2), where it is true in a somewhat stronger form
(in particular strips may be extended arbitrarily there).

Lemma 13. — Let d be a singular geodesic of X. There are precisely three
flats strips in X of height at least

√
3/2 whose pairwise intersection are reduced

to d.

Proof. — For each edge e of d consider the three faces T ie , i = 1, 2, 3, whose
boundary contains e. Two of these faces are lozenges and one of them, say T 1

e ,
is a triangle of X (see Lemma 10). Let f be an edge of d adjacent to e and let A
be their intersection point. The points corresponding to e and f in the link LA
of X at A are trivalent, and it can be easily checked that they are at distance
π from each other in LA. Thus Lemma 12 applies. In case I, the faces T 1

e and
T 1
f correspond to a path of length π of the form 1-2-1, and, up to permutation

of indices i, the faces T ie and T if (for i = 2, 3) corresponds to a cycle of length
π of the form 2-3 and 3-2. In case 2 and again up to permutation of the indices
i, the faces T 1

e and T 2
f correspond to a path of length π of the form 1-3, the

faces T 1
f and T 2

e correspond to a path of length π of the form 3-1, while the
faces T 3

e and T 3
f correspond to a path of length π of the form 2-1-2. Then the

lemma follows by iterating this on both sides of the geodesic d starting from a
fixed edges e. The height of each strip may be taken to be at least

√
3/2.
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We say that a vertex of a singular geodesic of type I (resp. of type II)
depending on whether case 1 (resp. case 2) applied in the proof of the above
lemma, and call a geodesic of type I (resp. of type II) if all its vertices are of
type I (resp. type II). For instance the geodesic aZA and cZA are of type I for
any vertex A of X.

Lemma 14. — Let d be a singular geodesic of type I in X. There are precisely
three flats strips inX of minimal height whose pairwise intersection are reduced
to d and whose boundary geodesics are singular geodesics type I in X. Two of
them have height

√
3/2, and are reunions of aligned lozenges (see Lemma 10),

and the other one has height
√

3, and is a reunion of hexagons as described in
Lemma 11, and triangles of X which are the unique triangles completing these
hexagons to a flat strip.

Proof. — Let d be a singular geodesic of type I in X and let S1, S2 and S3 be
the strips of height

√
3/2 given by Lemma 13, whose pairwise intersections are

reduced to d. We may assume at each vertex A of d the path of length π in
LA corresponding to S1 are of the form 1-2-1. Then the path corresponding to
S2 and S3 are either of the form 2-3 or 3-2.

2

3

2 2

2

2

2

2

2

2

2

2

2

3 3
3

3

3

3

3 3

3

3

1

1 1 1

1

1

111

1

1

1

3

Figure 3. Parallelograms and strips on type I geodesics of X

Let us first consider the strip S1 and for each vertex A of d denote by RA
the lozenge of X corresponding to the index 2 in the path 1-2-1 of LA. It is
easily seen that if A and B are consecutive vertices on d, then the lozenges
RA and RB are in the configuration described in Lemma 11 and they can be
completed by a unique triangle of X (besides the one in S1) to form an hexagon
HAB . The reunion S′1 of all hexagon HAB when A and B runs over the pair
of adjacent vertices on d is a flat strip of X of height

√
3. Furthermore it is a

simple matter to check (with Lemma 12) that all the vertices of the boundary
of this strip which is distinct from d are of type I, which proves the assertion

tome 139 – 2011 – no 4



THE 4-STRING BRAID GROUP B4 HAS PROPERTY RD 495

of the Lemma in that case. A parallelogram of the strip S′1 is represented on
Fig. 3 on the left.

Consider now the strip S2, which is of height
√

3/2. The boundary of this
strip which is distinct from d contains only vertices whose link intersect S2

along a path of the form 2-3 or 3-2. By Lemma 12 again, these vertices are
of type I. The case of S3 being identical to that of S2, this proves the lemma.
Parallelograms of the strips S2 and S3 are represented on Fig. 3.

Theorem 15. — The complex X is of exponential mesoscopic rank at every
vertex. More precisely let O be a vertex of X and k be a sufficiently large
integer (in fact k ≥ 32 is sufficient for our purpose). Then the mesoscopic
profile ϕO at X satisfies

ϕO ≥
Å

3

2

ã2µk−4

on the interval [k − 1, k] of R+, where

µk =

°
k(

2√
3
− 1) + (

2√
3
− 3)

§
.

In particular the group G is of exponential mesoscopic rank.

Proof. — Let Π be the flat containing the origin O = O0 of X and generated
by the subgroup 〈a, c〉 ' Z2 of G. Denote O1 = (ac)−1(O0) let d = [O0,∞) be
the semi-line of Π of origin O0 and containing O1. Hence the vertices of d are
the points

Ok = (ac)−k(O0)

for k ∈ N. Let Π0 be the sector of X of extremity O0, of angle 2π/3 at O0,
and which is bisected by the semi-line d (see Figure 4). The boundary of Π0

is included in the reunion of singular geodesics d1 and d2 which intersects at
O0; the first one contains the vertices a−k(O0) and the second one the vertices
c−k(O0), k ∈ N. Both d1 and d2 are of type I.

Consider the vertices A = a(O0) of the flat Π. By Lemma 14:
1. There is a unique strip S1 of height

√
3 whose intersection with Π is

reduced to aZ(O0), and whose other boundary d′1 is a singular geodesic
of type I in X. We consider then on d′1 the unique strip of height 1, say
S′1, which corresponds in the link of vertices of d′1 to paths of the form
3-2 (see Fig. 4). Let d′′1 be the other boundary of S′1.

2. Consider the strip S2 in X of height
√

3/2 on cZ(O0) which contains
A. (This strip is included in Π and its other boundary d′2 = cZ(A) is a
singular geodesic of type I in X.) There is on d′2 a unique strip S′2 of
height

√
3 whose other boundary d′′2 is a singular geodesic of type I in X.

The strips S1, S′1, S2 and S′2 are represented on Fig. 4, together with the
labellings given by the links at their vertices.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



496 S. BARRÉ & M. PICHOT

2

3

31

1

1
1

1

1

1

1

1

1

2 2

2

22

2

2

2

22

3

3

1

1

1

3

3

3

3

2

2

3

1

1

3

33

2

2

B

3 A

3

C

2

2

3

3

1

1

1

O
1

2

O
1

3

3

0

2

Figure 4. Exponential mesoscopic rank of the complex X

Lemma 16. — Let k ∈ N and let D be a flat disk in X of center Ok such that
D\(X\Π0) = D ∩ Π0. If the intersections D ∩ Si and D ∩ S′i, i = 1, 2 are non
empty open sets, then D is not included in a flat of X.

Proof of Lemma 16. — As we see on the link LA of A, there is a unique lozenge
R, which corresponds to a label 2 in LA and which extends the strips S1 and
S′2 at the point A to a flat disk in X containing A as an interior point. This
lozenge contains a vertex B at distance π from c−1(A) in LA and in turn,
there is a unique way to extend the resulting configuration to a flat disk in X
containing B as an interior point. This disk corresponds to a circle of length
2π which is labelled 1-3-2-1-2 in LB . Let R′ be the lozenge of X distinct from
R which corresponds the label 2 in this circle.

It is easy to see that, if D is a flat disk as in the statement of the lemma,
then any flat disk D′ of center Ok and radius > k + 1 which contains D must
contain the points A and B as interior points and must intersect the lozenge
R′ along a non-empty open subset. On the other hand D, and a fortiori D′,
intersects the strip S′1 along a non empty open set. Thus D′ intersects along
an non empty open set the lozenge of S′1 which contains C and whose internal
angle at C is 2π/3. But this shows that D′ cannot be extended beyond the
point C, since this would give a cycle of length 2π in the link LC containing
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two successive edges of length 2π/3. Thus neither D′ nor D is included in a
flat of X.

We can now conclude the proof of Theorem 15. We proceed as in Lemma
59 of [4], to which we refer for more details. For k ≥ 32 let µk be the integer
defined in the statement of the theorem and let νk =

(
3
2

)µk . (Since k ≥ 32 we
have µk ≥ 3.) Using Lemma 14, we can construct, for i = 1, 2, (at least) νk
distinct flat strips

S1
i , . . . , S

νk
i

in X of height
√

3
2 µk, each of whose intersection with S′i is reduced to d′′i . (The

lower bound νk is estimated by examining transverse trees in the sets ∪νk
j=1S

j
i ;

sharper bounds can be obtained easily but νk is enough to show exponential
growth of the mesoscopic profile.) So let i = (i1, i2) ∈ {1, . . . , νk}2 and consider
the subset Πi of X defined by

Πi = Π0 ∪ Si11 ∪ S
i2
2 .

Then the set Di of points of Πi at distance ≤ k+1 from Ok in Πi is a flat disk in
X whose boundary contains B. Furthermore the disks Di are pairwise distinct
when i varies in {1, . . . , νk}2. For r ∈ [0, k+ 1] write Dr

i for the concentric disk
of radius r in Di. Then for any fixed r ∈ [k, k + 1] the family of disks

{Dr
1, . . . D

r
νk
}

contains at least
(

3
2

)2µk−4 distinct elements. Furthermore all these disks satisfy
the assumption of Lemma 16 and thus are not included in a flat of X. Since the
vertex Ok are all equivalent under the group G, this proves the theorem.

6.3. Exponential mesoscopic rank for Y and the braid group B4.— We conclude
this section with the proof of Theorem 3.

Theorem 17. — Let O be a vertex of Y and consider the CAT(0) projection
π : Y → X associated to the metric decomposition Y ' X × R. Then the
mesoscopic profile ϕYO at Y satisfies

ϕYO ≥ ϕXπ(O)

where ϕXO′ is the mesoscopic profile of X at a vertex O′ ∈ X. In particular the
braid group B4 is of exponential mesoscopic rank.

Proof. — For r ∈ R, let k = ϕX(r) and consider k distinct flat disks
D1, . . . , Dk of center O′ = π(O) and radius r in X which are not included in a
flat of X. Let

Ci = π−1(Di) ' Di ×R
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be the cylinder of Y corresponding to the decomposition Y ' X ×R. These
cylinder are isometric to cylinders in the Euclidean space R3 and in particular
the ball of center O and radius r in Ck are all flat balls of X. Furthermore,
these balls are not included in flats of Y . Indeed, if Bi ⊂ Π where Π ' R3

is isometric to the Euclidean space R3, then the projection π(Π) is a convex
subset of X which is isometric to the Euclidean space R2. But this shows that
Di is included in a flat of X. Finally, as the ball Bi are pairwise distinct (since
the disks Di are), we obtain that ϕY (r) ≥ k as claimed. The last assertion
follows from Theorem 15.

Remark 18. — It would be interesting to give example of groups which act
properly with compact quotient on a CAT(0) space of dimension ≥ 3 of expo-
nential mesoscopic rank, which doesn’t split as a metric product where some
factor is of exponential mesoscopic rank. In view of Tits’ classification of affine
buildings, it seems plausible that CAT(0) simplicial complexes “whose rank
is close to their dimension” will get sparse when the dimension gets strictly
greater than 2. Recall here that affine Bruhat-Tits buildings are completely
classified in dimension ≥ 3 by work of Tits [36], and that this is far from being
possible in dimension 2 which offers a great degree of freedom [2]. We also
refer to the paper of Ballmann and Brin [1] concerning rank rigidity results in
dimension 3.

7. On local embeddings of X into a buiding

In the present section we investigate possible relations between the Brady
complex X and triangle buildings of order 2.

Let us observe first that the link of X (represented Fig. 1) obviously embeds
(simplicially) into the incidence graph L2 of the Fano plane. Such an embedding
is made explicit on Fig. 5 below; the graph L is obtained from L2 by removing
a tree T of 5 edges (indicated in dots on Fig. 5). We call center-edge of T the
only non-extremal edge of T .

The graph L2 is a spherical building and can be identified to the link of
triangle buildings of order 2 (see e.g. [34]; triangle buildings are also called affine
Bruhat-Tits buildings of type Ã2). By [2] there are uncountably many such
buildings, and their groups of automorphisms is generically trivial (generic is
taken here in the sense of Baire with respect to some appropriate topology). In
view of the above embedding L ↪→ L2, it is natural to ask whether the complex
X itself can be simplicially embedded into one of these triangle buildings. It
turns out that this problem has an elementary answer.
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Figure 5. The incidence graph L2 of the Fano plane and the link of X

Proposition 19. — LetX be the Brady complex and ∆ be a triangle building
of order 2. There is no simplicial embedding X ↪→ ∆. More generally, any
CAT(0) complex X of dimension 2 whose faces are equilateral triangle and
whose links at each vertex are isomorphic to L does not embed simplicially
into a triangle building.

Proof. — Let X be a CAT(0) complex X of dimension 2 whose faces are equi-
lateral triangle and whose links at each vertex are isomorphic to L, and assume
that we are given a simplicial embedding X ↪→ ∆. For a vertex D of X we
write TD for the removed tree,

TD = L∆,D\LX,D,

where LZ,D denotes the link of D in the complex Z. Fix some vertex A ∈ X.
Then there is a unique triangle in ∆, say (ABC), which corresponds to the
center-edge of the tree TA at the point A. Denote by (ABB′) and (ABB′′)

the two other triangles in ∆ adjacent to the edge [A,B]. In the link L∆,B′

(resp. L∆,B′′), the edge corresponding to the triangle (ABB′) (resp. (ABB′′))
is extremal in the tree TB′ (otherwise L∆,A\LX,A would contain more than
5 edges). Thus the three triangles of ∆ adjacent to the edge [B,B′] (resp.
[B,B′′]) do not belong to X. But then the graph L∆,B\LX,B contains at
least six edges, contradicting our assumptions. Therefore there is no simplicial
embedding X ↪→ ∆.

Remark 20. — The proof of Proposition 19 shows more, namely, it shows
that the obstruction of an embedding X ↪→ ∆ is local : for X and ∆ as in the
proposition, there is no simplicial embedding of simplicial balls of radius 2 in
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C

A
B’

B’’

B

Figure 6. Embedding X into a triangle building

X into simplicial balls of radius 2 in ∆. In other words the embedding L ↪→ L2

is the best we can do.
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