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DIOPHANTINE APPROXIMATION ON VEECH SURFACES

BY PAscAaL HUBERT & THOMAS A. SCHMIDT

ABsTrRACT. — We show that Y. Cheung’s general Z-continued fractions can be
adapted to give approximation by saddle connection vectors for any compact trans-
lation surface. That is, we show the finiteness of his Minkowski constant for any
compact translation surface. Furthermore, we show that for a Veech surface in stan-
dard form, each component of any saddle connection vector dominates its conjugates
in an appropriate sense. The saddle connection continued fractions then allow one to
recognize certain transcendental directions by their developments.

RESUME (Approzimation diophantienne sur les surfaces de Veech)

Nous montrons que les fractions continues generalisées Z de Y. Cheung s’adaptent
pour exprimer ’approximation par vecteurs de connexion de selles sur n’importe
quelle surface de translation compacte. C’est-a-dire, nous démontrons la finitude de la
constant de Minkowski pour chaque surface de translation compacte. De plus, pour
une surface de Veech en forme standard, nous montrons que chaque composant de
n’importe quel vecteur de connexion de selle domine, dans un sens approprié, ses
conjugués. Les fractions continues de connexions de selle permettent de reconnaitre
certaines directions transcendantales par leur développement.
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552 P. HUBERT & T. A. SCHMIDT

1. Introduction and Main Results

We show that Yitwah Cheung’s generalization of the geometric interpreta-
tion of regular continued fractions gives a successful method for approximation
of flow directions on translation surfaces by saddle connection vectors. Cheung
[7], [8] generalizes the work of Poincaré and Klein by replacing approximation
by the integer lattice in R? with approximation by any infinite discrete set
Z of nonzero vectors with finite “Minkowski constant”, equal to one-fourth
times the supremum taken over the areas of centro-symmetric bounded convex
bodies disjoint from Z.

We prove, as Cheung certainly understood, that the set of saddle connection
vectors of any translation surface has a finite Minkowski constant.

THEOREM 1. — Let S be a compact translation surface, and Z = V4. (S) the
set of saddle connection vectors of S. Then

w(Z) < wvol(S)
where vol(S) is the Lebesgue area of S and pu(Z) is as given in Definition 2.

The following result is of independent interest; here, it allows us to reach
transcendence results using approximation by saddle connection vectors. Re-
call that the group of linear parts (the so-called “derivatives”) of the oriented
affine diffeomorphisms of a compact finite genus translation surface, S, form
a Fuchsian group, I'(S). The trace field of the surface is the algebraic number
field generated over the rationals by the set of traces of the elements of T'(S),
when this group is non-trivial. When I'(S) is a lattice in SLy(R), the surface is
said to be a Veech surface.

THEOREM 2. — Suppose that S is a Veech surface normalized so that: T'(S) C
SLo(K); the horizontal direction is periodic; and, both components of every
saddle connection vector of S lie in K, where K is the trace field of S. Then
there exists a positive constant ¢ = c(S) such that for all holonomy vectors

v
v:<1>,and1§i§20neha3
V2

|vi| = c|a(vi) ],
where o varies through the set of field embeddings of K into R.
Note that in the above, each field embedding o in fact takes values only in R.
With S as above and Z = Vg (S) the set of saddle connection vectors of

S, the Z-expansion of an inverse slope 6 for a flow direction is defined in
Section 2.1. Theorem 1 then implies that this gives a sequence of elements
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DIOPHANTINE APPROXIMATION ON VEECH SURFACES 553

(Pn,qn) € K2 such that |0 — p,/qn| goes to zero as n tends to infinity; see
Lemma 2.

One criterion for a “good” continued fraction algorithm is that extremely
rapid convergence to a real number implies that this number is transcendental.
We show that the Z = V. (S)-fractions on Veech surfaces enjoy this property.

THEOREM 3. — With S and K as above, let D = [K : Q] be the field extension
degree of K over the field of rational numbers. If a real number £ € [0,1] \ K
has an infinite V. (S)-expansion, whose convergents p,/q, satisfy

log1
lim sup 0808 log(2D —1),
n—o0 n
then £ is transcendental.
1.1. Related work. — There exist algorithms that approximate flow directions

on particular translation surfaces by so-called parabolic directions, see [1], [25],
[24]. Roughly speaking, these algorithms can be viewed as continued fraction
algorithms expressing real values in terms of the orbit of infinity under the
action of a related Fuchsian group. Up to finite index and appropriate normal-
ization, each underlying group in these examples is one of the infinite family of
Hecke triangle Fuchsian groups, [28]. Some 60 years ago, for each Hecke group,
D. Rosen [21] gave a continued fraction algorithm. Motivated in part by the
use in [2] of the Rosen fractions to identify pseudo-Anosov directions with van-
ishing so-called SAF-invariant, with Y. Bugeaud, in [5] we recently gave the
first transcendence results using Rosen continued fractions. Theorem 3 is the
analog of a main result there.

Each Hecke group is contained in a particular PSL(2, K) with K a totally
real number field. Key to the approach of [5] was the fact that any element in
a Hecke group of sufficiently large trace is such that this trace is appropriately
larger than each of its conjugates over Q. This leads to a bound of the height of
a convergent p,, /¢, in terms of g, itself. The LeVeque form of Roth’s Theorem,
in combination with a bound on approximation in terms of ¢,q,+1, can then
be used to show that transcendence is revealed by exceptionally high rates
of growth of the g,. We show here that all of this is possible for any Veech
surface, replacing Rosen fractions by Z-expansions with Z = V.(S5). Key to
this is our results that: (1) any nontrivial Veech group I'(S) has the property of
the dominance of traces over their conjugates; and, (2) in the case of a Veech
surface S, the dominance property for the group implies a (weaker) dominance
of components of saddle vectors over their conjugates.

We mention that it would be interesting to compare the approximation in
terms of saddle connection vectors with the known instances of approximation
with parabolic directions.
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554 P. HUBERT & T. A. SCHMIDT

1.2. Outline. — In the following section we sketch some of the disparate back-
ground necessary for our results; in Section 3 we prove the crucial result that
the Minkowski constant is finite for any compact translation surface; in Sec-
tion 4 we show that if S is a Veech surface then I'(S) has the property of
dominating conjugates and from this that one can bound the heights in the
Z-expansions, Z = Vg.(9); finally, in Section 5 we very briefly show that the
arguments of [5] are valid here: Z = V.(9) -expansions with extremely rapidly
growing denominators belong to transcendental numbers.

1.3. Thanks. — It is a pleasure to thank Curt McMullen for asking if the
results of [5] could hold in the general Veech surface setting. We also thank
Emmanuel Russ for pointing out the reference [3]. Finally, we thank the referee
for a careful reading and for the suggestion of Corollary 2.

2. Background

2.1. Cheung’s Z-expansions. — We briefly review Yitwah Cheung’s definition
of his Z-expansions — we follow Section 3 of [8], although we focus on approx-
imation of a ray instead of a line. (This simplification is valid in our setting,
as we can and do assume that the approximating set Z is symmetric about the
origin.)

Fix a discrete set Z C R?, and assume that Z does not contain the zero
vector. Given a positive real 6, consider the ray emitted from the origin with
slope 1/6. Our goal is to define a sequence of elements of Z that approximates
this ray.

REMARK 1. — Note that the number that is approximated here is the inverse
of the slope of the ray. This choice accords well with the projective action of
SL2(R) on P1(R) = RU {o0}.

Let u be the unit vector in the direction of the ray. Denote the positive half
plane of the ray by H, (0) = {v € R? |u-v > 0}, and let Z, (0) :== ZNH, (0). Let
v = (p,q) € R?; the difference vector between v and the vector whose endpoint
is given by the intersection of y = /6 and y = ¢ has length of absolute value
horg(v) = |gf — p|. The value q is the height of v and horg(v) is its horizontal
component, see Figure 1.

DEFINITION 1. — The Z-convergents of 6 is the set of elements of Z in the
half-plane of the ray such that each minimizes the horizontal component horg (v)
amongst elements of equal or lesser height:

Convz(0) ={v e Z,(0) | Yw € Z(0),|wa| < |va] = horg(v) < horg(w) }.
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y=X/6

FI1GURE 1. Vectors v, approximate ray y = x/0; parallelogram re-
lated to Lemma 2.

The Z-ezxpansion of 6 is the sequence obtained by ordering the set Convz(6)
by height, where we choose as necessary between elements of the same height.

Recall from [8] that if Z contains some element of the z-axis, and there are
infinitely many Z-convergents to 6, then certainly the heights of the sequence
tend to infinity.

DEFINITION 2. — The Minkowski constant of Z is
1
w(Z) = 7 Sup area(&)

where @ varies through bounded, convex, (0, 0)-symmetric sets that are disjoint
from Z.

Finiteness of the Minkowski constant assures good approximation, see [8] for
the proof of the following.

LEMMA 1 (Cheung et al.). — Suppose both that u(Z) is finite and that Z con-
tains a non-zero vector on the x-axis. Then the Z-expansion of a direction with
inverse slope 6 is infinite if and only if no element of Z lies in this direction.

Denote the n-th element of the Z-expansion of 8 by (pn,g,). Then the fol-
lowing is also shown in [8], see our Figure 1.

LEMMA 2 (Cheung et al.). — The Z-expansion of 0 satisfies

|pn‘In+1 - pn+1qn|
2Qn dn+1

<10 = pn/an| < 1(2)/(gn gn+1) -
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556 P. HUBERT & T. A. SCHMIDT

2.2. Translation surfaces

2.2.1. Translation surfaces, Veech surfaces. — For all of this material, see the
expository articles [18], [31]. A translation surface is a real surface with an atlas
such that, off of a finite number of points, transition functions are translations.
Here we consider only compact surfaces, and will continue to do so without
further notice. From the Euclidean plane, this punctured surface inherits a
flat metric, and this metric extends to the complete surface, with (possibly
removable) conical singularities at the punctures. Due to the transition function
being translations, directions of linear flow on a translation surface are well-
defined, and Lebesgue measure is inherited from the plane. We define vol(S)
to be the total Lebesgue measure of the surface.

Post-composing the coordinate function of a chart from the atlas of a trans-
lation surface with any element of SLo(R) results in a new translation surface.
This action preserves the underlying topology, the types of the conical singu-
larities, and the area of the surface.

Related to this, an affine diffeornorphism of the translation surface is a ho-
momorphism that restricts to be a diffeomorphism on the punctured flat surface
whose derivative is a constant 2 x 2 real matrix. W. Veech [28] showed that for
any compact translation surface S, the matrices that arise as such derivatives
of (orientation- and area-preserving) affine diffeomorphisms form a Fuchsian
group I'(S), now referred to as the Veech group of the surface.

A Veech surface is a translation surface such that the group I'(S) is a co-finite
subgroup of SL(2, R); that is, such that the quotient of the Poincaré upper half-
plane by I'(S) (using the standard fractional linear action) has finite hyperbolic
area. Equivalently, I'(S) is a lattice in SL(2,R); indeed, some refer to a Veech
surface as having the “lattice property”.

2.2.2. Saddle connections, ergodicity of action, parabolic directions. — A sep-
aratriz of a translation surface S is a geodesic ray emanating from some sin-
gularity. A saddle connection is a separatrix connecting singularities (with no
singularities on its interior). By using the local coordinates of the translation
surface, each saddle connection defines a vector in R%. The collection of these
(affine) saddle connection vectors is Vg.(S). That V. (S) contains an element of
length at most /2 vol(S) was shown by Vorobets [29](see the proof of Propo-
sition 3.2 there).

Local coordinates on the stratum that is the space of translation surfaces
of fixed genus and singularities type is provided by the integral relative to the
set of singularities. In wording from [10], the saddle connections cut S into
a collection of polygons which provide local coordinates. The stratum then
inherits a Lebesgue measure, as [31] says, a key theorem is that of Masur and
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DIOPHANTINE APPROXIMATION ON VEECH SURFACES 557

Veech: the SL(2,R) action on translation surface preserves this measure and is
ergodic on connected components of the strata.

Results of Veech [28] imply that if I'(S) is a lattice (and S has singularities),
then the direction of any saddle connection vector is a parabolic direction —
there is a parabolic element of I'(.S) fixing a vector in this direction, and that
there is some saddle connection vector in each parabolic direction. Since a
lattice in SLy(R) has only finitely many parabolic conjugacy classes, a Veech
surface has only finitely many I'(S)-orbits of parabolic directions.

2.2.3. Trace field, standard form. — Gutkin and Judge [11] defined the trace
field of a translation surface to be the field extension of the rationals generated
by the traces of derivatives of the affine diffeomorphisms of the surface; this is
clearly independent of choice of a translation surface within an SLa(R)-orbit. A
result of Gutkin and Judge (see Lemma 7.5 of [11]) implies that the ratio of the
lengths of any two saddle connection vectors in a common parabolic direction
gives an element of the trace field.

Moller [20], see Proposition 2.6 there, showed that the trace field of any
Veech surface is totally real (that is, every field embedding into the complex
numbers sends the field to a subfield of the real numbers). The result holds
true under weaker hypotheses, see [12], [6].

Calta and Smillie in [6] introduced a notion of standard form of a translation
surface; they expressed this notion in terms of the Kenyon-Smillie J-invariant
of a translation surface, which in turn is related to the Sah-Arnoux-Fathi (SAF)
invariant of interval exchanges. To simplify discussion, let us say that a transla-
tion surface is in parabolic standard form if the vertical, the horizontal and the
diagonal are parabolic directions. It is immediate that a surface in parabolic
standard form is in standard form (this as the SAF-invariant vanishes in any
parabolic direction, and the Calta-Smillie definition merely requires that this
invariant vanish in each of the three directions).

Calta and Smillie show that when a translation surface is in standard form,
the parabolic directions all lie in the trace field. Combining this with the afore-
mentioned result of Gutkin and Judge, one finds that, by scaling and choice
within SLy(R)-orbit, the saddle connection vectors of a Veech surface can be as-
sumed to have components in the trace field. Furthermore, Kenyon and Smillie
[13], see the proof of Corollary 29 there, argue that the Z-module generated by
the saddle connection vectors has a submodule of finite index that is contained
in O ® Ok, where O denotes the ring of integers of the trace field K. In
particular, there is some m € N such that for any v € V4. (S), the components
of mv are in Ok.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



558 P. HUBERT & T. A. SCHMIDT

2.2.4. Traces of hyperbolics dominate conjugates. — A Fuchsian group I is said
to have a modular embedding if there exists an arithmetic group A acting on
H" for an appropriate n, an inclusion f : I' — A and a holomorphic embedding
F = (Fy,...,F,) : H— H" such that F; =id and F(v-2) = f(vy) - F(z), see [9].

Schmutz Schaller and Wolfart [23] (see in particular their Corollary 5) show
that if a Fuchsian group has a modular embedding, then the trace of any of
its hyperbolic elements dominates its conjugates in absolute value. For ease of
discussion, let us call this the domination of conjugates property.

M. Msller [20] shows that if S is a Veech surface, then I'(S) is commensu-
rable to a Fuchsian group with a modular embedding (see his Corollary 2.11).
Commensurability here means up to finite index and SLy(R)-conjugation; it
directly follows that a Veech group of a Veech surface always has a finite index
subgroup with the domination of conjugates property. Thus, any hyperbolic
element of such a I'(S) has some power that whose trace dominates its conju-
gates. Since [13] (Theorem 28) shows that the trace of any hyperbolic in I'(S)
generates the trace field of S over Q, the following lemma completes our first
argument that the Veech group of any Veech surface has the domination of
conjugates property.

LEMMA 3. — Suppose that M € SLy(R) is a hyperbolic matriz and that there
is some natural number n such that both Q(tr(M™)) = Q(tr(M)) and the trace
of M™ dominates its conjugates in norm. Then the trace of M dominates its
conjugates in norm.

Proof. — Recall that for any M € SLy(R), one has M? = (tr(M)) - M — I.
Following [16], let
pi(x) =1, pa(z) = 2; and pn(z) = 2pn—1(2) — pa—2(2), n > 3.
Then induction shows that M™ = p,, (tr(M) ) - M —p,—1(tr(M))-I. From this,
letting
Sn(x) = zpp(z) — 2pp—_1(x)
for n > 2, by induction one finds
tr(M™) = s, (tr(M)).
We note that s,(z) € Z[z] for each n. In particular, when Q(tr(M™)) =
Q(tr(M)), we have
o(tr(M")) = o(sn(tr(M))) = sn(o(tr(M)))

for any field embedding of Q(tr(M)).

Elementary induction shows that s, (z) is an odd function if n is odd, and
is an even function if n is even. Since M is hyperbolic, its trace certainly
dominates in norm any conjugate that has absolute value less than or equal to
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two. It therefore suffices to show that each s, (z) is a strictly increasing function
on the interval (2, +00).

First note that elementary induction shows that p,(z) — p,—1(z) is positive
on [2,+00); since pl, () — pl_1(2) = pa1(@) + (& — L)pl,_, (&) — py_(2) in-
duction also gives the positivity of this difference on the interval. Hence, still
with > 2, we have

$(2) = pn(2) + 2P7, (%) — 29,1 (2)
= Zl?pn_l(fﬂ) _pn—Z(x) + mp;(x) - 2p;1—1($)

> (pn-1(x) = Pn—2(x)) + 2(py,(x) — pp_1 (2))
>0.

Therefore, s, () is strictly increasing on this interval, and the result follows. [

In the proof of Lemma 6, we recall a more elementary derivation, showing
that any Veech group containing a hyperbolic element has the domination of
conjugates property.

2.2.5. Zippered rectangles, pseudo-Anosov homeomorphisms, Rauzy-Veech in-
duction. — We give a terse summary of results of Veech [27]; see [14], [17] for
more technical introductions.

In order to give a discrete version of geodesic flow over Teichmiiller space,
Veech [27] introduced his decomposition of a translation surface into zippered
rectangles — rectangles have their vertical sides identified only up to a cer-
tain height (dependent upon the placement of singularities of the translation
surface). The vertical flow on a zippered rectangle decomposition defines an
interval exchange transformation; in other words, each zippered rectangle de-
composition is the suspension of some interval exchange transformation. Veech
gave an induction, now known as Rauzy- Veech induction, on the set of zippered
rectangles that comports exactly with an induction on interval exchange maps.
The interval exchanges that occur during a sequence of induction steps have
various associated permutations; gathering these permutations into the Rauzy
graph, Veech (using earlier work of Rauzy) related paths in this graph with the
Teichmiiller flow.

An affine diffeomorphism ¢ is a pseudo-Anosov homeomorphism exactly
when its linear part is hyperbolic. The two real fixed points of the hyperbolic
linear part correspond to directions that are expanding and contracting for ¢;
the larger eigenvalue of the linear part is then the expansion constant, known as
the dilatation of the pseudo-Anosov ¢. The pseudo-Anosov ¢ maps any geodesic
ray in the expanding direction to some ray in this direction. (Thurston, see [26],
first defined pseudo-Anosov homeomorphisms.)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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Veech showed that appropriate loops in the graph of permutations aris-
ing from the Rauzy-Veech induction correspond to pseudo-Anosov homeomor-
phisms that fix a separatrix. Now, any affine diffeomorphism is bijective on the
finite set of singularities; thus, some power acts as the identity on the singulari-
ties. Similarly, an affine pseudo-Anosov permutes the (finite) set of separatrices
in its expanding direction and thus has a power that fixes some such separa-
trix. In particular, each affine pseudo-Anosov has a power that is identified by
a closed loop in a Rauzy-Veech graph.

Furthermore, Veech showed that each edge in the loop defines a matrix
related to the “suspension data”, the product over the loop of these gives the
integral renormalization matriz V that is primitive: a power has positive integer
entries. The Perron-Frobenius Theorem thus applies; Veech points out that the
Perron-Frobenius (that is, dominant) eigenvalue of V is the dilatation, A", of
¢™. And, in fact that V gives the action of ¢™ on integral homology relative to
the singularities.

2.3. Approximation by algebraic numbers. — In the following, we repeat some
lines of background from [5].

The following result was announced by Roth [22] and proven by LeVeque,
see Chapter 4 of [15]. (The version below is Theorem 2.5 of [4].) Recall that
given an algebraic number «, its naive height, denoted by H(a), is the largest
absolute value of the coefficients of its minimal polynomial over 7Z.

THEOREM 4. — (LeVeque) Let K be a number field, and & a real algebraic
number not in K. Then, for any € > 0, there exists a positive constant c(€, K, €)

such that (€.K.0
c(&, K e
|€_a|>H(O¢)2+€

holds for every a in K.

The logarithmic Weil height of « lying in a number field K of degree D over
Qis h(a) = 53, log* ||a||,, where log™ t equals 0 if t < 1 and Mg denotes
the places (finite and infinite “primes”) of the field, and || - ||, is the v-absolute
value. This definition is independent of the field K containing c.

The product formula for the number field K is: [], s, ||@[], = 1. From this,
Va, B € Ok with 8 # 0, such that the principal ideals (@), (8) have no common
prime divisors, one has h(a/8) = & 3, log™ max{|o(a)|, |o(B)| }, where o runs
through the infinite places of K, which we consider as field embeddings. Even
upon dropping the relative primality condition, one finds

1) ha/B) < 7 3 log* max{lo(a)l, lo(9)]}.
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The two heights are related by
(2) log H(a) < deg(a) (h(a) +log2),

for any non-zero algebraic number «, see Lemma 3.11 in [30].
Finally, recall that standard transcendence notation includes the use of <«
and > to denote inequality with implied constant.

3. Minkowski constants

3.1. Minkowski constants in strata. — The Minkowski constant of the nonzero
holonomy of a translation surface defines a function that may be of true interest.
The following shows that it has properties in common with the Siegel-Veech
invariants (see [10]).

LEMMA 4. — The function assigning to a translation surface S the Minkowski
constant of the set of saddle connection vectors, S — u(Vg.(S)), is constant
on SLa(R)-orbits.

Proof. — The action of SLy(R) on translation surfaces sends saddle connection
vectors to saddle connection vectors. But, this standard action sends the collec-
tion of bounded, convex sets that are symmetric about the origin to itself. [

The following is now implied by the ergodicity of the SL(2,R) action.

COROLLARY 1. — Any connected component of the moduli space of abelian
differentials of a given signature has a subset of full measure on which the
Minkowski constant is constant.

We give an example where the Minkowski constant is small. See Figure 46
of [31] for a representation of the surface in question.

LEMMA 5. — Consider the translation surface S given by the L-shaped square-
tiled surface of three tiles. Then u( Vg (S)) = vol(S)/3.

Proof. — We may assume that S has area 3. One easily finds that I'(S) is the
Theta group, the subgroup of the modular group generated by z — z + 2 and

ab
z — —1/z. The entries of an element J of this group satisfya =d = -b =
c

—c (mod 2). One immediately finds that S is in (parabolic) standard form:
there are visibly connection vectors in the horizontal, vertical and diagonal
directions. Indeed, these are primitive vectors in the full lattice Z2, and Theta

acts so as to give that V. (S) consists of all of the primitive vectors. Hence,
i(Vee(S)) = p(Z2) = 1. 0
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3.2. Finiteness of Minkowski constants. — Key to convergence of Cheung’s Z-
approximants is his hypothesis that the Minkowski constant 11(Z) is finite. Note
that Theorem 1 justifies the statement in Corollary 3.9 of [8].

Proof. — (of Theorem 1) Fix any bounded convex region & that is symmetric
about the origin in the plane. By a theorem of Fritz John, see say [3] for a
discussion, the ellipse (symmetric about the origin) & of maximal area interior
to € is such that the scaled ellipse v/2 & contains &. It follows that area(5) >
area(6)/2.

Now, there is A € SL(2,R) taking & to a circle. If area(%) > 4w vol(S),
then A - & contains any vector of length less than or equal to /2 vol(S). But,
A - Vg (S) = Vg (A - S) has a saddle connection vector of length at most
V/2vol(A - S) = /2 vol(S), where we have used the bound of Vorobets, men-
tioned in Section 2.2.2, for the length of the shortest saddle connection. There-
fore, A - & contains a saddle connection vector of A -.S and hence © contains
an element of Vg (S). We conclude that p( Vs (S)) < mvol(S). O

4. Bounding the height of convergents

In the background discussion of Section 2.2.4, we sketched a proof showing
that when S is a Veech surface the traces of hyperbolic elements in I'(S) dom-
inate their conjugates. Here we give a more straightforward proof, with weaker
hypotheses. For an earlier version of the following, see Theorem 5.3 of [19] and
the remark thereafter. McMullen’s proof is ultimately based upon Thurston’s
ideas, see [26]. Ours is based upon Veech’s [27] use of his zippered rectangles
and what is now called Rauzy-Veech induction, see Subsection 2.2.5 for a brief
introduction.

LEMMA 6. — Let M be a hyperbolic element in the Veech group of a translation
surface. Then the trace of M is larger in norm than any of its images under
the non-trivial field embeddings of the trace field of the translation surface.

Proof. — To M corresponds some affine pseudo-Anosov map, say ¢ whose di-
latation we denote by A. Some power ¢" fixes a separatrix. Hence, the results of
Veech [27] imply that ¢™ corresponds to a closed loop in the Rauzy graph cor-
responding to the sequence of interval exchanges related to a certain sequence
of induction on the zippered rectangle decomposition built above the fixed sep-
aratrix. The corresponding renormalization matrix V is primitive in the sense
that a power has positive integer entries. The Perron-Frobenius Theorem thus
applies; Veech points out that the dominant eigenvalue of V is the dilatation,
A", of ¢™. The minimal polynomial over Q of A\™ divides the characteristic
polynomial of V' and thus A" dominates its conjugates in norm.

TOME 140 — 2012 — N° 4



DIOPHANTINE APPROXIMATION ON VEECH SURFACES 563

By Theorem 28 in [13], Q(A™) = Q(X). Since the map = +— z™ is increasing
we find that A itself dominates in norm all of its conjugates.

Any field embedding o of Q(\ + A™!) extends to a field embedding & of
Q(A). Since f : x — x + 2! is increasing for z > 1 and A + \™! > 2, we
find |oc(A + A7Y)| = |6(A) + a(A7Y)| < F(I6(N)]) < F(|A]). We find that
tr(M) = A + A~! dominates all of its conjugates. O

We now show that if a Fuchsian subgroup I' of the determinant one matrices
over a number field is known to have traces that dominate their conjugates, and
I" contains a translation, then every entry of every element of I weakly dom-
inates its conjugates. We do this by refining arguments of [5] (see Lemma 3.1
there).

LEMMA 7. — Fiz a totally real number field K. Suppose that T' C PSLy(K)
contains a parabolic element

1)

01/’

and set ¢c; = min{ |o(A)/A |}, where o varies through the set of field embeddings
of K into R. Suppose further that for all M € T’ whose trace is sufficiently large
in absolute value, that for all o one has

(M) | > o (tx(M))].

A= ail @12 €T,
az1 a22
and for all o and for all 1 < i,5 <2, one has

laij| > c1|o(ag )| if i# 3

and |ai| > ¢} |o(ai)].

Then for all

1A
Proof. — For ease of notation, let P = <O 1>. Let A € T be arbitrary, with

elements labeled as above. The trace of P™A is a1 + ass + nAasy; thus, either
az1 = 0, or upon letting n tend to infinity this trace is eventually large in
absolute value. Thus, we find that as; is at least ¢; times the absolute value of
any of its conjugates. Considering AP™ similarly gives that ais is at least ¢;
times the absolute value of any of its conjugates.

Now, the (1,2)-entry of AP™ is naj1 A+ a12 and as we considering arbitrary
elements in I" above, this must be at least ¢; times the absolute value of any
of its conjugates. We thus find that |a1; | > ¢? |o(a11) |- Replacing A by A~}
shows that also ass has this property. O
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In an initial version of this work, we had purposely avoided admitting further
hypotheses in the above lemma, even though one can find stronger results.
However, the referee has kindly suggested the following corollary and even
provided the pleasant argument that we reproduce.

COROLLARY 2. — Under the hypotheses of Lemma 7, for all
A= ail a2 €T,
a21 022

(ii.) if Ju € K such that p strictly dominates its conjugates, then

and for all o, one has

laiz| > |o(a2)]| ;

10
(iii.) if furthermore I' contains an element of the form @ = ( 1) then every
v

entry of any element of I' dominates its conjugates.

1A 11 A7to A0
Proof. — Since P = € I', we have that € r .
01 01 01 01

This conjugated group gives c¢; in the hypotheses of Lemma 7 the value 1;

therefore, the diagonal entries of any element of this conjugated group dominate
-1
their conjugates. However, conjugation by ( 1) preserves diagonal entries.

Second, if p strictly dominates its conjugates, then there is some positive k

ik

01
again leads to a replacement of the value of ¢; by 1. For each (1, 2)-entry, a1, of
an element of I' gives rise to a (1, 2)-entry a;ou~* of this conjugate group; the
domination of this value of its conjugates and the fact that x~* is the smallest
of its own conjugates in absolute value shows that a;5 dominates its conjugates.

such that p*A~1 strictly dominates its conjugates. Conjugating I' by

Finally, if T contains some @) as above, then the previous arguments show
that any as; dominates its conjugates. O

REMARK 2. — We note that Corollary 2 allows one to confirm the conjecture
made in Remark 5 of [5]. The denominator ¢, of a Rosen approximant to a real
number is an entry in a Hecke group G,, that fulfills all of the hypotheses of
the corollary. Therefore, ¢, dominates its conjugates.
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REMARK 3. — We also note that every totally real number field K (other
than Q) does admit an element y that strictly dominates its conjugates. By the
Primitive Element Theorem, K = Q(#) for some 6; any non-trivial embedding
o is such that () # 6 and thus we can find a rational p/q that is closer to
0 than to any of its conjugates; hence, u = 1/(6 — p/q) belongs to K and is
greater in absolute value than any of its conjugates.

We now prove the announced main result stating that each component of
any saddle connection vector of a Veech surface is appropriately larger than
any of its conjugates.

Proof. — (of Theorem 2) A translation surface has only finitely many sin-
gularities, and hence only finitely many saddle connection vectors in any given
direction. Since S is a Veech surface we have both that each non-zero holonomy
vector lies in some parabolic direction and that there are only finitely many
T"-orbits of parabolic directions. We choose a representative direction from each
of these orbits, and let ¥ be the set of all saddle connection vectors in these
chosen directions.

Since S is in parabolic standard form, the (positively oriented) horizontal is
certainly a parabolic direction for S. In particular, I" has an element of the form

(O . ; but since S is a Veech surface, also the traces of hyperbolic elements

in I' dominate their conjugates, and thus Lemma 7 holds. We also can and do
assume that in the above construction of ¢/, that the horizontal direction is
chosen to represent its I'-orbit.

Let ¢ = min{|o(v1)|/|v1]|}, with the minimum taken over all horizontal
v = (v1,0) € ¥, and embeddings o. For v € ¥, there is P € T such that
Pv = v. Since P is upper diagonalizable, we can find some vector w such that
Pw = v 4+ w. We can then express e; = av + fw for some real number «, 3,
with 8 # 0 when v is non-horizontal. Note that since Pe; = e; + v and
P € T', we must have that 8 € K. Choosing such a w for each v € ¥, let

¢’ = min{|o(B)|/|B|}, over all non-horizontal v € ¥, and embeddings o.

Finally, set ¢ = ¢’ ¢ with ¢/ = min{c’,c"}.

Now, if h is an arbitrary saddle connection vector of S, then there exists
some A € T' and v € ¥ such that h = Av. If v = ae; is horizontal, then h
is the multiple by « of the first column of A. Our result clearly holds in this
case. Otherwise, with notation as above, induction gives P"e; = e + nfv, and
thus AP"e; = Ae; + nBh. The left hand side is the first column of an element
of ', thus our standard argument allows us to conclude that each of 8h; with
i = 1,2 is greater in absolute value than c? times any of its conjugates. Here
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also we find that each of h; is greater in absolute value than c¢ times any of its
conjugates.

Finally, by the finiteness of ¢ one easily verifies that ¢ may be taken to
depend only on S. O

We now can bound the heights of the saddle connection approximants.

LEMMA 8. — Fiz a Veech surface S in parabolic standard form, with trace field
K. Let D denote the field extension degree [K : Q]. There exists a constant
co = ¢2(S) such that for all x € [0,1] of infinite Vs.(S)-expansion (pn/qn)n>1 ,

H(pn/qn) < c2qf.

Proof. — There is a positive integer m depending only on S such that mv € @i
for all v € V(). Writing (pn, ¢») = (a/m, 8/m) with a, 8 € Ok, Equation (1)
gives h(pn/qn) <logm+ 5 3", log™ max{|o(p,)|, |o(gn)| }. With c as in The-
orem 2 we find h(p,/qn) < logem + logmax{|p,|, g, } < logc'em + loggq, for
¢ depending only on S. Now, Equation (2) implies the result. O

5. Transcendence with Z-fractions

We prove our transcendance result in the traditional manner: by showing
that the sequence of denominators of convergents to an algebraic number can-
not grow too quickly. The ingredients are the result of Roth-LeVeque and the
convergence bound with a denominator of ¢, g, +1.

Proof. — (of Theorem 3 ) Let € be a positive real number. Let ¢ be an
algebraic number having an infinite Z = V. (S)-expansion with convergents

Tn/Sn.
By the Roth—LeVeque Theorem 4, we have

I€ =70 /80| > H(r/5,)" 275, forn>1.

And, hence by Lemma 8, for n > 1, we have |¢ — 7, /s,| > s, 2P~ D¢,

The key to the proof is provided by applying Lemma 2 and thus finding that
there exists a constant ¢z (independent of n) such that

2D—1+De
Sp+1 < €38y, .

Thereafter, standard manipulations, as in the proof of Theorem 1.1 of [5]
give the result. O
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