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1. Introduction

These are expanded notes from a set of lectures given at the school “Actions Hamiltoniennes:
leurs invariants et classification” at Luminy in April 2009. The topics center around the theorem
of Kempf and Ness [52], which describes the equivalence between the notion of quotient in geo-
metric invariant theory introduced by Mumford in the 1960’s [74], and the notion of symplectic
quotient introduced by Meyer [73] and Marsden-Weinstein [71] in the 1970’s. Infinite-dimensional
generalizations of this equivalence have played an increasingly important role in geometry, starting
with the theorem of Narasimhan and Seshadri [75] connecting unitary structures on a bundle with
holomorphic stability, which by historical accident preceded the finite-dimensional theorem.

The proof of the Kempf-Ness theorem depends on the convexity of certain Kempf-Ness functions
whose minima are zeros of the moment map. The convexity also plays an important role in the
relation to geometric quantization discovered by Guillemin and Sternberg [35]: it corresponds to
the fact that “invariant quantum states concentrate near zeros of the moment map”. Roughly
speaking these notes were written as an exercise in “just how far” one can carry the convexity
of the Kempf-Ness function. For example, using convexity I give alternative proofs of some of
the results in Kirwan’s book [53] as well as finite-dimensional versions of Harder-Narasimhan
and Jordan-Hölder filtrations; the former appears in the algebraic literature under the name of
Hesselink one-parameter subgroups [46] but the latter seems to have been undeveloped.

The text is interspersed with applications to existence of invariants in representation theory,
such as the problem of determining the existence of invariants in tensor products of irreducible
representations, and various techniques for computing moment polytopes. For example, the last
section describes Teleman’s improved version of quantization commutes with reduction [95] which
also covers the behavior of the higher cohomology groups, and the non-abelian localization formula
which computes the difference between the sheaf cohomology of the quotient and the invariant

Course taught during the meeting “Hamiltonian Actions: invariants et classification” organized by Michel Brion
and Thomas Delzant. 6-10 April 2009, C.I.R.M. (Luminy).
Partially supported by NSF grants DMS060509 and DMS0904358.
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cohomology of the action. Some of the topics not treated are notably: Duistermaat-Heckman
theory, symplectic normal forms, localization theorems in equivariant cohomology, and connections
to classical invariant theory, to name a few.

The author is grateful for comments and corrections by Michel Brion and Reyer Sjamaar, and
apologizes for any omissions of work in what has become a vast literature.

2. Actions of Lie groups

To establish notation we review the basics of Lie group actions.

2.1. Lie groups. A Lie group is a smooth manifold K equipped with a group structure so that
group multiplication K×K → K is a smooth map. The Lie algebra k is the space of left-invariant
vector fields on K, and may be identified with the tangent space of K at the identity e ∈ K. The
exponential map exp : k→ K is defined by evaluating the time-one flow at the identity.

Suppose that K is compact and connected. Let T ⊂ K be a maximal torus. We denote by
Λ := exp−1(e) ∩ t the integral lattice and by Λ∨ ⊂ t∨ its dual, the weight lattice. Any element
µ ∈ Λ∨ defines a character T → U(1), t 7→ tµ given for ξ ∈ t by exp(ξ)µ := exp(2πiµ(ξ)). The Weyl
group of T is denoted W = N(T )/T . The Lie algebra k splits under the action of T into the direct
sum of the Lie algebra t and a finite sum of root spaces kα, α ∈ R(k) where R(k) ⊂ Λ∨/{±1} is
the set of roots and each kα is identified with a one complex-dimensional representation on which
T acts by exp(ξ)α := exp(2πiα(ξ)). The kernels ker(α) of the roots α ∈ R(k) divide t into a set
of (open) Weyl chambers; given a generic linear function on t there is a unique open positive Weyl
chamber on which the function is positive; we denote by t+ its closure.

2.2. Smooth actions and quotients. Let X be a smooth manifold. A (left) action of K on X is
a smooth map K×X → X, (k, x) 7→ kx with the properties that k0(k1x) = (k0k1)x and ex = x for
all k0, k1 ∈ K and x ∈ X. A K-manifold is a smooth manifold equipped with a smooth K-action.
Let X0, X1 be K-manifolds. A smooth map ϕ : X0 → X1 is K-equivariant if ϕ(kx) = kϕ(x) for
all k ∈ K,x ∈ X0.

Both the Lie algebra and its dual are naturally K-manifolds: The adjoint action of an element
k ∈ K on the Lie algebra k is denoted Ad(k) ∈ End(k). The coadjoint action of k on the dual
k∨ is Ad∨(k) := (Ad(k−1))∨. The group K itself is a K-manifold in three different ways: the left
action, the (inverted) right action, and the adjoint action by conjugation Ad(k0)k1 := k0k1k

−1
0 .

The exponential map exp : k → K is equivariant with respect to the adjoint action on k and K.
If K is compact, then the dual t∨ of the Lie algebra t of the maximal torus T admits a canonical
embedding in k∨, whose image is the T -fixed point set for the coadjoint action of T on k∨, and so
k∨ admits a canonical projection onto t∨.

Let X be K-manifold. Let Diff(X) denote the infinite-dimensional group of diffeomorphisms
of X and Vect(X) the Lie algebra of vector fields on X. The K-action induces a canonical group
homomorphism

K → Diff(X), k 7→ kX , kX(x) = kx

and a Lie algebra homomorphism

k→ Vect(X), ξ 7→ ξX , ξX(x) = d

dt t=0
exp(−tξ)x.

The sign here arises because the Lie bracket is defined using left-invariant vector fields which are
the generating vector fields for the right action of the group on itself, whereas our actions are by
default from the left. The orbit of a point x ∈ X is the set Kx := {kx|k ∈ K} ⊂ X. The stabilizer
of a point x ∈ X is Kx := {k ∈ K|kx = x}; its Lie algebra is the set kx := {ξ ∈ k | ξX(x) = 0}. A
(co)adjoint orbit is an orbit of the (co)adjoint action of K on k resp. k∨.

Let ψ : K0 → K1 be a homomorphism of Lie groups and let X be a K1-manifold. The action
of K1 and the homomorphism ψ induce a K0-action on X by k0x := ψ(k0)x. The orbits of the
K0 action are those of the K1-action, while the stabilizers (K0)x = ψ−1((K1)x) are inverse images
under ψ.

Let X be a K-manifold. A slice at x is a Kx-invariant submanifold V ⊂ X containing x
such that KV is open in X and the natural smooth K-equivariant map K ×Kx V → KV is a
diffeomorphism onto its image. It follows from the existence of geodesic flows etc. that actions of
compact groups have slices. A quotient of a K-space is a pair (Y, π) consisting of a space Y and
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a K-invariant morphism π : X → Y such that any other K-invariant morphism factors through
π. The existence of slices implies that any free action of a compact group K on a manifold X has
a manifold quotient X/K; more generally if the action is not free then the quotient exists in the
category of Hausdorff topological spaces. (Strictly speaking one should write the quotient on the
left, since our actions are by convention left actions. However, I find this rather cumbersome since
in English X/K reads “the quotient of X by K”).

2.3. Equivariant differential forms. Recall that a graded derivation of a graded algebra A
of degree d is an operator D ∈ End(A)d such that D(a0a1) = D(a0)a1 + (−1)d|a0|a0D(a1) for
homogeneous elements a0, a1 ∈ A. The space of graded derivations Der(A) (direct sum over
degrees) forms a graded Lie algebra with bracket given by the graded commutator: given graded
derivations D0, D1 of degrees |D0|, |D1|, define {D0, D1} = D0D1 − (−1)|D0||D1|D1D0.

Let X be a smooth manifold of dimension n. We denote by Vect(X) the Lie algebra of smooth
vector fields on X, and by Ω(X) =

⊕n
j=0 Ωj(X) the graded algebra of smooth forms on X. For

any v ∈ Vect(X) we have the derivations defined by contraction ιv : Ωj(X) → Ωj−1(X) and
Lie derivative Lv : Ωj(X)→ Ωj+1(X). Let d denote the de Rham operator, the graded derivation
d : Ωj(X)→ Ωj+1(X) such that df(v) = Lvf, ddf = 0 for f ∈ Ω0(X), v ∈ Vect(X). The operators
ιv, Lv,d generate a finite dimensional graded Lie algebra of Der(Ω(X)) with graded commutation
relations for v, w ∈ Vect(X) given by

{ , } ιv Lv d
ιw 0 ι[v,w] Lw
Lw ι[w,v] L[w,v] 0
d Lv 0 0

.

It suffices to check the commutation relations by verifying them on generators f ∈ Ω0(X),dg ∈
Ω1(X) of Ω(X). We denote by Zj(X) the space of closed forms Zj(X) = {α ∈ Ωj(X)|dα = 0}
by Bj(X) = {α ∈ Ωj(X)|∃β ∈ Ωj−1(X),dβ = α} the space of exact forms and by Hj(X) the de
Rham cohomology Hj(X) = Zj(X)/Bj(X).

Suppose that X admits a smooth action of a Lie group K. Cartan (see [37]) introduced a space
ΩK(X) of K-equivariant forms

ΩjK(X) =
⊕

2a+b=j
Homa(k,Ωb(X))K , ΩK(X) =

∞⊕
j=0

ΩjK(X)

where Homa(·)K denotes equivariant polynomial maps of homogeneous degree a. The equivariant
de Rham operator is defined by

dK : ΩjK(X)→ Ωj+1
K (X), (dK(α))(ξ) = (d + ιξX )(α(ξ)).

Let ZjK(X) resp. BjK denote the equivariant closed resp. exact forms. The equivariant de Rham
cohomology is

Hj
K(X) = ZjK(X)/BjK(X), HK(X) =

∞⊕
j=0

Hj
K(X).

If K action is free, HK(X) is isomorphic to the cohomology H(X/K) of the quotient, see for
example [37].

3. Hamiltonian group actions

This section contains a quick review of equivariant symplectic geometry. More detailed treat-
ments can be found in Cannas [21], Guillemin-Sternberg [36], Abraham-Marsden [1], or Delzant’s
lectures in this volume.

3.1. Symplectic manifolds. Let X be a smooth manifold. A symplectic form on X is a closed
non-degenerate two-form ω ∈ Ω2(X). A symplectic manifold is a manifold equipped with a symplec-
tic two-form. A symplectomorphism of symplectic manifolds (X0, ω0), (X1, ω1) is a diffeomorphism
ϕ : X0 → X1 with ϕ∗ω1 = ω0. The term symplectic is the Greek translation of the Latin word
complex, and was used by Weyl to distinguish the classical groups of linear symplectomorphisms
resp. complex linear transformations.
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The simplest example of a symplectic manifold is R2n equipped with the standard two-form∑n
j=1 dqj ∧dpj ; Darboux’s theorem says that any symplectic manifold is locally symplectomorphic

to R2n equipped with the standard form. There are simple cohomological restrictions on which
manifolds admit symplectic forms: Suppose that X has dimension 2n. Non-degeneracy of a two-
form ω ∈ Ω2(X) is equivalent to the non-vanishing of the highest wedge power ωn ∈ Ω2n(X); if X
is compact and ω is symplectic then the cohomology class [ωn] = [ω]n must be non-zero, since its
integral is non-vanishing, which implies that the classes [ω], [ω]2, . . . , [ω]n−1 are also non-vanishing.
For example this argument rules out the existence of symplectic structures on spheres except for
the two-sphere, where any area form gives a symplectic structure.

Symplectic manifolds provide a natural framework for Hamiltonian dynamics as follows. For any
symplectic manifold (X,ω) let Symp(X,ω) ⊂ Diff(X) denote the group of symplectomorphisms
and Vects(X) ⊂ Vect(X) the Lie subalgebra of symplectic vector fields v ∈ Vect(X), Lvω = 0. Any
smooth function H ∈ C∞(X) defines a symplectic vector field H# ∈ Vects(X) by ιH#ω = dH. In
local Darboux coordinates, H# is given by

H# =
n∑
j=1

∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj
.

The image of C∞(X) in Vects(X) is the space Vecth(X) of Hamiltonian vector fields. Thus a
vector field v ∈ Vect(X) is symplectic resp. Hamiltonian iff the associated closed one-form ιvω is
closed resp. exact. The Poisson bracket is the Lie bracket on C∞(X) defined by the formula

(3.1) {H0, H1} = ω(H#
0 , H

#
1 ).

The map H 7→ −H# extends to an exact sequence of Lie algebras
0→ H0(X,R)→ C∞(X)→ Vects(X)→ H1(X,R)→ 0

where the Lie bracket on the de Rham cohomology groups H0, H1(X,R) is taken to be trivial. A
Hamiltonian dynamical system is a pair (X,H) consisting of a symplectic manifoldX and an energy
function H ∈ C∞(X). Time evolution is given by the flow of H# ∈ Vect(X). If K ∈ C∞(X) is
another function, such as a component of angular momentum, then {K,H} = −LK#H = LH#K,
so H is invariant under the flow generated by K# iff K is conserved in time. This equivalence is
often called Noether’s theorem: for every symmetry of a Hamiltonian system there is a conserved
quantity.

The cotangent bundle T∨Q of a smooth manifold Q possesses a canonical symplectic structure:
Let π : T∨Q→ Q, (q, p)→ q be the canonical projection. The canonical one-form on T∨Q is

α ∈ Ω1(T∨Q), α(q,p)(v) = p(Dπq,p(v)).
Local coordinates q1, . . . , qn on Q induce dual coordinates p1, . . . , pn in which α =

∑n
j=1 pjdqj . It

follows that the canonical two-form ω on T∨Q given by ω = −dα is symplectic. These forms are
canonical in the sense that any diffeomorphism Q0 → Q1 induces an isomorphism T∨Q0 → T∨Q1
preserving the canonical one-forms, which is therefore a symplectomorphism. Physically T∨Q
represents the space of states of a classical particle moving on a manifold Q. However, many
Hamiltonian dynamical systems have symplectic manifolds that are not cotangent bundles. For
example, the two-sphere is the natural symplectic manifold for the study of the evolution of the
angular momentum vector of a rigid body.
Proposition 3.1.1. The following are natural operations on symplectic manifolds:

(a) (Sums) Let (X0, ω0), (X1, ω1) be symplectic manifolds. Then the disjoint union (X0 t
X1, ω0 t ω1) is a symplectic manifold.

(b) (Products) Let (Xj , ωj) be symplectic manifolds, j = 0, 1. Then the product X0 × X1
equipped with two-form π∗0ω0 + π∗1ω1 is a symplectic manifold, where πj : X0 × X1 →
Xj , j = 0, 1 is the projection onto Xj.

(c) (Duals) Let (X,ω) be a symplectic manifold. Then the dual (X,−ω) (or more generally,
(X,λω) for any non-zero λ ∈ R) is a symplectic manifold.

Symplectomorphism is a very restrictive notion of morphism, since in particular the symplectic
manifolds must be the same dimension. A more flexible notion of morphism in the symplectic cat-
egory is given by the notion of Lagrangian correspondence [99]. (The discussion of correspondences
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is only used to formulate the universal property for symplectic quotients; readers not interested
in this can skip all discussion of correspondences and the symplectic category.) Let (X,ω) be a
symplectic manifold. A Lagrangian submanifold of X is a submanifold i : L→ X with i∗ω = 0 and
dim(L) = dim(X)/2. Let (Xj , ωj), j = 0, 1 be symplectic manifolds. A Lagrangian correspondence
from X0 to X1 is a Lagrangian submanifold of X−0 ×X1. Let L01 ⊂ X−0 ×X1 and L12 ⊂ X−1 ×X2
be Lagrangian correspondences. Let π02 denote the projection from X−0 ×X1 ×X−1 ×X2. Then

L01 ◦ L12 := π02(L01 ×X1 L12)
is, if smooth and embedded, a Lagrangian correspondence in X−0 ×X2 called the composition of
L01 and L12. The graph graph(ψ01) of any symplectomorphism ψ01 from X0 to X1 is automatically
a Lagrangian correspondence, and if ψ01, ψ12 are two such symplectomorphisms then graph(ψ01 ◦
ψ12) = graph(ψ01) ◦ graph(ψ12). With this notion of composition, the pair (symplectic manifolds,
Lagrangian correspondences) becomes a partially defined category, with identity given by the
diagonal correspondence. The partially defined composition leads to an honest category, obtained
by allowing sequences of morphisms and identifying sequences if they are related by geometric
composition [98].

Symplectic geometry can be considered a special case of Poisson geometry: A Poisson bracket
on a manifold X is a Lie bracket { , } : C∞(X) × C∞(X) → C∞(X) that is a derivation with
respect to multiplication of functions, that is, {f, gh} = {f, g}h + g{f, h}. A Poisson manifold
is a manifold equipped with a Poisson bracket. A morphism of Poisson manifolds is a smooth
map ψ : X0 → X1 such that {ψ∗f, ψ∗g} = ψ∗{f, g}. Given any Poisson bracket on a manifold
X, for each H ∈ C∞(X) the derivation {H, } is equal to LH# for some vector field H#. The
span of the vector fields H# defines a decomposition of X into symplectic leaves, each of which
is equipped with a symplectic structure so that (3.1) holds. On the other hand, the notion of
symplectic geometry as a special case of Poisson geometry is not particularly compatible with the
idea that Lagrangian correspondences should serve as morphisms.

3.2. Hamiltonian group actions. Let K be a Lie group acting smoothly on a manifold X. The
action is symplectic if it preserves the symplectic form, that is, kX ∈ Symp(X,ω) for all k ∈ K,
infinitesimally symplectic if ξX ∈ Vects(X) for all ξ ∈ k, and weakly Hamiltonian if ξX ∈ Vecth(X)
for all ξ ∈ k. A symplectic K-manifold is a symplectic manifold equipped with a symplectic action
of K.

Let (X,ω) be a symplecticK-manifold. The action is Hamiltonian if the map k→ Vect(X), ξ 7→
ξX lifts to an equivariant map of Lie algebras k→ C∞(X). Such a map is called a comoment map.
A moment map is an equivariant map Φ : X → k∨, satisfying
(3.2) ιξXω = −d〈Φ, ξ〉, ∀ξ ∈ k

Any comoment map φ : k→ C∞(X) defines a moment map by 〈Φ(x), ξ〉 = (φ(ξ))(x).
Example 3.2.1. Let K = V be a vector space acting on X = T∨V by translation. After identifying
k→ V and so k∨ → V ∨, a moment map for the action is given by the projection X ∼= V × V ∨ →
V ∨, (q, p) = p, that is, by the ordinary momentum, hence the terminology moment map.
The notion of moment map was introduced in independent work of Kirillov, Kostant, and Souriau,
in connection with geometric quantization and representation theory. See [14] for a discussion of the
history of the moment map and the relationship of the work between these authors. Unfortunately
there is no standard sign convention for (3.2); our convention agrees with that of Kirwan [53].
More generally, if X is a smooth manifold equipped with a closed two-form ω and an action of K
leaving ω invariant, then we say that Φ is a moment map if (3.2) holds.

A Hamiltonian resp. degenerate Hamiltonian K-manifold is a datum (X,ω,Φ) consisting of
a symplectic K-manifold (X,ω) resp. smooth K-manifold X equipped with an invariant closed
two-form ω, and a moment map Φ for the action. Let (X0, ω0,Φ0) and (X1, ω1,Φ1) be Hamiltonian
K-manifolds. An isomorphism of HamiltonianK-manifolds is aK-equivariant symplectomorphism
ϕ : (X0, ω0)→ (X1, ω1) such that ϕ∗Φ1 = Φ0.

Archimedes’ computation of the area of the two-sphere is essentially a moment map calculation.
Let S2 = {x2 + y2 + z2 = 1} be the unit sphere in R3. Let v = x ∂

∂x + y ∂
∂y + z ∂

∂z ∈ Vect(R3). The
two-form ω = ιv(dx∧ dy ∧ dz) = xdy ∧ dz− ydx∧ dz + zdx∧ dy restricts to a symplectic form on
S2, invariant under rotation on R3.
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Proposition 3.2.2. A moment map for the action of S1 on S2 by rotation clockwise around the
z-axis is given by (x, y, z) 7→ z, under the identification of the Lie algebra of S1 and its dual with
R.

Proof. The generating vector field for ξ = 1 is ξX = −x ∂
∂y + y ∂

∂x . A computation shows that
ιξXω = −dz. �

To relate this to Archimedes’ formula, note that if r, θ, z are cylindrical coordinates on R3, then
ι ∂
∂θ
ω = dz and so ω = dz ∧ dθ. Thus

Corollary 3.2.3 (Archimedes). The area of the unit two-sphere between any two values z1, z2 ∈
(−1, 1) of z is the same as the area of the cylinder S1×[−1, 1] between those two values, 2π(z2−z1).

In particular (and this is the result reported by Cicero to be inscribed on Archimedes’ tombstone)
the area of the unit two-sphere S2 is equal to the area of the cylinder S1× [−1, 1], namely 4π. We

Figure 3.1: S1 × [−1, 1] has the same area as S2

can deduce from the moment map for the circle action the moment map for the full rotation group
SO(3) as follows. We identify so(3)→ R3 so that the infinitesimal rotation around the j-th basis
vector ej maps to ej .

Corollary 3.2.4. After identifying so(3)∨ → R3, the action of SO(3) on S2 has moment map the
inclusion S2 → R3.

Proof. By symmetry, moment maps for the rotation around the other two axes are given by
(x, y, z) 7→ x resp. y. Hence the inclusion satisfies the equation (3.2). In addition Φ is equivariant
and so defines a moment map. �

The following are natural operations on Hamiltonian K-manifolds:

Proposition 3.2.5. (a) (Sums) Let (X0, ω0,Φ0), (X1, ω1,Φ1) be Hamiltonian K-manifolds.
Then the disjoint union X0tX1 is a Hamiltonian K-manifold, equipped with moment map
Φ0 t Φ1.

(b) (Exterior Products) Let (Xj , ωj ,Φj) be Hamiltonian Kj-manifolds, j = 0, 1. Then the
product X0 ×X1 is a Hamiltonian K0 ×K1-manifold, equipped with moment map π∗0Φ0 ×
π∗1Φ1, where πj : X0 ×X1 → Xj , j = 0, 1 is the projection onto Xj.

(c) (Duals) Let (X,ω,Φ) be a Hamiltonian K-manifold. Then the dual (X,−ω,−Φ) (or more
generally, any rescaling by a non-zero constant) is a Hamiltonian K-manifold.

(d) (Pull-backs) Let ϕ : K0 → K1 be a homomorphism of Lie groups, and (X,ω,Φ) a Hamil-
tonian K1-manifold. The Lie algebra homomorphism Dϕ : k0 → k1 induces a dual map
Dϕ∨ : k∨1 → k∨0 . The action of K0 induced by φ has moment map Dϕ∨ ◦ Φ.

(e) (Interior products) Let (Xj , ωj ,Φj) be Hamiltonian K-manifolds, j = 0, 1. Then the prod-
uct X0×X1 is a Hamiltonian K-manifold, equipped with moment map π∗0Φ0 +π∗1Φ1. This
is a combination of the previous two items, using the diagonal embedding k→ k× k whose
adjoint is k∨ × k∨ → k∨, (ξ0, ξ1) 7→ ξ0 + ξ1.

More generally one can speak of Hamiltonian actions on Poisson manifolds. The dual k∨ of the
Lie algebra k has a canonical Lie-Poisson bracket, C∞(k∨)×C∞(k∨)→ C∞(k∨) with the property
that {ξ, η} = [ξ, η] for ξ, η ∈ k. A Poisson moment map for a K-action on a Poisson manifold X is
a Poisson map Φ : X → k∨. A Hamiltonian-Poisson K-manifold is a Poisson K-manifold equipped
with a Poisson moment map.

Proposition 3.2.6. Any Hamiltonian K-manifold (X,ω,Φ) is a Hamiltonian-Poisson K-manifold.
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Proof. For λ, ξ ∈ k we have Φ∗{λ, ξ} = Φ∗[λ, ξ] = LλXΦ∗ξ = {Φ∗λ,Φ∗ξ}. The case of non-linear
functions is similar. �

Conversely, any Poisson moment map induces an ordinary moment map on its symplectic leaves.
In particular the coadjoint action is Poisson-Hamiltonian with moment map the identity, and the
symplectic leaves are the coadjoint orbits. Thus as observed by Kirillov, Kostant, and Souriau,

Proposition 3.2.7. Any coadjoint orbit Kλ, λ ∈ k∨ of K has the canonical structure of a Hamil-
tonian K-manifolds with moment map given by the inclusion Kλ→ k∨.

Example 3.2.8. Identify R3 ∼= so(3) ∼= so(3)∗. The Proposition gives Hamiltonian SO(3)-structures
on the orbits of SO(3) on R3, which are either spheres (for non-zero radii λ) or a point (if λ = 0.)
This reproduces the Corollary 3.2.4.

For any transitive Hamiltonian action, the moment map is a local diffeomorphism and so gives a
covering of the coadjoint orbit that is its image, see Kostant [62].

The Darboux theorem has various equivariant generalizations that we will not discuss here; we
only mention that as a consequence:

Proposition 3.2.9. (see [53]) Let X be a Hamiltonian K-manifold, K compact. For any ξ ∈ k,
the function 〈Φ, ξ〉 is a Morse function with even index.

In the remainder of the section we explain two other ways in which moment maps can be
naturally interpreted. The first is closely related to the notion of equivariantly closed differential
form introduced in Section 2.3, see Atiyah and Bott [7]:

Proposition 3.2.10. Let (X,ω) be a symplectic K-manifold. There exists a one-to-one correspon-
dence between moment maps for the action of K, and equivariantly closed extensions of ω ∈ Ω2(X)
to Ω2

K(X).

Proof. Since Ω2
K(X) ∼= Ω2(X)K ⊕ Hom(k,Ω0(X))K any extension in Ω2

K(X) is equal to ω + Φ
for some Φ ∈ MapK(X, k∨) ∼= Hom(k,Ω0(X))K . The extension if equivariantly closed iff 0 =
dK(ω + Φ) = (dω, ιξXω + d〈Φ, ξ〉). Since ω is by assumption closed, dK(ω + Φ) = 0 iff Φ is a
moment map. �

The second interpretation of a moment map depends on the notion of linearization of an action,
as we now explain. Suppose that L → X is a Hermitian line bundle with unit circle bundle L1
with generating vector fields ξL ∈ Vect(L1), ξ ∈ R. The circle group U(1) acts on L1 by scalar
multiplication. Let α ∈ Ω1(L1)U(1), α(ξL) = ξ be a connection one-form with curvature (2π/i)ω ∈
Ω2(X). (That is, to fix conventions, dα = π∗ω where π : L1 → X is the projection.) The group
Aut(L1, α) of unitary automorphisms of L preserving α naturally maps to the symplectomorphism
group Symp(X,ω) of X, defining an exact sequence 1 → U(1) → Aut(L1, α) → Symp(X,ω). A
linearization of the action of K on X is a lift K → Aut(L1, α). An infinitesimal linearization is a
lift k→ Vect(L1)U(1).

Proposition 3.2.11. Let X be a K-manifold, ω ∈ Ω2(X)K a closed invariant two-form, and
π : L→ X a Hermitian line-bundle with connection one-form α ∈ Ω1(L1)K×U(1) whose curvature
is equal to (2π/i)ω. The set of moment maps Φ for the K-action is in one-to-one correspondence
with the set of infinitesimal linearizations of the action of K.

Proof. Let π1 : L1 → X denote the projection. Given a lift k → Vect(L1)U(1), define a moment
map Φ : X → k∨ by 〈Φ(x), ξ〉 = (α(ξL))(l), for any l ∈ π−1(x), independent of the choice of l.
Then

π∗1d〈Φ, ξ〉 = d(α(ξL)) = dιξLα(l) = (LξL − ιξLd)α
= LξLα− ιξLπ∗1ω = −π∗1ιξXω.

Since α is invariant, Φ is equivariant, and so defines a moment map. Conversely, given a moment
map define ξL ∈ Vect(L1)S1 by 〈Φ(x), ξ〉 = (α(ξL))(l). Then the same computation shows that
LξLα = 0. To see that ξ 7→ ξL defines a lift of k → Vects(X,ω) to Vect(L1)U(1), note that given
ξ, η ∈ k, the vectors [ξ, η]L and [ξL, ηL] agree up to a vertical vector field. To see that they are
equal, note α([ξL, ηL]) = [LξL , ιηL ]α = π∗LξL〈Φ, η〉 = π∗〈Φ, [ξ, η]〉 = α([ξ, η]L). �
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The following is immediate from the definitions:

Proposition 3.2.12. Suppose that Φ is the moment map induced by a lift of the action to a
Hermitian line bundle with connection L. Then exp(ξ), ξ ∈ kx acts on the fiber Lx via l 7→
exp(i〈Φ(x), ξ〉)l.

In other words, the value of the moment map at a fixed point determines the action of the identity
component of the group on the fiber over that point.

The notion of Lagrangian correspondence generalizes to Hamiltonian actions as follows. (again,
readers not interested in universal properties of quotients may skip this discussion):

Definition 3.2.13. Let X be a Hamiltonian K-manifold with moment map Φ : X → k∨. A
K-Lagrangian submanifold is a K-invariant Lagrangian submanifold on which Φ vanishes. Let
(Xj , ωj ,Φj) be Hamiltonian K-manifolds for j = 0, 1. A K-Lagrangian correspondence is a K-
Lagrangian submanifold of X−0 ×X1.

Allowing sequences of K-Lagrangian correspondences and identifying sequences related by a
geometric composition gives an honest category as in non-equivariant case.

3.3. Symplectic quotients. Naturally one would like a notion of quotient of a Hamiltonian K-
manifold, which should be an object in the symplectic category and satisfy a universal property for
morphisms in the equivariant symplectic category. It is easy to see that the most naive definition,
of the actual quotient, is unsatisfactory for several reasons. For example, even if the action is free,
then the quotient will not necessarily have even dimension, and so may not admit a symplectic
structure. Also the action will not in general be free, and so the quotient will not even have the
structure of a manifold.

The construction of Meyer [73] and Marsden-Weinstein [71] is free of these problems, at least
under suitable hypotheses: Let (X,ω,Φ) be a Hamiltonian K-manifold with moment map Φ :
X → k∨. Define the symplectic quotient

X//K := Φ−1(0)/K.

Theorem 3.3.1 (Meyer [73], Marsden-Weinstein [71]). Let X be a Hamiltonian K-manifold. If K
acts freely and properly on Φ−1(0), then X//K has the structure of a smooth manifold of dimension
dim(X)−2 dim(K) with a unique symplectic form ω0 satisfying i∗ω = p∗ω0, where i : Φ−1(0)→ X
and p : Φ−1(0)→ X//K are the inclusion and projection respectively.

The double slash in the notation X//K is meant to reflect that the dimension drops by 2 dim(K),
in contrast to the ordinary quotient X/K for which dimension drops by dim(K), if the action is
free. The proof depends on the following. Let ann(kx) ⊂ k∨ be the annihilator of kx.

Lemma 3.3.2. Let X be a Hamiltonian K-manifold. For any x ∈ X,
(a) ImDxΦ = ann(kx).
(b) KerDxΦ = {ξX(x), ξ ∈ k}ωx .

Proof. (a) We have 〈DxΦ(v), η〉 = ωx(v, ηX(x)) for v ∈ TxX which vanishes for all v ∈ TxX iff
ηX(x) = 0. (b) The same identity shows ωx(ξX(x), v) = 0 for v ∈ KerDxΦ, so the left-hand-side
of (b) is contained in the right. Equality now follows by a dimension count, using (a). �

Proof of Theorem. By part (a) of the Lemma, the pull-back i∗w vanishes on the orbits of K and
is K-invariant, and so descends to a form ω0 on X//K. Part (b) shows that ω0 is non-degenerate.
Since p∗dω0 = di∗ω = i∗dω = 0, ω0 is closed, hence symplectic. �

The following is a fundamental example:

Example 3.3.3. (Products of spheres) Let λ1, . . . , λn be positive real numbers and X = S2
λ1
× . . .×

S2
λn

, where S2
λ denotes the unit two-sphere with invariant area form re-scaled by λ.

Lemma 3.3.4. The group K = SO(3) acts diagonally on X = (S2)n with moment map Φ : X →
k∨ ∼= R3, (x1, . . . , xn) 7→ x1 + . . .+ xn.

Proof. By 3.2.4 and 3.2.5 (e). �
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The symplectic quotient is the moduli space of closed n-gons with lengths λ1, . . . , λn

X//SO(3) = {(x1, . . . , xn) ∈ (R3)n | ‖xj‖ = λj , x1 + . . .+ xn = 0}/SO(3).

Its topology depends on the choice of λ1, . . . , λn, see for example Hausmann-Knutson [42]. In
general there are a finite number of “chambers” in which the topology of X//SO(3) is constant.
The chambers in which X//SO(3) is non-empty are described by the following:

Proposition 3.3.5. X//SO(3) 6= ∅ iff λj ≤
∑
i 6=j λi for all j = 1, . . . , n.

Proof. For n = 3, these are the triangle inequalities. For n > 3, we assume without loss of
generality that λ1 ≥ . . . ≥ λn. Then the inequalities above are equivalent to the single inequality
λ1 ≤ λ2 + . . .+ λn. One checks that there exists j so that |λ2 + . . .+ λj − λj+1 − . . .− λn| < λ1.
The general case follows from that for n = 3, which implies that there exists a triangle with side
lengths λ1, λ2 + . . .+ λj , λj+1 + . . .+ λn. �

This ends the example.

We end this section with two remarks on the definition of symplectic quotient. First, the
symplectic quotient of a Hamiltonian action can be viewed as a symplectic leaf of the quotient
of the corresponding Hamiltonian-Poisson action in the following sense. Suppose that X is a
Hamiltonian-Poisson K-manifold such that K acts freely. The restriction of the Poisson bracket
to C∞(X)K defines a canonical Poisson structure on X/K. Then X//K is a symplectic leaf on
the smooth locus in X/K [4]; the other leaves are symplectic quotients at other coadjoint orbits,
discussed in Section 8.

Second, the symplectic quotient satisfies the following universal property for quotients. Suppose
that (X,ω,Φ) is a Hamiltonian K-manifold and K acts freely on Φ−1(0). We denote by LΦ ⊂
X− × (X//K) the image of Φ−1(0) under i× p. Then LΦ is a K-Lagrangian correspondence.

Theorem 3.3.6. Suppose that X is a Hamiltonian K-manifold. If Y is a symplectic manifold
with trivial K-action, then any K-Lagrangian correspondence from X to Y factors through LΦ.

Proof. Suppose for simplicity that the morphism consists of a single correspondence L ⊂ X−×Y .
By definition of K-Lagrangian correspondence, L ⊂ Φ−1(0) × Y . Since K acts freely on Φ−1(0),
L/K is a submanifold of X−//K × Y and is easily checked to be Lagrangian. Then L = L/K ◦
LΦ. �

Unfortunately the generalization of this universal property to arbitrary morphisms in the symplec-
tic category requires rather complicated freeness assumptions.

3.4. Fubini-Study actions. Kähler manifolds are complex manifolds with symplectic structures
that are compatible, in a certain sense, with the complex structure. An almost complex structure
on a manifold X is an endomorphism J ∈ End(TX) with J2 = −I, where I ∈ End(TX) is the
identity. An almost complex structure J is compatible with a symplectic structure ω if ω(·, J ·) is
a Riemannian metric. Any symplectic manifold admits a compatible almost complex structure; a
Kähler manifold is a symplectic manifold equipped with an integrable compatible almost complex
structure.

Affine and projective space have natural Fubini-Study Kähler structures as follows. Any Her-
mitian structure ( ) : V × V → C defines a symplectic structure on V via its imaginary part,

ωV,v(v1, v2) = Im(v1, v2).

while its real part gives a Riemannian metric on V . Let K be a Lie group acting on V . If K
preserves the Hermitian structure then the action is symplectic and a canonical moment map is
given by

〈ΦV (v), ξ〉 = Im(v, ξv)/2.

Example 3.4.1. Let K = Sp(V, ω) be the group of linear symplectomorphisms of V then the map
ξ 7→ 〈ΦV , ξ〉 defines an isomorphism of the Lie algebra sp(V, ω) with Sym2(V ∨), analogous to the
isomorphism of the orthogonal Lie algebras o(V, g) with Λ2(V ). The Lie algebra structure induced
on Sym2(V ∨) is that induced from the Poisson bracket by the inclusion Sym2(V ∨) ⊂ C∞(V ).
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Example 3.4.2. Let K = S1 act on V = Cn with weights a1, . . . , an. If the Hermitian structure on
V is the standard one then the moment map on V is Hamiltonian with moment map

Φ(z1, . . . , zn) =
n∑
j=1
−aj |zj |2/2

In particular, if K acts by scalar multiplication then the moment map is

Φ(z1, . . . , zn) = −
n∑
j=1
|zj |2/2.

The canonical symplectic quotient V//S1 is a point. If we shift the moment map by a scalar,
Φc = Φ + c, then the symplectic quotient is

V//S1 =


n∑
j=1
|zj |2/2 = c

 /S1

which identifies with the projective space P(V ) of complex lines in V via V//S1 → P(V ), [v] 7→
span(v).

It follows that projective space P(V ) naturally has a symplectic structure, called the Fubini-
Study symplectic form ωP(V ). Explicitly this is given as follows: The tangent space to P(V ) at
[v], v ∈ V − {0} naturally identifies with the Hermitian orthogonal to [v]. Then

ωP(V ),[v](v1, v2) = Im(v1, v2)
(v, v) .

If z1, . . . , zn are coordinates corresponding to a unitary basis then

ωP(V ),[z] =
i
∑n
j=1 dzj ∧ dzj

2
∑n
j=1 zjzj

.

If K acts on V preserving the Hermitian structure, then it commutes with the action of S1. The
induced action on P(V ) is also symplectic, and has canonical moment map

〈ΦP(V )([v]), ξ〉 = Im(v, ξv)/(v, v).

Suppose that K = S1, and acts on V with weights a1, . . . , an ∈ Z. The action of K on P(V ) is
Hamiltonian with moment map

(3.3) ΦP(V )([z1, . . . , zn]) =
∑n
j=1−aj |zj |2/2∑n
j=1 |zj |2/2

.

Proposition 3.4.3. Let K act on V preserving the Hermitian structure. Any smooth invariant
subvariety X ⊂ P(V ) inherits the structure of a Hamiltonian K-manifold from the Fubini-Study
Hamiltonian K-manifold structure on P(V ).

Proof. It suffices to check that the restriction of ωP(V ) to X is non-degenerate, which holds since
ωP(V )(v, Jv) > 0 for v ∈ TxX, Jv ∈ TxX since TxX is J-invariant. �

3.5. Geometric quantization. The philosophy of geometric quantization played an important
role in the development of equivariant symplectic geometry. Unfortunately good quantization
schemes exist only for certain classes of Hamiltonian actions.

Suppose that Q is a manifold and T∨Q its cotangent bundle. One thinks of T∨Q as the space
of classical states for a particle moving on Q, with a vector in T∨q Q representing the momentum.
In quantum mechanics the state of the system is given by a quantum wave-function ψ ∈ L2(Q),
whose norm-square |ψ(q)|2 represents the probability of finding the particle at position q, if its
position is measured. The construction of L2(Q) from T∨Q can be done in two steps: first cut
down the number of directions by half, then pass to functions.

One can try to extend this procedure to arbitrary symplectic manifolds (X,ω) by axiomatiz-
ing this two-step process. A Lagrangian distribution resp. complex Lagrangian distribution is a
subbundle P ⊂ TX resp TX ⊗R C such that each fiber Px is a Lagrangian subspace of TxX
resp. complex Lagrangian subspace of TxX ⊗R C. A polarization is a Hermitian line bundle L
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with connection ∇ such that the curvature of ∇ is curv(∇) = (2π/i)ω. A quantization datum
resp. complex quantization datum consists of a Lagrangian distribution resp. complex Lagrangian
distribution together with a polarization. The original literature on geometric quantization uses
polarization to refer to the Lagrangian distribution. This conflicts with the use of polarization in
the geometric invariant theory literature, which we have adopted. The geometric quantization of
(X,ω) (depending on the choice of (P,L,∇)) is the vector space of smooth sections of L which are
covariant constant with respect to ∇ along P :

H(X,ω) := {σ ∈ Γ(L),∇vσ = 0 ∀v ∈ P}.

We ignore the problem of defining a Hilbert space structure on H(X,ω), see [35] for more details.
A case for which a good quantization procedure exists is the case that X is a compact Kähler

Hamiltonian K-manifold equipped with polarization OX(1) → X. A Lagrangian distribution
is provided by the antiholomorphic directions on X, that is, P = T 0,1X ⊂ TX ⊗R C. Then
H(X,ω) = H0(X,OX(1)). In other words, in the language of geometric quantization holomorphic
sections of the polarizing line bundle are quantum states.

One can now compare the various operations on symplectic manifolds with those on vector
spaces:

Proposition 3.5.1. (a) (Duals) If J is the complex structure for X then −J is a compatible
complex structure for X−. If P = T 0,1X then P = T 0,1X−. Furthermore, L with connec-
tion −α is naturally a polarization for X−. Thus H(X−) is the space of complex-conjugates
of sections of L, which is naturally identified with the dual H(X)∨ of H(X).

(b) (Sums) If X0, X1 are Kähler Hamiltonian K-manifolds with polarizations, then H(X0 ∪
X1) = H(X0)⊕H(X1).

(c) (Products) With the same assumptions as in (b), H(X0 ×X1) = H(X0)⊗H(X1).

Example 3.5.2. Let X = S2 ∼= P1 and ω the standard symplectic form. The moment map for the
action of S1 on (X, dω) is has image [−d, d]. The d-th tensor product OX(d) of the hyperplane
bundle OX(1) is a polarization of (X, dω), so that H(X,ω) = H0(X,OX(d)) is the space of
homogeneous polynomials in two variables of degree d. Note that the weights of H(X,ω) are
{d, d − 2, d − 4, . . . ,−d}, which are the intersections points of the image Φ(X) with the lattice
d + 2Z ⊂ Z. The SU(2)-action on X induces on H(X) the structure of an SU(2)-module with
highest weight d. The product of spheres S2

λ1
× . . . × S2

λn
has quantization the tensor product of

simple SU(2)-modules Vλ1 ⊗ . . .⊗ Vλn .

Unfortunately (i) quantizing arbitrary morphisms (i.e. Lagrangian correspondences) is quite diffi-
cult, even in this case (ii) there is no good geometric quantization scheme for arbitrary symplectic
manifolds. The problem of finding good schemes for say, coadjoint orbits of real Lie groups or
moduli spaces of flat connections have vast literatures attached to them.

The reader may notice that we have not said anything yet about the behavior of the quantum
state spaces under the symplectic quotient construction. We take this up in Section 5.

4. Geometric invariant theory

In this section we review Mumford’s geometric invariant theory [74], see also Brion’s review in
this volume or the reviews by Newstead [78] or Schmitt [85]. For connections to moduli problems
see Newstead [77].

4.1. Algebraic group actions and quotients. Let G be a complex linear algebraic group. G
is called reductive iff every G-module splits into simple G-modules, or equivalently, if G is the
complexification of a compact Lie group K. A Borel subgroup of a reductive group G is a maximal
closed connected solvable subgroup B ⊂ G. The set of Borel subgroups is in bijection with set of
right cosets G/B, called the generalized flag variety for G, via the map gB 7→ gBg−1. A subgroup
P ⊂ G is parabolic iff G/P is complete iff P contains a Borel subgroup. The quotient G/P is called
a generalized partial flag variety. Let T be a maximal torus of G (for example, the complexification
of a maximal torus of the maximal compact subgroup, which was also somewhat confusingly called
T .) We denote byW = N(T )/T the Weyl group of T . The action of T on the Lie algebra g induces
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a root space decomposition
g = t⊕

⊕
α∈R(g)

gα

where T acts trivially on t and on gα by tξ = tαξ, and R(g) ⊂ Λ∨ is the set of roots of g. Given
a choice of positive Weyl chamber let B± be the Borel subgroups whose Lie algebras contain the
positive resp. negative root spaces of g. Each λ ∈ t∨ determines standard parabolic subgroups P±λ
with Lie algebra p±λ = b± +

⊕
〈hα,λ〉=0 gα, where hα ∈ t is the coroot corresponding to α ∈ t∨.

Any parabolic subgroup (in particular, any Borel) is conjugate to a standard parabolic subgroup.
An action of G on a variety X is a morphism G × X → X such that g1(g2x) = (g1g2)x and

ex = x, for all g1, g2 ∈ G, x ∈ X. A variety X equipped with a G-action is called a G-variety.
An (étale) slice for the action of G at x ∈ X is an affine subvariety V ⊂ X and a G-morphism
G ×Gx V → X that is an isomorphism (étale morphism) onto a neighborhood of X. In contrast
with the case of compact group actions, reductive group actions do not in general have slices.
Luna’s slice theorem [68] asserts that any closed orbit of an action of a reductive group on an
affine variety has an étale slice. A categorical quotient of X by G is a pair (Y, π) where Y is
a variety and π : X → Y is a G-invariant morphism that satisfies the universal property for
quotients: if f : X → Z is a G-invariant morphism then f factors uniquely through Y . A good
quotient of X is a pair (Y, π) where

(a) π : X → Y is G-invariant, affine, surjective,
(b) if U ⊂ Y is open then OY (U)→ OX(π−1(U))G is an isomorphism
(c) IfW1,W2 are disjoint closed G-invariant subsets of X then π(W1), π(W2) are disjoint closed

subsets of x.
A good quotient is automatically a categorical quotient. A geometric quotient is a good quotient
that separates orbits.

If G is connected reductive then the generalized flag variety X = G/B− has a canonical decom-
position into Bruhat cells

(4.1) X =
⋃
w∈W

Xw, Xw := BwB−/B−

and opposite Bruhat cells

(4.2) X =
⋃
w∈W

Yw, Yw := B−wB−/B−.

The codimension resp. dimensions are given by
codim(Xw) = l(w), dim(Yw) = l(w)

where l(w) is the minimal number of simple reflections in a decomposition of w. We denote
by xw = wB−/B− = Xw ∩ Yw the unique T -fixed point in Xw resp. Yw. There is a similar
decomposition of any generalized flag variety X = G/P−λ into cells X[w] indexed by [w] ∈W/Wλ.

In the special case G = GL(r), the Weyl group W is naturally identified with the symmetric
group and B± are the groups of invertible upper resp. lower triangular matrices. We identify
k → k∨; if λ = diag i(1, . . . , 1, 0, . . . , 0) has rank s then Pλ is the group of matrices preserving the
subspace Cs ⊕ 0 ⊂ Cr. The quotient X = G/Pλ is isomorphic to the Grassmannian G(s, r) of
s-dimensional subspaces of Cr. The quotient W/Wλ is natural identified with the set of subsets
I ⊂ {1, . . . , r} of size s via the map w 7→ w{1, . . . , s}. Let F1 ⊂ F2 ⊂ . . . ⊂ Fr = Cr be the
standard flag in Cr. Then the opposite Bruhat cell YI has closure the Schubert variety
(4.3) Y I = {E ∈ G(s, r),dim(E ∩ Fij ) ≥ j, j = 1, . . . , s}.

4.2. Stability conditions. Let G be a complex reductive group andX a G-variety. A polarization
of X is an ample G-line bundle OX(1)→ X. Its d-th tensor power is denoted OX(d). Let

R(X) =
⊕
d≥0

H0(X,OX(d)).

The action of X induces an action on R(X) by pull-back. We denote by R(X)G ⊂ R(X) the
subring of invariants, and by R(X)G>0 the part of R(X)G of positive degree.

Definition 4.2.1. A point x ∈ X is
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(a) semistable if s(x) 6= 0 for some s ∈ R(X)G>0;
(b) polystable if x is semistable and Gx ⊂ Xss is closed;
(c) stable if x is polystable and has finite stabilizer;
(d) unstable if x is not semistable.

Example 4.2.2. Suppose that G = C∗ acts on P2 by g[z0, z1, z2] = [g−1z0, z1, gz2]. Then R(X)d is
spanned by zd0

0 zd1
1 zd2

2 with d0 +d1 +d2 = d, which has weight d0−d2 under C∗. Thus the invariant
sections have d0 = d2. One sees easily that x is

(a) semistable iff x 6= [1, 0, 0], [0, 0, 1]
(b) polystable iff x ∈ {[0, 1, 0]} ∪ {[z0, z1, z2]|z0z2 6= 0}
(c) stable iff x ∈ {[z0, z1, z2]|z0z2 6= 0}

Let Xss resp. Xps resp Xs resp. Xus denote the semistable resp. polystable resp. stable resp.
unstable locus. We will need the following alternative characterizations of poly resp. semistability,
see Mumford [74] or Brion’s lectures in this volume:

Lemma 4.2.3. Let X ⊂ P(V ) be a G-variety. A point x ∈ X is polystable (resp. semistable) iff
the orbit of any lift v in V is closed (resp. does not contain 0).

Define an equivalence relation on orbits as follows:

Definition 4.2.4. Orbit-equivalence is the equivalence relation on Xss defined by x0 ∼ x1 iff
Gx0 ∩Gx1 ∩Xss 6= ∅.

Transitivity of this relation follows from:

Proposition 4.2.5. (see [74]) The closure Gx of any semistable x contains a unique polystable
orbit. Hence two orbits Gx0, Gx1 are orbit-equivalent iff their closures contain the same polystable
orbit.

See Theorem 5.4.9 for an analytic proof. The following can be considered the main result of
geometric invariant theory [74]:

Theorem 4.2.6 (Mumford). Let X be a projective G-variety equipped with polarization OX(1).
(a) There exists a categorical quotient π : Xss → X//G.
(b) π(Xs) ⊂ X//G is open and π|Xs : Xs → π(Xs) is a geometric quotient.
(c) The topological space underlying X//G is the space of orbits modulo the orbit-closure relation

Xss/ ∼ .
(d) X//G is isomorphic to the projective variety with coordinate ring R(X)G.

Some authors prefer to write Xss//G for the geometric invariant theory quotient, while we drop
the superscript from the notation.

4.3. The Hilbert-Mumford criterion. Mumford [74], based on previous work of Hilbert for the
case of the special linear group acting on projective space, gave a method for explicitly identifying
the semistable loci:

Theorem 4.3.1. (Hilbert-Mumford criterion) Let X be a polarized projective G-variety. x ∈ X
is semistable iff x is semistable for all one-parameter subgroups C∗ → G.

One direction of the Hilbert-Mumford criterion is trivial: Let X be a polarized G-variety. Suppose
that x is G-semistable, so that there exists s ∈ R(X)G>0 with s(x) 6= 0. Then s is also invariant
for any one-parameter subgroup, hence x is semistable for any one-parameter subgroup. The
other direction is somewhat harder; the proof given in Mumford [74] uses an algebraic theorem of
Iwahori. We will give an alternative analytic proof using the Kempf-Ness function in Section 7.2.
The following is a fundamental example:

Example 4.3.2. Let X = (P1)n and OX(1) = OP1(1)�n the n-fold exterior tensor product. The
group G = SL(2,C) acts diagonally on X. We wish to show

(a) Xss = {(x1, . . . , xn) ∈ (P1)n, at most n/2 points equal}.
(b) Xs = {(x1, . . . , xn) ∈ (P1)n, less than n/2 points equal}.
(c) Xps −Xs = {(x1, . . . , xn) ∈ Xss,#{x1, . . . , xn} = 2}. In other words, n/2 are equal and

the other n/2 are also equal.
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Indeed, if zj , wj are the coordinates on the j-factor thenH0(OX(d)) is spanned by zd1
1 wd−d1

1 . . . zdnn wd−dnn

where dj ∈ [0, d], j = 1, . . . , n. If C∗ ⊂ G is the standard maximal torus given by g 7→ diag(g, g−1)
thenH0(OX(d))C∗ is spanned by the polynomials zd1

1 wd−d1
1 . . . zdnn wd−dnn with

∑n
j=1 dj =

∑n
j=1 d−

dj , that is,
∑

(dj/d) = n/2. Since dj/d ∈ [0, 1], this means that at least n/2 of the dj ’s are non-
zero. Thus ([z1, w1], . . . , [zn, wn]) is C∗-semistable iff at most n/2 zj ’s and at most n/2 wj ’s equal
zero. Repeating the same for an arbitrary one-parameter subgroup (or equivalently, basis for C2)
proves the claim.

Example 4.3.3. More generally, suppose thatX = (P1)n is equipped with the polarizationOX(1) :=
�ni=1OP1(λi) for some positive integers λ1, . . . , λn. Then x = (x1, . . . , xn) is semistable iff for all
x ∈ P1, ∑

xj=x
λj ≤

∑
xj 6=x

λj .

For future use we mention the following equivalent form of the Hilbert-Mumford criterion and
Lemma 4.2.3:

Corollary 4.3.4. Let G be a reductive group acting linearly on a finite dimensional vector space
V . For any v ∈ V , Gv contains 0, if and only if C∗v contains 0 for some one-parameter subgroup
C∗ ⊂ G.

Remark 4.3.5. The statement of the corollary does not hold for arbitrary (that is, not linear)
actions resp. arbitrary points. An example I learned from Brion: Let X = P(S3(C2)⊕C) with the
action induced from the action of SL(2,C) on C2 and the trivial action on C. Identifying S3(C2)
with homogeneous polynomials in two variables u, v, one sees that the orbit of [u2v, 1] contains the
orbit of [u3, 1] in its closure. The stabilizer of [u3, 1] is a maximal unipotent subgroup of SL(2,C)
and so does not contain a copy of C∗. Thus [u3, 1] cannot be contained in the closure of an orbit of
a one-parameter subgroup. On the other hand, the lemma is true for arbitrary actions of abelian
groups, as follows from, for example, Atiyah Theorem’ 8.2.1 below.

5. The Kempf-Ness theorem

The material in this section is contained in the original paper of Kempf-Ness [52], the book of
Mumford-Fogarty-Kirwan [74], and the paper of Guillemin-Sternberg [33]. The notes of Thomas
[96] also describe the Kempf-Ness theorem with many examples.

5.1. Complexification of Lie groups and their actions. We begin with some basic remarks
on the relation between complex and compact group actions. Any compact Lie group K admits
a complexification G, a complex reductive Lie group G containing K as a maximal compact real
subgroup, and whose Lie algebra g is equal to k⊕ ik. The complexification G satisfies the universal
property that any Lie group homomorphism fromK to a complex Lie groupH extends to a complex
Lie group homomorphism from G. The complexification G admits a Cartan decomposition: a
diffeomorphism (see Helgason [45, VI.1.1])
(5.1) K × k→ G, (k, ξ) 7→ k exp(iξ).
If X is a compact complex manifold then the group Aut(X) of automorphisms is a complex Lie
group, with Lie algebra given by the space H0(X,TX) of holomorphic vector fields on X, see for
example Akhiezer [3]. Any action of a compact group K therefore extends to the complexification
G.

By a Kähler Hamiltonian K-manifold we mean a compact Hamiltonian K-manifold equipped
with an integrableK-invariant complex structure. IfX is compact then theK-action automatically
extends to a G-action preserving the complex structure but not the symplectic structure. By the
Kodaira embedding theorem, if the symplectic form is rational then a compact Kähler Hamiltonian
K-manifold is isomorphic as a complex G-manifold to a smooth complex algebraic G-variety.
However, the symplectic form may not be the pull-back of the Fubini-Study form under any
holomorphic embedding of X, see for example Tian [97]. The generating vector fields for ξ ∈ k are
the Hamiltonian flows corresponding to the moment map components 〈Φ, ξ〉, while the generating
vectors fields for iξ, ξ ∈ k are the gradient flows corresponding to 〈Φ, ξ〉. In particular, for any
x ∈ X, ξ ∈ k, the trajectory exp(itξ)x converges to a point x∞ ∈ X with ξX(x∞) = 0. Furthermore,
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since 〈Φ, ξ〉 is a Morse function by Lemma 3.2.9, this convergence is exponentially fast in t; the
exponential nature of convergence will be used later.

The example of flag varieties will be particularly important later and we briefly describe these
actions from the algebraic and symplectic points of view. Let V be a finite dimensional vector space.
A partial flag in V is a filtration F = (F1 ⊂ F2 ⊂ . . . ⊂ Fm ⊂ V ). The type of F is the sequence
of dimensions dim(F1) < dim(F2) < . . . < dim(Fm). Given a sequence t = (t1 < . . . < tm) ∈ Zm
we let Fl(t, V ) denote the set of partial flags of type t. The general linear group GL(V ) acts
transitively on Fl(t, V ) with stabilizer the parabolic subgroup of transformations preserving the
filtration. A GL(V )-equivariant canonical projective embedding of Fl(t, V ) is given by choosing a
basis v1, . . . , vn so that v1, . . . , vtj is a basis for Fj for each j = 1, . . . ,m, and mapping

Fl(t, V )→
m∏
j=1

P(ΛtjV ), F 7→
m∏
j=1

Λtjk=1vk.

Given a Hermitian metric on V , any partial flag induces a Hermitian splitting

V = F1 ⊕ (F2 ∩ F⊥1 )⊕ (F3 ∩ F⊥2 ) . . . ∩ (Fm ∩ F⊥m−1)

and such splittings are in one-to-one correspondence with flags. Given real numbers λ1 > . . . > λm
the flag defines a skew-Hermitian operator acting by iλj on Fj ∩ F⊥j−1. Conversely, any such
Hermitian operator determines a splitting via its eigenspace decomposition. The unitary group
K = U(V ) acts transitively on the space of such matrices, which form an orbit of the action of K
on the Lie algebra k. Now k may be identified with its dual via any invariant inner product, so
one sees that Fl(t, V ) is naturally identified with the coadjoint orbit Kλ of λ, identified with an
element of k∨ via the inclusion t → k and an identification k → k∨. Given a generic ξ ∈ t+, the
stable resp. unstable manifolds of the Morse function 〈Φ, ξ〉 are the Bruhat resp. opposite Bruhat
cells of (4.1) resp. (4.2).

5.2. Statement and proof. The Kempf-Ness theorem states the equivalence of the symplectic
and geometric invariant theory quotients; the affine case is treated in [52] and the projective case
is similar (Theorem 8.3 in [74]).

Theorem 5.2.1. Let K be a compact group and G its complexification. Let V be a G-module
equipped with a K-invariant Hermitian structure. Let X ⊂ P(V ) be a smooth projective G-variety,
and Φ : X → k∨ the Fubini-Study moment map. Then Φ−1(0) ⊆ Xps and the inclusion induces a
homeomorphism X//K → X//G.

The proof uses the properties of a Kempf-Ness function for each v ∈ V − {0}:

ψv : k→ R, ξ 7→ log ‖ exp(iξ)v‖2/2.

The Kempf-Ness function determines the norm of all vectors in the orbit of v, by the Cartan
decomposition (5.1) and K-invariance of the metric. The Kempf-Ness function can be viewed as
the integral of the moment map in the following sense:

Lemma 5.2.2. For all v ∈ V and λ, ξ ∈ k we have ∂λψv(ξ) = 2〈Φ(exp(iξ)[v]), λ〉.

Proof. The proof uses the explicit formula for the Fubini-Study moment map

∂λψv(ξ) = d

dt
|t=0 log ‖ exp(i(ξ + tλ))‖2/2

= (iλ exp(iξ)v, exp(iξ)v)
(exp(iξ)v, exp(iξ)v)

= 2〈Φ(exp iξ)[v], λ〉

�

Corollary 5.2.3. For any v ∈ V , ψv is a convex function with critical points given by the zeros of
the map ξ 7→ Φ(exp(iξ)[v]). The second derivatives ∂2

ξψv are strictly positive on k− kx. For ξ ∈ kx
the function ψv is the linear function given by ψv(ξ) = ψv(0) + 2〈Φ(x), ξ〉.
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Proof. For λ, ν ∈ k we have
∂ν∂λψv(ξ) = 2〈LJνXΦ(exp(iξ)[v]), λ〉

= (ω(λX , JνX))(exp(iξ)[v])
= (g(λX , νX))((exp iξ)[v])

which is positive semidefinite since g is a Riemannian metric. By Lemma 5.2.2, the critical points
correspond to zeroes of Φ. The formula for ξ ∈ kx is immediate from the previous lemma. �

If ψv is strictly convex (that is, has trivial infinitesimal stabilizer) and has a critical point, then
it has a unique global minimum. The following lemma characterizes for which v minima of ψv
exist:

Lemma 5.2.4. Let v ∈ V − {0} and x = [v] ∈ P(V ).
(a) ψv attains a minimum iff x is polystable.
(b) ψv is bounded from below iff x is semistable.

Proof. (a) Recall from 4.2.3 that x is polystable iff Gv is closed. Suppose Gv is closed. Let ξj be a
minimizing sequence for ψv. Then exp(iξj)v converges to k exp(iξ)v for some k ∈ K, ξ ∈ k, since Gv
is closed, and ξ must be a global minimum of ψv. Conversely, suppose that ψv attains a minimum.
Necessarily 〈Φ(x), ξ〉 = 0 for all ξ ∈ kx since otherwise there exists ξj ∈ kx with ψv(ξj) → −∞,
using Corollary 5.2.3; this would contradict the existence of a minimum. Let ξj ∈ k, kj ∈ K be
a sequence with the property that kj exp(iξj)v converges in V . Using compactness of K, we may
assume after passing to a subsequence that kj converges, so that exp(iξj)v converges as well. Write
ξj = ξ0

j + ξ1
j for some sequences ξ0

j ∈ kx, ξ
1
j ∈ k⊥x . Then

exp(iξj)v = exp(i(ξ0
j + ξ1

j ))v = (Ad(exp(iξ0
j )) exp(iξ1

j )) exp(iξ0
j )v

= exp(Ad(exp(iξ0
j ))iξ1

j ) exp(i〈Φ(x), ξ0
j 〉)v

= exp(Ad(exp(iξ0
j ))iξ1

j )v.

Since ψv is strictly convex on k⊥x , we must have ‖Ad(exp(iξ0
j ))ξ1

j ‖ bounded and so Ad(exp(iξ0
j ))ξ1

j

converges to some ξ∞ ∈ kx with exp(iξj)v → exp(iξ∞)v. This proves that Gv is closed. (b) If ψv is
bounded from below, then any minimizing sequence ξj has exp(iξj)x converging to a critical point
of ψ, which is necessarily a zero of Φ. Hence Gx contains a polystable orbit in its closure and is
therefore semistable. If ψv is not bounded from below, then Gv contains 0 and so x is unstable,
see Lemma 4.2.3. �

Corollary 5.2.5. Xps = GΦ−1(0).

Proof. By Lemmas 5.2.4, 5.2.3, 4.2.3. �

Proof of the Kempf-Ness theorem 5.2.1. Consider the inclusion
i/K : Φ−1(0)/K → Xps/G ∼= X//G.

First note that i/K is injective: Suppose that x0, x1 ∈ Φ−1(0) are such that Gx0 = Gx1. Since
G = K exp(k) by (5.1), we have exp(iξ)x1 = kx0 for some ξ ∈ k, k ∈ K. Choose a lift v of
x1. Then both 0, ξ are critical points of ψv, and since ψv is convex this implies ξ ∈ kx1 and so
Kx0 = Kx1. Next note that i/K is surjective by Corollary 5.2.5. Finally i/K is a homeomorphism:
Any bijection from a Hausdorff space to a compact space is a homeomorphism. (Alternative, the
gradient flow of the norm-square of the moment map discussed in Section 7 defines a continuous
inverse to i/K.) �

Remark 5.2.6. Let X be a compact Kähler Hamiltonian K-manifold. An analog of the Kempf-
Ness function may be obtained by integrating the one-form given by the moment map: Define
α ∈ Ω1(k), αx,λ(ξ) = 〈Φ(exp(iλ)x), ξ〉. Then anti-symmetry of ω implies that α is closed, hence
exact by the Poincaré lemma, hence αx = dψx for some ψx : k → R. Equivariance of Φ implies
that αkx = αx, so that ψkx = ψx. Say that a point x ∈ X is polystable iff ψx attains a minimum,
semistable iff ψx is bounded from below. With these definitions the following Kähler analog of
the Kempf-Ness theorem holds, c.f. Mundet [50], Heinzner-Loose [43], Heinzner-Huckleberry [44],
Bruasse-Teleman [20], Teleman [94]: Let X//G be the quotient of the semistable locus by the
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orbit closure equivalence relation. Then the same arguments show that Φ−1(0) is contained in the
semistable locus and the inclusion induces a homeomorphism X//K → X//G.

We will return to a more complete discussion of the Kempf-Ness function later. We illustrate
the theorem with the Clebsch-Gordan theory of existence of invariants in tensor products of rep-
resentations of G = SL(2,C). The weight lattice Λ∨ for G is naturally identified with the set
Z/2 of non-negative half-integers and for any λ ∈ Λ∨, λ ≥ 0 we denote by Vλ the corresponding
simple G-module. (The identification with half integers is more natural than the identification
with integers since the canonical inner product on the Lie algebra, defined by the trace in the
standard representation, assigns length

√
2 to the highest root.) Given λ1, . . . , λn we ask whether

Vλ1 ⊗ . . . ⊗ Vλn contains an invariant vector. Now H0(P1,OP1(d)) ∼= Vd/2 and so R(P1) = ⊕λVλ.
If we equip X = (P1)n with the ample line bundle OX(1) := �nj=1OP1(λj) then

R(X) =
⊕
d≥0

n⊗
j=1

H0(OP1(dλj)) =
⊕
d≥0

n⊗
j=1

Vdλj .

So

R(X//G) = R(X)G = (
⊕
d≥0

n⊗
j=1

Vdλj )G.

This is non-zero if and only ifX//G is empty. The Kempf-Ness Theorem 5.2.1 givesX//G ∼= X//K ∼=
(S2
λ1
× . . .×S2

λn
)//SU(2) where S2

λ denotes the two-sphere equipped with re-scaled symplectic form
λ and SU(2) acts via the double cover SU(2)→ SO(3). By Proposition 3.3.5,

Corollary 5.2.7. (⊗nj=1Vdλj )G is non-trivial for some d iff

(5.2) λj ≤
∑
i6=j

λi, j = 1, . . . , n.

This gives a geometric proof of the well-known Clebsch-Gordan rules. A basis for the space of
invariants is induced from a choice of parenthesization of the tensor product above, see for example
[22]. The relation between the different invariants is also connected to symplectic geometry [84].

5.3. Quantization commutes with reduction. The proof of the Kempf-Ness Theorem 5.2.1,
which seems otherwise somewhat miraculous, has a conceptual interpretation given by Guillemin-
Sternberg [33] in terms of geometric quantization (Section 3.5) as follows. Namely, rather than
choosing a lift of x ∈ X to V − {0}, which is the total space of OX(−1), it is more natural from
the viewpoint of geometric quantization to choose a lift l in the positive line bundle OX(1)→ X.
Define the Guillemin-Sternberg function

ψ∨l : k→ R, ξ 7→ log ‖ exp(iξ)l‖2/2.

The same computation as in the Kempf-Ness case, except for a change of sign, implies that for
λ, ν, ξ ∈ k we have

∂λψ
∨
l (ξ) = −2〈Φ(exp(iξ)x), λ〉, ∂ν∂λψ

∨
l (ξ) = −2ωexp(iξ)x(λX(x), JνX(x)).

In particular, suppose that s ∈ H0(X,OX(1))G is an invariant section. Then

ψ∨s(x)(ξ) = log ‖ exp(iξ)s(x)‖2/2 = log ‖s(exp(iξ)x)‖2/2.

Now convexity of ψ∨s(x) implies that any critical point of ‖s‖2 occurs at Φ−1(0) and is a local
maximum, and s is approximately Gaussian. This type of behavior is quite standard for “typi-
cal quantum states”, which introductory physics lectures often show as concentrating near some
submanifold of the corresponding classical state space in Gaussian fashion.

Suppose that K acts freely on the zero level set Φ−1(0). The complex structure J on X induces
an almost complex structure J//K on X//K by identifying π∗T (X//K) with the subbundle of
TX|Φ−1(0) perpendicular to the generating vector fields ξX , ξ ∈ k. This complex structure is
integrable since the Nijenhuis tensor vanishes. Similarly the polarization OX(1) → X naturally
descends to a polarization OX//K(1)→ X//K, defined by restricting to Φ−1(0) and quotienting by
the action of K.
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Theorem 5.3.1 (Quantization commutes with reduction). Let X be a compact Hamiltonian K-
manifold equipped with moment map Φ : X → k∨, polarization OX(1) → X and a compatible
K-invariant Kähler structure J , such that K acts freely on the zero level set Φ−1(0), and let
R(X)d denote the space of sections of OX(d) as above. For each d ≥ 0 there is a canonical
isomorphism ρ : R(X)Kd → R(X//K)d

Proof. For smooth projective varieties X ⊂ P(V ) this is a combination of Mumford’s Theo-
rem 4.2.6 and the Kempf-Ness Theorem 5.2.1. More generally let X be a compact polarized
Kähler Hamiltonian K-manifold. Any section s ∈ H0(X,OX(1))K naturally defines a section
ρ(s) ∈ H0(X//K,OX//K(1)) by restriction to Φ−1(0) and descent to the quotient. Then ρ is an
injection, since any invariant section has maximum norm on Φ−1(0). Proving surjectivity required
a somewhat complicated argument in the approach of Guillemin-Sternberg, and the following al-
ternative algebraic argument is substantially easier: By Kodaira embedding X is biholomorphic to
smooth subvariety of P(V ), and the polarization OX(1) is isomorphic as a holomorphic line bundle
to the pull-back of the hyperplane bundle on P(V ), although the symplectic structure and moment
map may not be pull-backs. By the extension of Kempf-Ness to Kähler varieties discussed in 5.2.6,
the semistable locus corresponding to the polarization OX(1) has quotient by G diffeomorphic to
X//K. Given a section s ∈ H0(X//K,OX//K(1)), s naturally lifts to an invariant section on the
semistable locus Xss with maximum on Φ−1(0). Since the norm of this section is bounded, it
extends over all of X. �

Guillemin-Sternberg also proved “quantization commutes with reduction” for another of class of
Hamiltonian actions for which there exists a good quantization scheme, namely cotangent bundles
[34]. Quantization commutes with reduction was generalized to arbitrary compact Hamiltonian
manifolds using “Spin-c” quantization by Meinrenken [72], and further generalized to “non-abelian
localization” by Teleman and Paradan, see the last section of these notes.

5.4. Polystable points. By Lemma 5.2.5, the polystable orbits are the orbits of points x ∈
Φ−1(0). In this section we investigate these and the orbit-closure equivalence relation in more
detail. The following was observed by Kempf-Ness [52] in the linear case and by Slodowy [93] in
general, see also Sjamaar [91].

Proposition 5.4.1. Let X be a Kähler Hamiltonian K-manifold, and x ∈ Φ−1(0). Then Gx is
the complexification of Kx; in particular, Gx is reductive.

Proof. Suppose that x ∈ Φ−1(0) and gx = x. Write g = k−1 exp(ξ) for some ξ ∈ ik, k ∈ K. Let
ψx = ψkx be Kempf-Ness functions for x resp. kx, see Remark 5.2.6. Then exp(ξ)x = kx so
gradψx(ξ) = gradψkx(0) = gradψx(0) = 0 = gradψx(0). By convexity, ψx is constant along the
line tξ, so ξ ∈ ikx. Hence x = kx so k ∈ Kx, which implies g ∈ (Kx)C. The reverse inclusion
(Kx)C ⊂ Gx is obvious. �

Remark 5.4.2. Stabilizer groups are not in general reductive. For example let X = SL(2,C)×BP1.
Then every stabilizer is either solvable or unipotent, and so no projective embedding of X has
semistable points.

Second we show that polystable points are “seen by one-parameter subgroups.” For this we
need to review some results on existence of holomorphic slices. Let X be a complex manifold
with a holomorphic action of a group G. Let x ∈ X. Recall that a slice at x is a Gx-invariant
submanifold S of X containing x such that GS is open in X and the natural G-equivariant map
from G×Gx S → X is an isomorphism onto GS. Sjamaar [91] has proved the following analog of
slice theorems of Luna and Snow:

Theorem 5.4.3 (Sjamaar). Let G be a connected complex reductive group with maximal compact
K. Let X be a Kähler Hamiltonian K-manifold such that the action of K extends to a holomorphic
action of G. Suppose that x ∈ Φ−1(0). Then there exists a slice at x.

Corollary 5.4.4. An orbit Gx contains a polystable point y in its closure, iff there exists a one-
parameter subgroup C∗ ⊂ G and a point z ∈ Gx such that C∗z contains a polystable point in its
closure.
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Proof. Let y be a polystable point. We may assume that Φ(y) = 0. By Theorem 5.4.3, there exists
a slice S at y. Now S is biholomorphic to its tangent space TyS, equivariantly for the action of
Kx, in a neighborhood U of y. Furthermore, since this map is holomorphic, the map is equivariant
for the infinitesimal G-action. By Lemma 4.3.4, there exists a one-parameter subgroup C∗ → G
and a point v ∈ TyS such that the closure of C∗v contains 0 ∈ TyS. By choosing v sufficiently
small, we ensure that {zv, |z| ≤ 1} is in the image of U . Let s ∈ S be the pre-image of v. Then
{zs, |z| ≤ 1} contains y in its closure, as required. �

Using this corollary we prove a finite-dimensional analog of the Jordan-Hölder theory for semistable
vector bundles, see for example Seshadri [88].

Definition 5.4.5. For any λ ∈ k, let xλ = limt→∞ exp(−tiλ)x the associated graded point of x
with respect to λ.

Remark 5.4.6. The fact that exp(−tiλ)x is the gradient flow of a Morse function (see 3.2.9) implies
that the gradient trajectory converges exponentially fast to xλ, that is, dist(exp(−tiλ)x, xλ) ≤
C0e

−C1t for some constants C0, C1.

Definition 5.4.7. λ ∈ k is Jordan-Hölder for x ∈ Xss iff xλ is polystable.

Example 5.4.8. Let X = C2 and G = (C∗)2 acting by (g1, g2)(z1, z2) = (g1z1, g2z2). Then any
(λ1, λ2) with λ1, λ2 > 0 is Jordan-Hölder.

Theorem 5.4.9. Let X be a compact Kähler Hamiltonian K-manifold and x ∈ X a semistable
point.

(a) The set of Jordan-Hölder vectors for x is a non-empty Kx-invariant cone in k.
(b) The orbit Gxλ of the associated graded xλ of a Jordan-Hölder λ is the unique polystable

orbit in Gx.

Proof. (a) The set of Jordan-Hölder vectors is non-empty: Since x is semistable, Gx contains a
polystable y in its closure. By Corollary 5.4.4, any polystable y is in the closure C∗z for some
one-parameter subgroup C∗ ⊂ G and z ∈ Gx. Suppose that z = g−1x for some g ∈ G. Then
(Ad(g)C∗)x = gC∗z contains gy in its closure, and gy is polystable as well. Convexity of the set
of Jordan-Hölder vectors follows immediately from convexity of the Kempf-Ness function, since if
grad(ψ)→ 0 along any two directions then it also goes to zero in any intermediate direction.

(b) Suppose that y0, y1 are polystable points in the closure of Gx, and yj = (exp(iξj)x)λj for
some vectors ξj , λj ∈ k, j = 0, 1. Then gradψ(−tλj + ξj) = Φ(exp(−tλj + ξj))x) → Φ(yj) = 0 as
t→∞. The distance between exp(i(ξj + tλj))x is given as follows: Let δt = (ξ1 + tλ1)− (ξ0 + tλ0),
ξs,t = (1− s)(ξ1 + tλ1) + s(ξ0 + tλ0) and xs,t = exp(iξs,tx). Then the square of the distance from
x0,t to x1,t is given by(∫ 1

0
‖ d
ds
xs,t‖ds

)2

≤
∫ 1

0
‖ d
ds
xs,t‖2ds

=
∫ 1

0
g

(
d

ds
xs,t,

d

ds
xs,t

)
ds

=
∫ 1

0
∂2
δtψ(ξs,t)ds = ∂δtψ(ξs,t)|s=1

s=0.

Now gradψ converges exponentially to zero along ξj,t as t → ∞ for j = 0, 1, since exp(iξj,t)x
converges exponentially fast to xλj , see Remark 5.4.6. On the other hand, ‖δt‖ < C0 + C1t for
some constants C0, C1, by definition of δt. Hence dist(xλ0 , xλ1) = limt→∞ dist(x0,t, x1,t) = 0 and
the claim follows. �

Remark 5.4.10. We have included (b) to emphasize a somewhat confusing point: distant points in
k may map to near points in X if the gradient of ψ on the path between them is sufficiently small.

Remark 5.4.11. In fact, the full strength of Sjamaar’s (or Luna’s) slice theorem is not needed
here; it suffices to find a slice for the infinitesimal action of G which is substantially easier. Some
terminology: If a Lie group with Lie algebra g acts on a manifold we say that a submanifold
U is g-invariant if the generating vector fields are tangent to U . A slice for the infinitesimal
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action of g at x is a gx-invariant holomorphic submanifold S containing x, such that the natural
map g ×gx TS → TX|S is an isomorphism. Using the implicit function theorem, one sees that
any sequence of points converging to x may be translated by the action of G (which is now only
defined in a neighborhood of the identity) into a sequence of points in S. Thus if an orbit Gy in
X contains x ∈ S in its closure, then Gy ∩ S also contains x in its closure, and by Lemma 4.3.4
C∗y ∩ S contains x in its closure for some one-parameter subgroup C∗ ⊂ G.

6. Schur-Horn convexity and its generalizations

In this section we discuss the generalization of Clebsch-Gordan theory to arbitrary groups, in
particular, the theory of existence of invariants in tensor products of representations of GL(r), the
connections (via the Kempf-Ness theorem) with eigenvalue problems, and a combinatorial answer
by Knutson, Tao, and the author [60].

6.1. The Borel-Weil theorem. Let G be a connected complex reductive group. Let λ be any
dominant weight for G and Vλ a simple G-module with highest weight λ. Let P−λ be the opposite
standard parabolic corresponding to λ, and G/P−λ the generalized flag variety corresponding to
λ. We denote by C∨λ the one-dimensional representation of P−λ corresponding to −λ, and by
OX(λ) = G×P−

λ
C∨λ .

Theorem 6.1.1 (Borel-Weil [87] ). Let X = G/P−λ with λ a weight. Then H0(X,OX(λ)) ∼= Vλ
if λ is dominant and vanishes otherwise.

Proof. First consider the case G = SL(2,C). We identify Λ∨ with Z/2. Then H0(OX(λ)) is the set
of homogeneous polynomials in two variables of degree 2λ, if λ is non-negative, and zero otherwise.
In the first case one checks easily that H0(OX(λ)) is simple with highest weight λ.

Next let G be an arbitrary connected complex reductive group. Let X = G/B− and X1 =
BB−/B− ∼= B/T ∼= U the open Bruhat cell, (here U is a maximal unipotent) so thatH0(X1,OX(λ)|X1)U =
H0(U,C)U ∼= C. Thus H0(X1,OX(λ)|X1) contains a unique highest weight vector, which we de-
note by sλ. We wish to determine whether sλ extends over the complement of X1 in X. It suffices
to check the order of vanishing of sλ on the divisors Xsα , as α ranges over simple roots. For
each root α, we let hα ∈ t denote the corresponding coroot, so that sl(2,C)α := Chα ⊕ gα is the
three-parameter Lie algebra corresponding to α. Let SL(2,C)α → G denote the homomorphism
induced by the inclusion sl(2,C)α → g. The orbit Cα = SL(2,C)αB−/B− of SL(2,C)α on X is
isomorphic to SL(2,C)α/SL(2,C)α ∩ B− ∼= P1. The curve Cα intersects the Bruhat cell Xsα in
the unique point xsα = sαB

−/B−. The order of vanishing of sα along Xsα is necessarily the order
of vanishing of sα|Cα at xsα . Now OX(λ) restricts to the line bundle OP1(〈λ, hα〉) on Cα, and the
section sλ restricts to the highest weight section on Cα − xsα . It extends over xα iff 〈λ, hα〉 ≥ 0,
by the discussion for the SL(2,C) case.

Now G/B− fibers over G/P−λ with projective fibers and so

H0(G/B−,OG/B−(λ)) = H0(G/Pλ,OG/P−
λ

(λ)).

Since the result is proved for G/B−, this completes the proof. �

From the point of view of symplectic geometry, the Borel-Weil theorem says that the geometric
quantization of a coadjoint orbit equipped with an integral symplectic form (that is, one that is
the curvature of some line bundle) is a simple K-module. Indeed, let Φ denote the moment map
induced by the action of K on OX(λ). Since the weight of T on the fiber of OX(λ) over B−/B−
is −λ, Φ maps X onto the coadjoint orbit Kλ through λ, see Proposition 3.2.12. Thus in the
notation introduced in Section 3.5, H(Kλ) = Vλ.

6.2. The Schur-Horn-Kostant problem. The Schur-Horn theorem [86], [48] reads:

Theorem 6.2.1. The set of possible diagonal entries of a Hermitian operator with eigenvalues
λ = (λ1, . . . , λn) is the hull of the set of permutations of λ.

Example 6.2.2. If K = SO(3) then by Proposition 3.2.4 the coadjoint orbit through diag(λ,−λ)
may be identified with the sphere of radius λ via the isomorphism k∨ = so(3)∨ → R3, and the
moment map for the maximal torus action is projection onto the z-axis, and so has moment image
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[−λ, λ]. The action of the Weyl group W = Z2 on t is identified with the sign representation, and
so [−λ, λ] = hull{−λ, λ} = hull(Wλ) as claimed.

Kostant [63] generalized this result to arbitrary compact connected groups:

Theorem 6.2.3. Let K be a compact connected group. The projection of a coadjoint orbit Kλ of
an element λ ∈ t∨ is the convex hull of the orbit Wλ of λ under the Weyl group W .

Using the Kempf-Ness and Borel-Weil theorems 5.2.1, 6.1.1, the Schur-Horn-Kostant theorem
is equivalent to the following well-known fact in representation theory:

Theorem 6.2.4. With K as above, let λ be a dominant weight. The set of µ/d such that the
weight space Vdλ,(µ) ⊂ Vdλ is non-trivial for some d ∈ Z+ is the rational convex hull of Wλ.

Proof. We identify X = Kλ = G/P−λ and Cµ the trivial bundle over X with T -weight µ so
that Vdλ,(µ) = H0(X,C∗µ ⊗OX(dλ))T by Borel-Weil 6.1.1, which is the space of sections over the
quotient (X//T )C by Mumford’s Theorem 4.2.6. We may use the Hilbert-Mumford criterion to
determine whether there are any semistable points: Given a one-parameter subgroup generated by
some ξ ∈ t+, a point x ∈ X flows under exp(tξ) to yw as t→ −∞ where x ∈ Yw := B−wB−/B− is
the opposite Bruhat cell, see (4.1). The weight of T on the fiber over yw is µ−wλ. Thus x ∈ Yw is
semistable for ξ iff 〈wλ−µ, ξ〉 ≤ 0 iff µ ∈ wλ−(t+)∨. In particular Y1 is contained in the semistable
locus for the one-parameter subgroup generated by −ξ with ξ dominant iff µ ∈ λ − (t+)∨. The
semistable locus for the torus action is non-empty iff a generic point is semistable for all one-
parameter subgroups iff

(6.1) µ ∈
⋂
w∈W

w(λ− (t+)∨).

The dual cone to hull(wλ,w ∈ W ) at wλ is generated by (sα − 1)wλ where α ranges over simple
roots, which is equal to w(t+)∨. It follows that (6.1) is equivalent to µ ∈ hull(wλ,w ∈ W ) as
claimed. �

Proof of Theorem 6.2.3. Let X = Kλ be as above. The moment map corresponding to the pro-
jective embedding Kλ→ P(V ∨λ ) is the projection π of X onto t∨ by Proposition 3.2.5 (d). Hence
the moment map for the projective embedding Kλ → P(V ∨λ ⊗ Cµ) is π − µ. By Kempf-Ness
X//TC ∼= X//T , where TC is the complexification of T . Finally X//T non-trivial iff 0 is in the image
of π − µ iff µ is contained in the image of π. �

6.3. The Horn-Klyachko problem. In the previous section we investigated the existence of
semistable points for an action of a torus. The Horn problem [49] deals with the following question,
which we will rephrase in terms of existence of semistable points for the action of a non-abelian
group:

Question 6.3.1. Given the eigenvalues of Hermitian matrices H1, . . . ,Hn−1, what are the possible
eigenvalues of H1 + . . .+Hn−1?.

Since the eigenvalues are real, we may order them in non-increasing order
λ1(Hj) ≥ λ2(Hj) . . . ≥ λr(Hj).

Then the most famous inequality is the well-known
λ1(H1 +H2) ≤ λ1(H1) + λ1(H2).

We will give a complete list of such inequalities. Before we give the answer, we note that this
question has a symplectic reformulation as follows. Taking Hn = −H1− . . .−Hn−1, obtain a tuple
(H1, . . . ,Hn) with H1 + . . .+Hn = 0. Thus the problem is a special case of the generalized Horn
problem:

Question 6.3.2. Let K be a compact Lie group. For which λ1, . . . , λn ∈ t∨+ is the symplectic
quotient (Kλ1 × . . .×Kλn)//K non-empty?

By the Kempf-Ness and Borel-Weil theorems, this problem is equivalent to the following

Question 6.3.3. Let K be a compact Lie group. For which dominant weights λ1, . . . , λn ∈ t∨+ is
space of invariants (Vdλ1 ⊗ . . .⊗ Vdλn)K non-trivial for some d ≥ 0?
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In the case K = SU(2) this question was answered in Section 5.2. We give a partial answer
for the case K = SU(n) using max-min description of eigenvalues; this implies inequalities on
the invariant theory problem. Then we give a necessary and sufficient answer using the Hilbert-
Mumford criterion, following an argument of Klyachko [55]. Finally we give a brief description of
works of Belkale [10], Knutson-Tao [58], and Knutson-Tao-Woodward [60] giving a minimal set of
inequalities.

We begin with the elementary max-min approach for K = U(n). If H is a Hermitian matrix
with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λr then

λj = max
V⊂Cr

dim(V )=j

min
v∈V−{0}

(v,Hv)
(v, v) , j ∈ {1, . . . , r}.

This has a generalization to partial sums of eigenvalues as follows: For every subspace E ⊂ Cr and
Hermitian operator H we denote by HE the operator on E given by composing H with restriction
and projection. Then for any J = {j1 < . . . < js} ⊂ {1, . . . , r} we have∑

j∈J
λj = max

F1⊂...⊂Fs
dim(Fl)=jl

min
E∈G(s,n)

dim(E∩Fl)≥l

Tr(HE).

Suppose that J1, . . . , Jn are such that for every set of flags F1, . . . , Fn, there exists a space E ∈
G(s, r) such that dim(E ∩ Fi,l) ≥ ji,l for i = 1, . . . , n and l = 1, . . . , s. Then

n∑
i=1

∑
j∈Ji

λi,j =
n∑
i=1

max
Fi,1⊂...⊂Fi,s

dim(Fi,l)=ji,l

min
Ei∈G(s,r)

dim(Ei∩Fi,l)≥l

Tr(Hi,Ei)

≤
n∑
i=1

Tr(Hi,E) = Tr(
n∑
i=1

Hi|E) = 0.

Example 6.3.4. Suppose that J1 = {1}, J2 = {r}, J3 = {r}. Since every subspace of dimension 1
intersects Cr in a subspace of dimension 1, namely itself, we obtain the inequality λ1,1+λ2,r+λ3,r ≤
0. In terms of sums of matrices, this translates to the fact that λr(H1) + λr(H2) ≤ λr(H1 + H2)
for any Hermitian matrices H1, H2.

The existence of such an E for generic flags is implied by the non-vanishing of the Schubert
coefficient #[Y J1 ] ∩ . . . ∩ [Y Jn ] in the homology H(Gr(s, r)) of the Grassmannian Gr(s, r), where
Y Ji are the Schubert varieties of (4.3). (The singular homology has no torsion and with real
coefficients is isomorphic to the de Rham cohomology, so there is no conflict with notation.) Thus

Theorem 6.3.5. If the Horn problem for λ1, . . . , λn has a solution, then
∑n
l=1
∑
j∈Ji λi,j ≤ 0 for

all s < r and J1, . . . , Jn of size s such that #[Y J1 ] ∩ . . . ∩ [Y Jn ] > 0 in H(Gr(s, r)).

Unfortunately, from this point of view it is very difficult to see whether the list of all such in-
equalities is sufficient. Klyachko [55] noticed that this follows from the Hilbert-Mumford criterion.
(See Fulton [30] for a more detailed discussion.) Let Oλj = Kλj ∼= G/P−λj for some dominant
λ1, . . . , λn; for simplicity we assume that λj are generic. The quotient (Oλ1× . . .×Oλn)//G is non-
empty iff the semistable locus in Oλ1× . . . Oλn is non-empty, iff a generic point F = (F1, . . . , Fn) in
Oλ1 × . . .×Oλn is semistable for all one-parameter subgroups. Let ξ ∈ k generate a one-parameter
subgroup. Under the action of exp(zξ), z → 0, the point Fj ∈ Oλj flows to a T -fixed point xwj
where Ywj contains Fj . Thus F is ξ-semistable iff

(6.2)
n∑
j=1
〈λj , w−1

j ξ〉 ≤ 0.

So F is Ad(g)ξ-semistable iff the same inequalities hold for wj such that Fj ∈ gYwj . Let gj ∈ G
be such that Fj = gjB/B. Then Fj lies in gYwj iff g−1B/B ∈ g−1

j Yw−1
j

. Hence the semistable
locus for the diagonal action of G is non-empty iff the inequalities (6.2) hold for dominant ξ
whenever (w1, . . . , wn) are such that the intersection of the varieties g−1

j Yw−1
j

is non-empty for
generic (g1, . . . , gn). This gives a necessary and sufficient set of inequalities. From now on we drop
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the inverses on the Weyl group elements wj , since they appear in both the inequalities and the
intersection condition.

The next step is to reduce to inequalities for which the intersection number #[Y w1 ]∩ . . .∩ [Y wn ]
is non-zero. If the intersection is positive dimensional for generic (g1, . . . , gn) then it represents
a non-zero homology class of positive degree, and by Poincaré duality there exists an element
wn+1 ∈ W such that #[Y w1 ] ∩ . . . ∩ [Y wn+1 ] 6= 0. Then expanding the product of the last two
[Y wn ] ∩ [Y wn+1 ] and choosing w′n so that [Y w′n ] has positive coefficient in [Y wn ] ∩ [Y wn+1 ] one
obtains w′n such that #[Y w1 ] ∩ . . . ∩ [Y wn′ ] 6= 0. Then wnλ− w′nλ ∈ t+ and so the inequality for
(w1, . . . , w

′
n) implies that for (w1, . . . , wn). The conclusion is that a generic point is semistable iff

#[Y w1 ] ∩ . . . ∩ [Y wn ] > 0 =⇒
n∑
l=1
〈λl, wlξ〉 ≤ 0 ∀ξ ∈ t+.

It suffices to check the inequalities for ξ in a set of generators for t+. In particular, forK semisimple
it suffices to check them for ξ equal to a fundamental coweight ω∨j , that is, for a generator of t+. An
argument similar to the one above shows that these inequalities correspond to non-zero intersection
numbers in the corresponding generalized partial flag varieties:

Theorem 6.3.6. Let K be a compact connected semisimple group with complexification G. A
necessary and sufficient set of inequalities for the Horn-Klyachko problem is given by

#[Y w1 ] ∩ . . . ∩ [Y wn ] > 0 =⇒
n∑
l=1
〈λl, wlω∨l 〉 ≤ 0 ∀ξ ∈ t+.

as ω∨l ranges over fundamental coweights, [w1], . . . , [wn] range over elements ofW/Wωj , Yw1 , . . . , Ywn ⊂
G/Pωj are the corresponding opposite Bruhat cells in the partial flag variety G/Pωj , with the con-
dition that #[Y w1 ] ∩ . . . ∩ [Y wn ] 6= 0 in H(G/Pωj ).

For example, suppose that K = U(r) (and Klyachko’s argument was restricted to this case) so
that t is naturally identified with Rn and the j-th fundamental weight is identified with ωj = e1 +
. . .+ej , where ej is the j-th standard basis vector. In this case one obtains that (Oλ1×. . .×Oλn)//G
is non-empty iff for each j ∈ {1, . . . , r} and subsets J1, . . . , Jn ⊂ {1, . . . , r} of size k,

#([Y J1 ] ∩ . . . ∩ [Y Jn ]) > 0 =⇒
n∑
l=1

∑
j∈Jl

λl,j ≤ 0

c.f. Theorem 6.3.5. So the Hilbert-Mumford approach implies the sufficiency as well as the
necessity of these inequalities. Generalizations to groups of arbitrary type and other actions are
described in Berenstein-Sjamaar [12] and Ressayre [83].

The cohomology of the Grassmannian G(s, r) has a number of combinatorial models, for exam-
ple, the famous Littlewood-Richardson rule. A recent “puzzles” model introduced by Knutson and
Tao, see [60], is simple enough that we give a brief description. The puzzle board is the diagram
shown in Figure 6.1. There are r little triangles along each big edge in the board. The puzzle

Figure 6.1: Puzzle board

pieces are shown in Figure 6.2. together with their rotations. A puzzle is a way of filling in the
puzzle board with puzzle pieces so that all of the edges match.

Example 6.3.7. An example of a puzzle is shown in Figure 6.3.
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Figure 6.2: Puzzle pieces
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Figure 6.3: An example of a puzzle

For each puzzle, let I denote the positions of the 1’s on the northwest boundary, J the positions
of the 1’s on the northeast boundary, and K the positions of the edge along the southern boundary,
reading left to right.

Example 6.3.8. For Figure 6.3, I = {2, 4}, J = {2, 4}, K = {2, 3}.

Theorem 6.3.9. [60] The coefficient of [Y K ] in [Y I ]∩ [Y J ] ∈ H(G(s, r)) is the number of puzzles
nKIJ with boundary data I, J,K.

There are several possible proofs: one given by Knutson and Tao checks the equivalence with the
Littlewood-Richardson rule. A second proof [61], joint with the author, proves associativity of the
product defined by the puzzle numbers by a simple combinatorial trick, and then checks equality
with the Schubert coefficients on generators. The formula generalizes to intersection numbers of
arbitrary numbers of Schubert varieties, by considering puzzle boards with arbitrary numbers of
“large boundaries”. For example, for n = 4 one can take a diamond-shaped puzzle board.

Combining this combinatorial description with Klyachko’s argument gives the following:

Corollary 6.3.10. If there is a puzzle whose 1’s on the boundary are in positions I, J,K then the
inequality ∑

i∈I
λi(H1) +

∑
j∈J

λj(H2) ≤
∑
k∈K

λk(H1 +H2)

holds for any Hermitian matrices A,B, and these inequalities together with the trace equality
n∑
i=1

λi(H1) +
n∑
j=1

λj(H2) =
n∑
k=1

λk(H1 +H2)

give sufficient conditions for a triple (λ(H1), λ(H2), λ(H1 +H2)) to occur.

Example 6.3.11. The puzzle in Example 6.3.7 gives the inequality λ2(H1) + λ4(H1) + λ2(H2) +
λ4(H2) ≤ λ2(H1 +H2) + λ3(H1 +H2).

The following theorem of Knutson, Tao, and the author [60] (see also the review [59]), extending
previous work of Belkale [10], describes a minimal set of inequalities:

Theorem 6.3.12. The inequalities corresponding to I, J,K with nKIJ = 1 together with the trace
equality form a complete and irredundant set of necessary and sufficient conditions for the Horn
problem for the sum of two Hermitian matrices.
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Many other problems of this type can be solved in the same way; for example see Agnihotri-
Woodward [2] for a discussion of the possible eigenvalues of a product of unitary matrices, and
relations with the invariant theory of quantum groups. In this case the existence of a good com-
binatorial model computing the eigenvalue inequalities is still open. Work of Belkale-Kumar [11]
and Ressayre [83] gives a minimal set of inequalities for the Klyachko-Horn problem for general
type groups.

7. The stratifications of Hesselink, Kirwan, and Ness

According to work of Kirwan [53] and Ness [76], the semistable locus of a G-variety X ⊂ P(V )
can be considered the open stratum in a Morse-type stratification ofX. A theorem of Ness describes
the equivalence of this stratification with one introduced by Hesselink [46], which measures the
degree of instability of a point by its maximal Hilbert-Mumford weight.

7.1. The Kirwan-Ness stratification. Let X be a Hamiltonian K-manifold with proper mo-
ment map Φ : X → k∨. Let ( , ) : k→ k→ R be an invariant metric on k inducing an identification
k→ k∨. Let

φ = 1
2(Φ,Φ) : X → R

denote the norm-square of the moment map. The notation Φ(x)X ∈ Vect(X) denotes the vector
field determined by Φ(x), and Φ(x)X(x) ∈ TxX its evaluation at x.

Lemma 7.1.1. crit(φ) = {x ∈ X,Φ(x)X(x) = 0}.

Proof. We have dφ(x) = (Φ(x),dΦ(x)) = −ιΦ(x)X(x)ωx. Since ω is non-degenerate, dφ(x) vanishes
iff Φ(x)X(x) ∈ TxX does. �

Example 7.1.2. Let X = P2 and K = U(1)2 acting by (g1, g2)[z0, z1, z2] = [z0, g
−1
1 z1, g

−1
2 z2].

Consider the moment map Φ([z0, z1, z2]) 7→ (|z1|2/2, |z2|2/2) − (1/4, 1/4), which has image the
convex hull

∆(X) = hull{(−1/4,−1/4), (−1/4, 3/4), (3/4,−1/4)}.
The critical sets are the level sets of Φ at (0, 0), (−1/4, 0), (0,−1/4), (1/4, 1/4), (−1/4,−1/4), (−1/4, 3/4), (3/4,−1/4),
see Figure 7.1.

Figure 7.1: Critical values for X = P2

Lemma 7.1.3. Φ(crit(φ)) is a discrete union of K-orbits in k∨, called the set of types for X.

Proof. Suppose first that K is abelian. Consider the orbit-type decomposition

X =
⋃
H⊂K

XH , XH = {x ∈ X|Kx = H}.

where the union is over subgroups H ⊂ K. It follows from standard slice theorems that each XH is
a smooth manifold. Let h denote the Lie algebra of H. By Lemma 3.3.2, Φ(XH) is an open subset
of an affine subspace parallel to ann(h). Thus Φ(XH ∩ crit(φ)) = {λ ∈ Φ(XH)|λ ∈ h} which is the
set containing the unique point in Φ(XH) closest to 0, if it exists, and empty, otherwise. Since Φ is
proper, the pre-image of any compact set under Φ contains only finitely many orbit-types, which
proves the theorem in the abelian case.
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Suppose that K is possibly non-abelian with maximal torus T . The action of T on X is also
Hamiltonian with moment map ΦT obtained by composing Φ with the projection of k∨ onto t∨.
Let φT = (ΦT ,ΦT )/2. Since φ is K-invariant, any critical point is conjugate to a point x ∈ crit(φ)
with Φ(x) ∈ t∨. Then x ∈ crit(φ) iff x ∈ crit(φT ) iff Φ(x) is a type for the action of T . Hence the
types for K are locally finite. �

Choose a compatible K-invariant metric on X, and let grad(φ) ∈ Vect(X) denote the gradient
of φ.

Lemma 7.1.4. The gradient of φ is grad(φ)(x) = J(x)Φ(x)X(x).

Proof. Using the proof of Lemma 7.1.1, for v ∈ TxX

gx(grad(φ)(x), v) = Dxφ(v) = −ωx(Φ(x)X(x), v) = gx(J(x)Φ(x)X(x), v).

The claim follows. �

Let ϕt : X → X be the flow of − grad(φ); since Φ is proper, so is φ and so ϕt exists for all times
t ∈ [0,∞).

Proposition 7.1.5 (Duistermaat, see [66], [104]). Any trajectory of ϕt has a limit.

For the construction of the Kirwan stratification the actual convergence of ϕt is not needed. For
each type λ, let Cλ = Φ−1(Kλ) ∩ crit(φ) denote the corresponding component of the critical set
of φ. Since the set of types is discrete, any two limit points are contained in some Cλ ⊂ crit(φ),
and in fact in the same connected component of crit(φ). Let Xλ denote the set of points x ∈ X
flowing to Cλ,

Xλ := {{ϕt(x), t ∈ [0,∞)} ∩ Cλ 6= ∅.}.
Note that since φ is not Morse-Bott in general, there is no guarantee that Xλ is smooth. The
Kirwan-Ness stratification is the decomposition [53], [76]:

X =
⋃
λ

Xλ.

Theorem 7.1.6 (Kirwan). There exists an invariant metric on X so that each stratum Xλ is
smooth. The spectral sequence for the equivariant stratification X = ∪λXλ collapses at the second
page, so that

HK(X) ∼=
⊕
λ

HK(Xλ).

In particular the canonical map HK(X) → HK(Φ−1(0)) (which is isomorphic to H(X//K) if K
acts freely on Φ−1(0)) is a surjection and the equivariant Poincaré polynomial of X

pKX(t) =
∑

tj rankHj
K(X)

is given by
pkX(t) =

∑
λ

(−1)codim(Xλ)pKXλ(t).

If X acts freely on Φ−1(0) this means that the difference pKX(t) − pX//K(t) is a finite sum of
contributions from fixed point sets of one-parameter subgroups. We will see a version of this
formula for sheaf cohomology in the last chapter.

In the case that X is a Kähler Hamiltonian K-manifold with proper moment map, the Kirwan-
Ness stratification has a more explicit description. For each type λ let ϕλ,t denote the time t
flow of − grad〈Φ, λ〉, Zλ the component of the fixed point set Xλ of the action of λ containing
Cλ, Yλ the subset of X flowing to Zλ under ϕλ,t, Kλ the centralizer of λ, and U(1)λ the one-
parameter subgroup generated by λ. Then Kλ/U(1)λ acts naturally on Zλ in Hamiltonian fashion
with moment map denoted Φλ, obtained by restricting Φ to Zλ and projecting out the direction
generated by λ. We denote by Zss

λ the set of points flowing to Φ−1
λ (0) under the flow of minus the

gradient of the norm-square of Φλ. Let Y ss
λ denote the inverse image of Zss

λ in Yλ.
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Theorem 7.1.7 (Kirwan [53]). Let X be a Kähler Hamiltonian K-manifold with proper moment
map Φ : X → k∨. For the Kähler metric each Xλ is a G-invariant complex submanifold, each Yλ
is a Pλ-invariant complex submanifold, and G ×Pλ Y ss

λ → Xλ, [g, y] 7→ gy is an isomorphism of
complex G-manifolds.

We give a proof, and explain the relation with a theorem of Ness [76], in the following section.
In the point of view we will present, a key fact is that the gradient flow of the norm-square of
the moment map is essentially equivalent to the gradient flow of the Kempf-Ness function, as
was pointed out in Donaldson-Kronheimer [26, Section 6]. Let X be a Kähler Hamiltonian K-
manifold with proper moment map. For any x ∈ X, let xt denote the trajectory of the gradient
flow of −φ starting at x. On the other hand, let ψ : k → R be a Kempf-Ness function for x,
gradψ(ξ) = Φ(exp(iξ)x). We may also consider the gradient flow of ψ, with respect to the given
metric on k.

Proposition 7.1.8. Let X,x, ψ be as above. The map k → X, ξ 7→ exp(iξ)x maps the gradient
trajectories of ψ onto the gradient trajectories of −φ.

Proof. Follows from gradψ(ξ)X(exp(iξ)(x)) = Φ(exp(iξ)x)(exp(iξ)(x)) and Lemma 7.1.4. �

In particular, since the trajectories of ψ exist for all time by the bound on Φ, any trajectory of
− grad(φ) is contained in a single G-orbit: xt ∈ Gx,∀x ∈ X, t ∈ R.

Corollary 7.1.9. ψ is bounded from below iff the gradient flow for −φ converges to Φ−1(0).

Proof. In the algebraic case, this is nothing but a reformulation of 4.3.4. For the Kähler case, note
that if ψ is bounded from below then grad(ψ) converges to zero along any gradient trajectory, and
by equivalence of gradient flows 7.1.8 it follows that Φ must converge to zero. The converse follows
as in the proof of Theorem 5.4.9, using that grad(ψ) converges to zero exponentially fast along
any one-parameter subgroup whose limit corresponds to a polystable point. �

7.2. The Hesselink stratification. Let X ⊂ P(V ) be a projective G-variety, or more generally a
compact Kähler Hamiltonian K-manifold. The Hesselink stratification uses the weights appearing
in the Hilbert-Mumford criterion to construct a stratification on X: Define for any λ ∈ k the
Hilbert-Mumford degree

degλ(x) = 〈Φ(xλ), λ〉.

Definition 7.2.1. A point x ∈ X is
(a) degree semistable iff degλ(x) ≤ 0 for all λ,
(b) degree stable iff degλ(x) < 0 for all λ,
(c) degree unstable iff x is not semistable, and
(d) degree polystable iff it is degree semistable and degλ(x) = 0 implies deg−λ(x) = 0 for all λ.

Degree semistability might also be called Hilbert-Mumford semistability, but this seems a little
unwieldy. We have already seen in the proof of the Kempf-Ness theorem that degree semistability
is equivalent to semistability. The equivalence of degree polystability with polystability is proved
in Mundet [50]. It follows from Section 5.4 that a point x ∈ X is polystable but not stable iff its
Jordan-Hölder cone contains a line.

The set of destabilizing one-parameter subgroups is studied by Hesselink in the algebraic case
[46], [47], see also Ramanan-Ramanathan [82]. For any λ we denote by Gλ the centralizer of λ
and by C∗λ the one-parameter subgroup generated by λ. Obviously C∗λ ⊂ Gλ. Let x ∈ X and Zλ
denote the component of Xλ containing xλ. Then the action of Gλ on Zλ descends to an action
of Gλ/C∗λ. Furthermore, the inner product on k determines a splitting gλ = Cλ ⊕ gλ/Cλ which
defines a lift of Gλ/C∗λ to the polarizing line bundle, at least up to finite cover. So we may consider
Zλ as a polarized Gλ/C∗λ-variety, with the caveat that the polarization depends on the choice of
inner product on k.

Theorem 7.2.2. (a) Any unstable x has a unique (up to scalar multiple) optimal one-parameter
subgroup generated by λ ∈ k with the property that xλ is a semistable point for the action
of Gλ/C∗λ on Zλ.

(b) The optimal one-parameter vector λ has the property that it maximally destabilizing:
degµ(x)/‖µ‖ ≤ degλ(x)/‖λ‖ for all µ ∈ k− {0} and equality holds iff R+µ = R+λ.
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We prove this theorem in the next section. Let Λ denote the set of equivalence classes of one-
parameter subgroups appearing in Hesselink’s theorem (with equivalence given by the adjoint
action) we call the decomposition X = ∪λXλ the Hesselink stratification of X.

Remark 7.2.3. The Hesselink stratification is the finite-dimensional analog of the Shatz stratifica-
tion [89] of the moduli stack of vector bundles on a curve by the type of the Harder-Narasimhan
filtration.

The following is proved in the algebraic case by Ness [76]:

Theorem 7.2.4. The Hesselink and Kirwan-Ness stratifications agree.

This is a generalization of her earlier theorem with Kempf [52], which describes the same result for
the open strata only; it includes the Hilbert-Mumford criterion, by definition of degree semistability.
We will prove the Hesselink and Ness theorems as well as the Hilbert-Mumford criterion using
results on convex functions: Let V be a Euclidean vector space. For any function f : V → R, we
denote by grad(f) ∈ Vect(V ) the gradient vector field of f , and for any v ∈ V let vt denote the
trajectory of − grad(f). A smooth function f : V → R is strictly convex iff the Hessian of f is
positive definite at every point in v. The following is an easy consequence of strict convexity:

Lemma 7.2.5. Let V be a Euclidean vector space, f : V → R a convex function. If f has a critical
point x then it is a global minimum. Furthemore, if f is strictly convex then x is the unique critical
point.

If f has no global minimum, then convexity still implies that f has a unique direction of
maximum descent, under modest technical assumptions: We say that f has a well-behaved gradient
if the gradient of f is bounded and the limit of grad(f) exists along any gradient trajectory vt.

Proposition 7.2.6. Suppose that f : V → R is convex and has a well-behaved gradient. Then
there exists a unique λ ∈ V so that

(a) any gradient trajectory vt of −f has grad(f)(vt)→ λ as t→ −∞.
(b) Suppose that µ ∈ V and (grad(f)(−µt), µ) approaches a limit cµ as t→∞. Then cµ/‖µ‖ ≤
‖λ‖ , with equality if and only if µ is a positive scalar multiple of λ.

Proof. (a) The idea is that gradient trajectories “automatically discover the direction of maximal
descent”. Suppose that vj,t, j = 0, 1 are two gradient trajectories and

lim
t→∞

grad(f)(vj,t)→ λj

for some λj ∈ V, j = 0, 1. Consider the path
γt0,t1(s) = sv0,t0 + (1− s)v1,t1 .

Let ft0,t1(s) = f(γt0,t1(s)). Case (i): λ0, λ1 are both non-zero, so that vj,t ∼ λjt as t → ∞, that
is, ‖vj,t + λjt‖/‖λjt‖ → 0 as t → ∞. Choose t0, t1 so that f(v0,t0) = f(v1,t1). By convexity
d
dsft0,t1(s) is non-positive at s = 0 and non-negative at s = 1. On the other hand d

dsft0,t1(j) =
(grad(f)(j), v1,t1 − v0,t0) ∼ (λj ,−λ1t + λ0t), so (λ0,−λ1 + λ0) ≤ 0 and (λ1,−λ1 + λ0) ≥ 0. But
(λ1 − λ0, λ1 − λ0) > 0 implies that (λ1,−λ1 + λ0) < (λ0,−λ1 + λ0), which is a contradiction.
Case (ii): one of the λj , say λ0 vanishes, then λ1 is necessarily non-zero. Then Dft0,t1(0)→ 0 as
t0, t1 → ∞ and ft0,t1(0)/t0 ∼ 0 as t0, t1 → ∞, but ft0,t1(1) ∼ c0 − t1(λ1, λ1) as t1 → ∞, which
contradicts convexity.

(b) First suppose µ = λ. The function (grad(f), λ) has gradient trajectory tλ, so (grad(f), λ) is
non-increasing along −tλ. Since grad(f) is bounded and (grad(f)(−tλ), λ) is decreasing, the limit

cλ = lim
t→∞

(grad(f)(−tλ), λ)

exists. Hence f(−tλ) ∼ −cλt. Suppose by way of contradiction that cλ 6= (λ, λ). Then |f(−tλ)−
f(vt)| ≥ Ct for some constant C > 0. Since vt ∼ −tλ, |f(−tλ)− f(vt)|/‖vt + tλ‖ → ∞ as t→∞.
Together with the mean value inequality this contradicts the assumption that the gradient of f is
bounded.

More generally, let µ /∈ R+λ. Then f(−µt) ∼ −cµt for some constant cµ and f(−λt) ∼ −(λ, λ)t.
Let µ1, λ1 be the unit vectors in the direction of µ, λ. If cµ/‖µ‖ < −‖λ‖, then f(−µt) goes faster to
−∞ than f(−λ1t). Consider the path γ(s) = (1−s)tµ1 +stλ1. On the one hand, (µ1−λ1, λ1) ≤ 0
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implies that d
dsf(γ(s))|s=1 ≤ 0 for t� 0. On the other hand, f(γ(s))|s=0 � f(γ(s))|s=1 for t� 0,

which is a contradiction. Hence cµ/‖µ‖ ≥ ‖λ‖. If equality holds, then the same argument shows
we must have (µ1 − λ1, λ1) = 0, and since both µ1, λ1 are unit vectors this implies µ1 = λ1. �

Proof of Kirwan’s theorem 7.1.7. Let V = k and f = ψ be a Kempf-Ness function. The gradient
grad(ψ) is well-behaved since X is compact and the gradient flow converges by 7.1.5. Proposition
7.2.6 then implies that for each x ∈ X there is a unique direction −λ of maximal descent for the
Kirwan-Ness function. Let Xλ denote the set of points whose directions are conjugate to λ and
Uλ the set of points whose directions are equal to λ. Equality of the gradient flows Theorem 7.1.8
implies that Xλ is the same as Kirwan’s, that is, equals the set of points whose gradient flow
converges to Φ−1(Kλ). Uniqueness of λ implies that if x ∈ Uλ and g ∈ G is such that gx ∈ Uλ,
then g ∈ Pλ. Indeed, note G = KPλ and Uλ is Pλ-stable. Hence it suffices to consider the case
g ∈ K, and then gλ is also a direction of maximal descent. Hence gλ = λ which implies that
g ∈ Kλ, hence g ∈ Pλ. This implies Xλ = G ×Pλ Uλ, which proves the first part of Kirwan’s
theorem.

To prove the second part, let xλ denote the associated graded point for some x ∈ Uλ. Since
Gx intersects Φ−1(Kλ), Gλxλ intersects Φ−1(Kλ), so xλ is semistable for the action of Gλ on
Zλ. Conversely, the pre-image of Zss

λ is contained in Uλ, since both are Gλ-invariant and contain
Φ−1(λ). It follows that Uλ = Y ss

λ of Section 7.1. This proves Kirwan’s theorem. �

Proof of Hesselink’s theorem 7.2.2. Let x ∈ X and let −λ be the direction of maximal descent of
the Kempf-Ness function. We must show that λ generates the unique one-parameter subgroup
such that xλ is Gλ-semistable. Suppose that µ generates another one-parameter subgroup. Part
(b) of Proposition 7.2.6 gives the inequality cµ/‖µ‖ < ‖λ‖ where cµ = (Φ(xµ), µ). Suppose that
the Gµ orbit of xµ is semistable; then its closure intersects Φ−1(µ1) where µ1 ∈ R+µ is such that
cµ/‖µ‖ = ‖µ1‖. But then the closure of Gx also intersects Φ−1(µ1). By Theorem 7.1.8, ‖λ‖ is the
infimum of ‖Φ‖ on the orbit Gx. Indeed, ‖Φ‖ is decreasing on gradient trajectories of ψ, which all
converge to λ. This contradicts ‖µ1‖ < ‖λ‖. �

Remark 7.2.7. Suppose ω ∈ Ω2(X) is a closed two form that is not symplectic, but satisfies
ω(ξX , JξX) > 0 for any ξ ∈ k. The proof above works equally well for moment maps associated to
such two-forms. That is, only non-degeneracy of the two-form on the directions generated by the
action is used in the proof.

8. Moment polytopes

According to work of Atiyah, Guillemin-Sternberg, and Kirwan, the quotient of the image of
the moment map is convex. (This section could have been placed before that on Schur-Horn
convexity.)

8.1. Convexity theorems for Hamiltonian actions. LetX be a HamiltonianK-manifold with
moment map Φ. The moment image of X is Φ(X) ⊂ k. The quotient

∆(X) := Φ(X)/K ⊂ k∨/K

can be identified with a subset of the convex cone t∨+
∼= k∨/K.

Example 8.1.1. If X = Pn−1 and G = U(1)n acts by the standard representation, then the moment
image is the standard n-simplex

Φ(X) = {(µ1, . . . , µn) ∈ Rn≥0 | µ1 + . . .+ µn = 1},
see (3.3). The coordinate hyperplane {zj = 0} ⊂ X maps to the j-th facet {µj = 0} ⊂ Φ(X).

Another description of the moment polytope ∆(X) involves the shifted symplectic quotients:
for λ ∈ k∨, the quotient

X//λK := Φ−1(Kλ)/K = (O−λ ×X)//K
is the symplectic quotient of X at λ. The shifted symplectic quotient is the classical analog of the
multiplicity space HomK(Vλ, V ) of a representation V in the following sense:

Proposition 8.1.2. Let X be a polarized projective G-variety and λ a dominant weight. Then
R(X//λG)d = HomG(Vdλ, R(X)d) for any d ≥ 0.
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Proof. Combining the Borel-Weil and Kempf-Ness theorems gives R(X//λK)d = R(Kλ−×X)Kd =
(V ∨dλ ⊗R(X)d)K = HomK(Vdλ, R(X)d). �

The following is immediate from the definitions:

Lemma 8.1.3. ∆(X) = {λ | X//λK 6= ∅} is the set of λ for which the shifted symplectic quotient
X//λK is non-empty.

The set ∆(X) is the “classical analog” of the set of simple modules appearing in a G-module.
Let ∆Q(X) := Λ∨Q ∩∆(X) denote the set of rational points in ∆(X); furthermore ∆Q(X) is dense
in ∆(X), see for example [65].

Theorem 8.1.4. ∆Q(X) = ∆(X) ∩ Λ∨Q is equal to the set of points λ/d such that Vλ ⊂ R(X)d.

Proof. By Lemma 8.1.3 and Proposition 8.1.2. �

Recall that a convex polyhedron is the intersection of a finite number of half spaces, while a
convex polytope is the convex hull of a finite number of points. The fundamental theorem of
convex geometry says that any compact convex polyhedron is a convex polytope and vice-versa.

Theorem 8.1.5 (Atiyah [5], Guillemin-Sternberg [32] for the abelian case, Kirwan [54] for the
non-abelian case). Let K be a compact, connected Lie group and X a compact connected Hamil-
tonian K-manifold. Then ∆(X) is a convex polytope. If K is abelian, then ∆(X) is the convex
hull of the image Φ(XK) of the fixed point set XK of K.

∆(X) is the moment polytope of X. The arguments of Atiyah and Guillemin-Sternberg in [5],
[32] are Morse-theoretic. The equivariant version of Darboux’s theorem implies that the functions
〈Φ, ξ〉 have only critical sets of even index, and this implies that the level sets 〈Φ, ξ〉−1(c) are
connected. Using an inductive procedure one shows that for any subtorus K1 ⊂ K, the level sets
of the moment map for Φ1 are connected as well. Taking K1 of codimension one, this shows that
the intersection of Φ(X) with any rational line is connected and it follows that Φ(X) is convex. The
reader is referred to the original papers for details. Kirwan’s non-abelian version uses the Morse
theory of the norm-square of the moment map. See Lerman-Meinrenken-Tolman-Woodward [65]
for a derivation of non-abelian convexity from the abelian case.

Brion [16], following earlier work of Mumford [76, Appendix], pointed out the following proof
of convexity, which in language of geometric quantization would be called a “quantum” proof:
Suppose λj/dj ∈ ∆Q(X), j = 0, 1. Let vj ∈ R(X)dj be the corresponding highest weight vectors.
Then for any n0, n1 ∈ N, vn0

0 vn1
1 ∈ R(X)n0d0+n1d1 is a highest weight vector, so

n0λ0 + n1λ1

n0d0 + n1d1
= d0n0

d0n0 + d1n1
(λ0/d0) + d1n1

n0d0 + n1d1
(λ1/d1) ∈ ∆Q(X).

This implies that ∆Q(X) is convex.
The inequalities of the previous section (for example, the Horn-Klyachko problem) can now be

seen as the inequalities describing the moment polytopes of products of coadjoint orbits.

8.2. Convexity theorems for orbit-closures. In the case that X is Kähler, Atiyah [5] also
described the images of orbit-closures under the moment map, in the case that K is abelian.
Of course if the orbit-closure is smooth, then this falls into the previous convexity theorem, but
Atiyah’s theorem also includes the case of singular orbit-closures:

Theorem 8.2.1. [7, Theorem 2] Let K be a torus, G its complexification, and X a Kähler Hamil-
tonian K-manifold. Let Y ⊂ X be a G-orbit. Then

(a) ∆ := Φ(Y ) is a convex polytope with vertices Φ(Y ∩XG);
(b) For each open face F ⊂ ∆, Φ−1(F ) ∩ Y is a single G-orbit.
(c) Φ induces a homeomorphism of Y /G onto ∆.

We will describe Atiyah’s arguments since they are brief and are closely related to the one-
parameter subgroups of Hesselink as well as the Jordan-Hölder subgroups of Section 5.4.9. The
proof depends on the following

Lemma 8.2.2. Let Y ⊂ X be a G-orbit and y ∈ Y . Then
(a) yλ = limt→∞(exp(itλ)y) exists and lies in the fixed point set Xλ;
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(b) limt→∞〈Φ(exp(itλ)y), λ〉 exists and is a constant dλ independent of y.
(c) dλ = supy∈Y 〈Φ(y), λ〉.

Suppose that λ is generic so that XG = Xλ. The Lemma implies

sup
y∈Y
〈Φ(y), λ〉 = sup

y∈XG∩Y
〈Φ(y), λ〉.

Hence Φ(Y ) is contained in the convex hull of Φ(XG ∩ Y ). To see that Φ(Y ) = ∆, Atiyah notes
that for any y ∈ Y and direction ξ ∈ k of unit length, there exists a time t(ξ) such that

〈Φ(exp(it(ξ)ξy), ξ〉 = 1
2(Φ(y) + d(ξ)).

The set of points exp(iξ)y with ‖ξ‖ ≤ t(ξ/‖ξ‖) defines a neighborhood U of y in Y with Φ(U) =
Φ(y) + 1

2 (∆− Φ(y)); this immediately implies that Φ(Y ) is both open and closed in ∆ and hence
equal to ∆.

To prove the third part of the Theorem, Atiyah considers for any λ ∈ k and fixed point compo-
nent Z ⊂ Xλ, the unstable manifold Zu consisting of all points that flow to Z under exp(itλ). By
the stable manifold theorem Zu is a smooth manifold and the limit of the flow defines a smooth
G-equivariant projection Zu → Z. In particular, if Z is any component of Xλ containing a limit
point of Y then Y ⊂ Zu and Y ∩Z is a single G-orbit. From this it follows that Φ(Z ∩Y ) is a face
of ∆ with fibers the orbits of the compact torus K, see [7, p. 10], and this completes the proof.

Remark 8.2.3. Atiyah’s theorem makes the theory of polystable points and Jordan-Hölder vector
described in Section 5.4 substantially easier in the abelian case. One sees that the “Jordan-Hölder”
cone of Theorem 5.4.9 is the dual cone to the face of the polytope containing 0, in the case that
Y is a semistable orbit.

Atiyah’s convexity theorem for orbit-closures has been generalized to Borel subgroups by Guillemin
and Sjamaar [39].

9. Multiplicity-free actions

In certain cases Hamiltonian or algebraic actions may be classified by combinatorial data related
to the moment map. In this section we discuss an example of this, the multiplicity-free case, from
both the algebraic and symplectic points of view.

9.1. Toric varieties and Delzant’s theorem. A toric variety is a normal G-variety X such
that G is an algebraic torus and X contains an open G-orbit. Affine toric varieties are naturally
classified by monoids M in the group Λ∨ of weights of G, with the corresponding toric variety
given by Spec(C[M ]). Each such monoid spans a rational cone in Λ∨Q, and defines a dual cone in
ΛQ. Toric varieties with trivial generic stabilizer are classified by fans in ΛQ, that is, collections of
cones such that any intersection of a cone is again a cone in the fan, see Oda [79] or Fulton [29].

Example 9.1.1. Suppose that X = P2 with action given by (w1, w2)[z0, z1, z2] = [z0, w
−1
1 z1, w

−1
2 z2].

There are seven orbits, given by non-vanishing of various coordinates, and in particular, three
closed orbits [1, 0, 0], [0, 1, 0], [0, 0, 1], whose cones are generated by pairs of vectors (1, 1), (−1, 0),
(1, 1), (0,−1), and (0,−1), (0,−1). The fan contains these three cones, and their intersections; this
is the dual fan to the moment polytope hull((0, 0), (1, 0), (0, 1)).

A Hamiltonian torus action is multiplicity free or completely integrable if all the symplectic
quotients are points, or equivalently, each fiber of the moment map is an orbit of the torus.

Example 9.1.2. The U(1)n action on Pn is multiplicity-free, since the fibers of the moment map
are given by [z0, . . . , zn] with |z1|, . . . |zn| fixed, which are orbits of U(1)n.

Multiplicity-free Hamiltonian torus actions are classified by a theorem of Delzant.

Definition 9.1.3. A polytope ∆ ⊂ k∨ is called Delzant if the normal cone at any vertex is
generated by a basis of the weight lattice Λ∨ ⊂ k∨.
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Theorem 9.1.4 (Delzant [24]). There exists a one-to-one correspondence between Delzant poly-
topes and multiplicity-free torus actions on compact connected manifolds with trivial stabilizer,
given by X 7→ Φ(X). Any compact connected multiplicity-free Hamiltonian torus action has the
structure of a smooth projective toric variety.

Note that any compatible complex structure is unique up to isomorphism, but not up to Kähler
isomorphism. That is, any toric variety has many non-equivalent Kähler structures, see Guillemin
[38].

There are “local” and “local-to-global” parts of the proof; the local part follows from the equi-
variant Darboux theorem, while the “local-to-global” part uses the vanishing of a certain sheaf
cohomology group over the polytope.

Existence of a smooth projective toric variety with a given polytope follows from, for example,
Lerman’s method of symplectic cutting [64] which we now describe. We begin with the simplest
case, when X is a Hamiltonian S1-manifold with moment map Φ : X → R. The diagonal S1-action
on X × C is Hamiltonian with moment map

ΦX×C : (x, z) 7→ Φ(x)− |z|2/2.

Its symplectic quotient at any value λ

X≥λ := (X × C)//λS1

is called the symplectic cut of X at λ admits a decomposition

(X × C)//λS1 ∼= X//λS
1 ∪ (X × C∗)//λS1 ∼= X//λS

1 ∪ Φ−1((λ,∞)).

It follows from the definitions that the inclusion of Φ−1((λ,∞)) in X≥λ is symplectic and so X≥λ
is obtained by removing Φ−1((−∞, λ)) and “closing off” the boundary by quotienting it by S1.

More generally, suppose that K is a torus, ξ ∈ k any rational vector, and λ ∈ R. Let U(1)λ
denote the one-parameter subgroup generated by λ, with moment map 〈Φ, λ〉. Then the symplectic
cut X≥λ = (X × C)//λU(1)λ ∼= X//λU(1)λ ∪ {〈Φ, v〉 > λ} admits the structure of a Hamiltonian
K-manifold with moment polytope Φ(X≥λ) = Φ(X) ∩ {〈µ, v〉 ≥ λ}.

Example 9.1.5. LetX = P2 equipped with U(1)2-action given by with weights (0, 0), (−2, 0), (0,−2).
The moment polytope is then the convex hull of (0, 0), (2, 0), (0, 2). Let λ = (0,−1) so that the
one-parameter subgroup generated by λ acts with moment map

[z0, z1, z2] 7→ −2|z1|2/(|z0|2 + |z1|2 + |z2|2).

The symplectic cut at−1 is then a toric variety with polytope the convex hull of (0, 0), (0, 2), (1, 0), (1, 1),
see Figure 9.1.

Figure 9.1: Effect of cutting on a moment polytope

Suppose that ∆ is a Delzant polytope defined by inequalities

∆ = {µ ∈ k∨ | 〈µ, vj〉 ≥ λj , j = 1, . . . ,m}

for some vectors vj ∈ k and some constants λj ∈ R, j = 1, . . . ,m. Let X = T∨K, with moment
image k∨ and the standard Kähler structure. Performing a symplectic cut for each inequality gives
a Kähler manifold with Hamiltonian K action and moment polytope ∆.

Alternatively any smooth projective toric variety is a symplectic or geometric invariant theory
quotient of affine space X = Cm. There is an explicit description of the semistable locus given by
Audin [8] and Cox [23].

86



Moment maps and geometric invariant theory

9.2. Multiplicity-free actions and spherical varieties. Let K be a compact connected Lie
group. Recall that a K-module V is multiplicity-free iff HomK(Vλ, V ) is dimension at most one,
for any simple K-module Vλ iff EndK(V ) is abelian, using Schur’s lemma. The definition in part
(a) of the following was introduced in Guillemin-Sternberg [40]:

Theorem 9.2.1. (see [102, Appendix]) The following conditions are equivalent, and if they hold
the action is multiplicity-free:

(a) C∞(X)K is an abelian Poisson algebra.
(b) The symplectic quotient X//λK := Φ−1(Kλ)/K is a point for all λ.

Proof. We denote by rλ : C∞(X)K → C∞(X//λK) the map of Poisson algebras induced by the
symplectic quotient construction, if λ is free. In general, we define C∞(X//λK) := C∞(X)K/{f, f |Φ−1(λ) =
0}. A lemma of Arms, Cushman, and Gotay [4], see Sjamaar-Lerman [92], says that this quotient is
a non-degenerate Poisson algebra, that is, the bracket vanishes only on constant functions. Suppose
(a). Since rλ is surjective, C∞(X//λK) is abelian as well, and so X//λK must be discrete, hence
a point by Kirwan’s results. Conversely, if all the reduced spaces are points and f, g ∈ C∞(X)K
then rλ({f, g}) = 0 for all λ implies that {f, g} = 0. �

The complex analogs of multiplicity-free Hamiltonian actions are called spherical varieties. Let
G be a connected complex reductive group. For the following, see Brion-Luna-Vust [18], the review
[57], or the second part of Brion’s review in this volume.

Theorem 9.2.2. The following conditions for a normal G-variety X are equivalent; if they hold
X is called spherical:

(a) some (hence any) Borel subgroup B has an open orbit;
(b) the space of rational functions C(X) is a multiplicity-free G-module;
(c) some (hence any) Borel subgroup B has finitely many orbits.

Remark 9.2.3. For an arbitrary group action, existence of a dense orbit does not imply finitely
many orbits. For example, consider the action of SL(n,C) on the space of n× n matrices on the
left: any two invertible matrices are related by an element of SL(n,C), but there are infinitely
many orbits of degenerate matrices distinguished by their kernels.

The classification of toric varieties is generalized to spherical varieties as a special case of a
theorem of Luna-Vust [69] which gives a classification of spherical varieties by their generic isotropy
group and a colored fan, see the contribution of Pezzini in this volume or Knop [57]. Each colored
fan is a collection of colored cones, convex cones in the space ΛX dual to the space Λ∨X of characters
corresponding to B-semiinvariant functions C(X)(B), together with a finite set of B-stable divisors,
satisfying certain conditions. The classification of generic isotropy groups that appear, which are
called spherical subgroups, is the subject of an open conjecture of Luna, see the contribution of
Bravi in this volume. The relation between multiplicity-free Hamiltonian actions and spherical
varieties is given by the following, which is a consequence of the Kempf-Ness theorem:

Proposition 9.2.4. A smooth G-variety X ⊂ P(V ) is spherical if and only if it is a multiplicity-
free Hamiltonian K-manifold.

Proof. By Proposition 8.1.2 X//λK = pt iff HomG(Vλ, H0(X,OX(d))) is dimension one or zero for
all d ≥ 0. This holds for all λ and d ≥ 0 iff C(X)d is a multiplicity-free G-module for all d ≥ 0 iff
X is spherical. �

In contrast to the toric case, not every multiplicity-free Hamiltonian action admits the structure
of a spherical variety [103].

9.3. Moment polytopes of spherical varieties. We have already seen several examples of the
following:

Theorem 9.3.1. Let X be a smooth polarized spherical K-variety with moment polytope ∆ and
trivial generic stabilizer. Then H0(X,OX(1)) is the multiplicity-free K-module whose weights are
the integral points ∆ ∩ k∨ of ∆.

Proof. By Proposition 8.1.2 and the fact that the symplectic quotients are points. �
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λ

Figure 9.2: Decomposition of Vλ ⊗ Sym(C2) via Brion’s method

The moment polytope of a spherical variety X is described by a finite set of linear inequalities
corresponding to the B-stable divisors of X which was described by Brion [17] in the non-abelian
case. Let X be a spherical G-variety and L→ X a G-equivariant line bundle. First some notation:
Let C(X) denote the space of rational functions on X, and C(X)(B) the space of B-semiinvariant
vectors. Let Λ∨X ⊂ Λ∨ denote the group of weights appearing in C(X)(B). Let D(X) denote the
set of prime B-stable divisors of X. Each D ∈ D(X) defines a valuation C(X)(B) → Z and so
a vector vD in the dual ΛX of Λ∨X . Let C(X,L) denote the space of rational sections of L, and
s ∈ C(X,L)(B) with weight µ(s). Let nD(s) denote the order of vanishing of s at D. Consider the
identification C(X)(B) → C(X,L)(B), f 7→ fs. The section fs is global iff fs vanishes to at least
zeroth order on each D ∈ D(X), iff f vanishes at least to order −nD. Thus

Proposition 9.3.2. Let X be a spherical G-variety, and L → X a G-line-bundle. The space of
weights for elements of C(X,L)(B) is

∆(X,L) = {µ ∈ Λ∨X |vD(µ) ≥ −nD(s)}+ µ(s).

Example 9.3.3. Here is a typical application which appears in Brion [17] and seems to be due to
Macdonald [70]:

Theorem 9.3.4. Let Vλ be a simple GL(r) module with highest weight λ = (λ1 ≥ . . . ≥ λr). Then
Vλ⊗Sym(Cr) admits a multiplicity-free decomposition into simple modules Vµ with highest weights
µ = (µ1, . . . , µr) satisfying

µ1 ≥ λ1 ≥ µ2 ≥ . . . µr ≥ λr.

Proof. We prove only the case r = 2; the general case is similar. Vλ ⊗ Sym(C2) is isomorphic to
the space of holomorphic sections of the line bundle π∗1Lλ over X = P1×C2 = {([w0, w1], (z0, z1)},
where π1 : P1×C2 → P1 is projection on the first factor. We take B to be the subgroup of upper-
triangular invertible matrices. The B-invariant divisors are given by a single G-invariant divisor
D1 = {(w, z)|z ∈ w} and two B-stable divisors D2 = {w = [1, 0]} and D3 = {z ∈ C⊕0}. The space
of singular vectors C(X)(B) is generated by z1 − w1z0/w0 and z0 with highest weights (0, 1) resp.
(1, 0). The B-stable divisors are defined byD1 = {z1/z0 = w1/w0}, D2 = {w1 = 0}, D3 = {z1 = 0}
respectively. Hence z1 − w1z0/w0 vanishes to order 1 resp. −1, 0 on D1 resp. D2, D3; z1 vanishes
to order 0 resp. 0, 1 on D1 resp. D2, D3. So vD1 = (0, 1), vD2 = (0,−1), vD3 = (1, 0). Taking
s to be the section of P1 with weight (λ1, λ2), which vanishes to order 0 on D1, λ1 − λ2 in
D2, and 0 on D3 one obtains nD1 = 0, nD2 = λ1 − λ2, nD3 = 0. This yields the inequalities
µ2 ≥ λ2, −µ2 ≥ −λ2 − (λ1 − λ2) = −λ1, µ1 ≥ λ1 as claimed. See Figure 9.2. �

Remark 9.3.5. Not every B-stable divisor defines a facet of the moment polytope. This is already
apparent in the case of the Borel-Weil theorem, where for a group of rank r there are r B-stable
divisors (the Schubert varieties of codimension one) but the moment polytope is simply a point.

Based on his work on the toric case, Delzant asked the question of whether compact multiplicity-
free actions are classified by their moment polytopes and generic stabilizers, and answered the
question affirmatively in the rank two case [25]. A result of Knop [56] reduces this to the question
of whether affine spherical varieties are classified by their moment polytopes and generic stabilizers
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of the compact group actions; this conjecture has recently been proved by Losev [67], see also his
review in this volume.

In the torus case we have

Corollary 9.3.6. With X,K,OX(1) as above, if K is a torus then the dimension of H0(X,OX(1))
is the number of integral points ∆ ∩ k∨ of ∆.

The dimension of H0(X,OX(k)) can be computed by Riemann-Roch for sufficiently large k, since
OX(1) is by assumption positive. This led to an interesting series of papers on formulas for the
number of lattice points in a convex polytope which generalize the Euler-Maclaurin formula and
were later proved combinatorially, see [19] for references.

10. Localization via sheaf cohomology

In this section we review various “fixed point methods” for computing moment polytopes, in
the context of sheaf cohomology. These include not only the “localization” methods which take
as input fixed point data for a one-parameter subgroup, but also the “non-abelian localization”
principle which uses the Kirwan-Ness stratification.

10.1. Grothendieck’s local cohomology. A powerful technique for computing cohomology
groups, and therefore for computing moment polytopes, is Grothendieck’s local cohomology theory,
exposed in [31] and Hartshorne [41]. Let X be a G-variety and Y ⊂ X a G-subvariety. Let E → X
be a G-equivariant coherent sheaf. Denote by ΓY (X,E) the group of sections whose support is
contained in Y . We denote by Hi

Y the i-th derived functor of ΓY , so that the local cohomology
group Hi

Y (X,E) is a G-module. These modules have the following properties:

Theorem 10.1.1. (a) (Long Exact Sequence) There is an exact triangle

. . . HY (X,E)→ H(X,E)→ H(X − Y,E|X − Y )→ . . .

(b) (Gysin isomorphism) Suppose Y ⊂ X is smooth. Then

Hj
Y (X,E) ∼= Hj−codim(Y )(Y,E|Y ⊗ Eul(N)−1)

where N is the normal bundle of Y in X and Eul(N)−1 := det(N) ⊗ Sym(N) (this is an
inverse of the K-theory Euler class Eul(N) = Λ(N∨) although we do not discuss K-theory
here)

(c) (Spectral sequence associated to a stratification) Let X1 ⊂ X2 ⊂ . . . ⊂ Xm = X be a
filtration of X. There is a spectral sequence

m⊕
i=1

HXi−Xi−1(Xi, E|Xi) =⇒ H(X,E).

Let χ(X,E) =
⊕

(−1)iHi(X,E) be the Euler characteristic, considered as a virtualG-representation,
and χY (X,E) the Euler characteristic of the local cohomology along Y . These will generally not
be finite-dimensional, but rather in our cases of interest the multiplicity of each simple module is
finite. Thus the formula below holds in the completion of the representation ring, as an immediate
consequence of the spectral sequence:

Corollary 10.1.2. Suppose that X1 ⊂ . . . ⊂ Xm = X is a filtration of X such that the differences
Xi −Xi−1 are smooth with normal bundles Ni → Xi −Xi−1. Then

(10.1) χ(X,E) =
∑
i

(−1)codim(Xi−Xi−1)χ(Xi −Xi−1, E|Xi−Xi−1 ⊗ Eul(Ni)−1)

if both sides are well-defined in the sense that the multiplicity of any simple module is finite.

This formula applies to various filtrations associated to group actions to give “localization” formu-
lae.

Example 10.1.3. (Weyl character formula and Borel-Weil-Bott, c.f. Atiyah-Bott [6]) Let X =
G/B− and E = OX(λ) so that if λ is dominant then H0(X,E) = Vλ by Borel-Weil 6.1.1. The
Bruhat decomposition X = ∪w∈WXw gives a filtration Xi = ∪w∈W,l(w)≥iXw. Each cell Xw fibers
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over xw = wB/B with fiber Xw
∼= Mw := b ∩ Ad(w)b. The normal bundle Xw has restriction to

xw given by Nw = (b/b ∩Ad(w)b)∨. The formula (10.1) gives

χ(X,OX(λ)) =
⊕
w∈W

(−1)l(w)χ(Xw, E|Xw ⊗ Sym(Nw)⊗ det(Nw))

=
⊕
w∈W

(−1)l(w)χ(xw, E ⊗ Sym(Nw)⊗ det(Nw)⊗ Sym(M∨w )|xw)

=
⊕
w∈W

(−1)l(w)Cwλ ⊗ Sym(b−)⊗ Cwρ−ρ

where ρ is the half-sum of positive roots. Thus its character is

(10.2)
∑
w∈W

(−1)l(w) tw(λ+ρ)−ρ∏
α>0(1− t−α) .

Thus if λ is dominant then

Proposition 10.1.4. (Weyl character formula) The character of the action of T on Vλ is given by
(10.2).

In general, suppose that w is such that w(λ + ρ)− ρ is dominant. From the spectral sequence
we see that the only contribution to χ(X,OX(λ)) comes from H l(w)(X,OX(λ)), since l(w) =
codim(Xw). This is a simple G-module of highest weight w(λ + ρ) − ρ, since it has the same
character as that of Vw(λ+ρ)−ρ by the Weyl character formula. If no such w exists, then the Fourier
expansion of the character vanishes on dominant weights and is W -invariant and so H(X,OX(λ))
is trivial. Thus:

Proposition 10.1.5. (Borel-Weil-Bott [15]) Let X = G/B−. Hj(X,OX(λ)) ∼= Vw(λ+ρ)−ρ if w(λ +
ρ)− ρ is dominant for some (unique) w ∈W and j = l(w), and is zero otherwise.

10.2. One-parameter localization. The derivation of the Weyl character formula given in the
previous section generalizes to varieties with circle actions as follows. Let X be a compact G×C∗-
variety, and XC∗ its C∗-fixed point set. Let F be the set of components of XC∗ = {x ∈ X|zx =
x ∀z ∈ C∗}. For each F ∈ F , define

XF := {x ∈ X| lim
z→0

zx ∈ F}.

Let NF denote the normal bundle of F in X. It admits a decomposition NF = N+
F ⊕ N

−
F into

positive and negative weight spaces for the C∗-action.

Proposition 10.2.1. (Bialynicki-Birula decomposition [13]) Suppose that X is smooth. Then each
XF is a smooth G×C∗-stable subvariety, equipped with a morphism πF : XF → F, x 7→ limz→0 zx
which induces on XF the structure of a vector bundle whose fibers are isomorphic to the fibers of
the normal bundle N+

F → F of F in X.

By filtering by the dimension of N+
F , applying the localization formula (10.1), and pushing forward

with πF one obtains

Theorem 10.2.2 (Localization for one-parameter subgroups). Let E → X be any G × C∗-
equivariant coherent sheaf. Then

χ(X,E) =
∑

F⊂XC∗

χ(F,E|F ⊗ Sym(N+,∨
F )⊗ Sym(N−F )⊗ det(N−F ))

in the completion of the representation ring of G.

One could equally well choose the stratification for the inverted C∗-action, which would lead to
the same formula with N+

F , N
−
F inverted. In the equivariant cohomology literature such a choice

of direction is called a choice of action chamber, see Duistermaat [27].
The spectral sequence contains more information than the localization formula, namely, infor-

mation about the individual cohomology groups. For example,
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Example 10.2.3. LetX = P2 equipped with theG = (C∗)2 action by (g1, g2)[z0, z1, z2] = [z0, g
−1
1 z1, g

−1
2 z2].

Then H0(X,OX(d)) is spanned by homogeneous polynomials of degree d. Its Euler characteristic
has character

(χ(X,OX(d)))(g) =
∑

d1+d2≤d,d1,d2≥0
gd1

1 gd2
2 .

One can also see this easily from the localization formula, which gives (for the C∗-action induced
by the map z 7→ (z, z2)) three fixed points with normal weights (1, 0), (0, 1), resp. (−1, 0), (−1, 1)
resp. (1,−1), (0,−1) and so

(10.3) (χ(X,OX(d)))(g) = (1− g1)−1(1− g2)−1 − gd+1
1 (1− g1)−1(1− g−1

1 g2)−1

+ gd+1
2 g−1

1 (1− g−1
1 g2)−1(1− g2)−1.

Now suppose that X ′ is the blow-up of X at [1, 0, 0]. Let π : X ′ → X denote the projection,
OX′(d, e) = π∗OX(d)⊗ Ee. The action of C∗ on X ′ has four fixed points (the point at [1, 0, 0] is
replaced by two fixed points in the exceptional divisor with fiber weights (e, 0), (0, e)). Hence

(10.4) (χ(X ′,OX′(d, e)))(g) = ge1(1− g1)−1(1− g−1
1 g2)−1

− ge+1
2 g−1

1 (1− g1g
−1
2 )−1(1− g2)−1 − gd1(1− g1)−1(1− g−1

1 g2)−1

+ gd2(1− g−1
1 g2)−1(1− g2)−1.

Its Fourier transform is shown below in Figure 10.1. The contributions with weights ge1 contributes

Figure 10.1: Euler characteristic of a line bundle on blow-up of P2

only to H0, while the contribution with weight ge+1
2 g−1

1 contributes only to H1. The former is the
only term whose Fourier transform has support in the larger triangle, while the latter is the only
term whose Fourier transform has support in the smaller. Hence the dots in the smaller triangle
correspond to vectors in H1 while those in the larger correspond to H0. Very similar results are
obtained by a deformation method introduced by Witten [101], and studied by a number of other
authors since then, see for example [105].

10.3. Localization via orbit stratification. Other stratifications lead to interesting but less
well-known localization formulae. For example, suppose that G acts on X with only finitely many
orbits Y . We then obtain a formula

χ(X,E) =
∑
Y⊂X

(−1)codim(Y )χ(Y,E|Y ⊗ Eul(Y )−1)

assuming that each simple module appears with finite multiplicity as before. In particular, suppose
that X is a toric variety and E = OX(1) a polarization. Indexing the orbits YF by faces F of the
moment polytope ∆ we see that

χ(Y,E|Y ⊗ Eul(Y )−1) =
∑

µ∈Λ∨∩CF

tµ det(NF )
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where the sum is over µ is the outward normal cone CF to ∆ at F , and det(NF ) is the determinant
NF of the normal bundle to YF . This is closely related to the Brianchon-Gram formula: for any
convex polytope ∆,

χ∆ =
∑

(−1)codim(F )χCF

where χCF is the characteristic function of CF [90].

10.4. Non-abelian localization. Let X be a polarized smooth G-variety and E → X a G-
equivariant coherent sheaf. Combining the Kirwan-Hesselink-Ness stratification with the Euler
characteristic formula (10.1) gives

χ(X,E) =
∑
λ

χ(Xλ, E|Xλ ⊗ Eul(NXλ)−1)

where the sum is over types λ or equivalently critical sets for the norm-square of the moment map.
This is a sheaf cohomology version of a “non-abelian localization principle” suggested by Witten
in the setting of equivariant de Rham cohomology [100]. In fact, this terminology in the sheaf
cohomology setting is somewhat confusing: the formula is already quite interesting in the abelian
case (non-abelian should read “not necessarily abelian”) and the formula is not really a localization
formula, since there is a contribution from the (dense) open stratum. Since Xλ = G ×Pλ Y ss

λ , we
have

χ(Xλ, E|Xλ ⊗ Eul(NXλ)−1) = IndGGλ χ(Y ss
λ , E|Y ss

λ
⊗ Eul(NXλ |Y ss

λ )−1).

(Here Ind denotes holomorphic induction, that is, if V is a Gλ-module then IndGGλ(V ) = χ(G×P−
λ

V ). ) Since Y ss
λ fibers over Zss

λ with affine fibers,

(10.5) χ(Y ss
λ , E|Y ss

λ
⊗ Eul(NXλ |Y ss

λ )−1)
= χ(Zss

λ , E|Y ss
λ
⊗ Sym(NXλX|Y ss

λ )⊗ det(NXλX|Zss
λ

)⊗ Sym(N ss
Zλ
Y ss
λ )∨).

This can be put into a more understandable form if we recognize that NXλX|Zss
λ

resp. NZss
λ
Y ss
λ is

the positive resp. negative part of the normal bundle of Zss
λ in Y ss

λ . One obtains a formula due to
Teleman [95] in the algebraic case and Paradan [81] in the general symplectic setting; the latter
proof uses techniques of transversally elliptic operators:

Theorem 10.4.1.
χ(X,E) =

∑
λ

IndGGλ(χ(Zss
λ , E|Zss

λ
⊗ Eul(NZss

λ
Y ss
λ )−1

+ ))

where the + indicates the particular choice of (formal) inverse to the K-theory Euler class given
in the previous formula.

Example 10.4.2. Let X = P1 and E = O(d) so χ(X,E) has character z−d + z−d+2 + . . .+ zd. The
stratification P1 = {0} ∪ C∗ ∪ {∞} leads to the formula

z−d + . . .+ zd = (
∑
n∈Z

zd+2n)− zd+2/(1− z2)− z−d−2/(1− z−2).

Example 10.4.3. We describe the non-abelian localization formula for the action of SL(3,C) on
a partial flag variety for the exceptional group of type G2, corresponding to the decomposition
of a simple G2-module into SL(3,C)-modules. Let ω1, ω2 denote the fundamental weights for
SL(3,C). The dual positive Weyl chamber for G2 is the span of ω1 and ω1 + ω2. Let Pω1+ω2

denote the maximal parabolic of G2 corresponding to ω1 + ω2, and X = G2/P
−
ω1+ω2

, that is, the
coadjoint orbit through ω1 + ω2. The action is spherical and moment polytope the convex hull
of ω1, ω2, ω1 + ω2. We leave the computation of the moment polytope to the reader; it can be
computed using one-parameter localization. By Borel-Weil and the computation of the moment
polytope,

χ(OX(k)) =
∑

λ∈k∆∩Q

χλ = ResG2
SL(3,C)(χk(ω1+ω2))

the character of the irreducible G2-representation with highest weight k(ω1 + ω2), restricted to
SL(3,C); here Q is the lattice generated by the long roots shifted by k(ω1 + ω2).
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We compute the Kirwan-Ness stratification as follows. Let F1 be the open face connecting
ω2, ω1 + ω2, F2 the open face connecting ω1, ω1 + ω2, and F3 the open face connecting ω1, ω2.
Let Fij = Fi ∩ Fj . The inverse image Φ−1(F12) contains a unique point, x1, which is T -fixed.
None of the other T -fixed points map to t∨+. Therefore, the remaining points in Φ−1(int(t∨+)) (the
interior of the positive Weyl chamber) have one-dimensional stabilizers. Since Φ−1(int(t∨+)) has
dimension 2 dim(T ), it is a multiplicity free action, so the inverse image of any face F ⊂ int t∨+
has infinitesimal stabilizer the annihilator of the tangent space of F . The stabilizers of the faces
F1, F2, F3 are

t1 = span(h1), t2 = span(h2), t3 = span(h3)
where h1, h2, h3 are the coroots of SL(3,C). The level set Φ−1((ω1 + ω2)/2) is a critical set
of φ with type λ = ((ω1 + ω2)/2. The fixed point component Zξ has moment image Φ(Zξ) =

Figure 10.2: Critical values of the norm-square of the moment map for X =
G2/Pω1+ω2

hull(2ω2 − ω1, 2ω1 − ω2). The unstable manifold Yξ has image under the moment map for T (that
is, for the maximal torus of the compact group SU(3))

πGT Φ(Yξ) = hull(2ω2 − ω1, 2ω1 − ω2, ω1 + ω2).

None of the other facets Fj contain points ξ with ξ ∈ tj . Therefore, there are no other critical points
of φ in Φ−1(int(t∨+)). Finally consider the inverse image of the vertices F13, F23. Any x ∈ Φ−1(Fjk)
has Gx 6= T , hence Gx cannot intersect the semisimple part [GΦ(x), GΦ(x)]. Therefore, Gx is
one-dimensional. let Zx denote the fixed point component of Gx containing x. Since Gx is one-
dimensional, the image Φ(Z) is codimension one, and so meets Φ−1(int(t∨+)). But this implies that
the gx is conjugate to either tj or tk, and so gx cannot equal the span of Fjk. Therefore, set of
types for the action is {ω1 +ω2,

1
2 (ω1 +ω2)}. (In fact the Kirwan-Ness stratification coincides with

the orbit stratification for GC. That is, X is a two-orbit variety, with one open orbit and one of
complex codimension two [28].)

We now compute the contributions from the Kirwan-Ness strata. For ξ = ω1 + ω2, Zss
ξ is equal

to a point, and the bundle Nξ is the representation with weights β5, β6. Hence

χGξ(Zss
ξ , E ⊗ Eul(Nξ)−1

+ ) =
∑

(λ,α1)>k,(λ,α2)>k

zλ.

Its induction to G is

IndGGξ χGξ(Z
ss
ξ , E ⊗ Eul(Nξ)−1

+ ) =
∑

(λ,α1)>k,(λ,α2)>k

χλ.

For ξ = (ω1 + ω2)/2, we have Zss
ξ
∼= C∗ and Nξ trivial. Therefore,

χGξ(Zss
ξ , E ⊗ Eul(Nξ)−1

+ ) =
∑

(λ,ξ)≥k(ξ,ξ)

zλ
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where the sum is over vectors λ such that λ− k(ω1 + ω2) is in some lattice Λ∨1 , and satisfying the
inequality above. Hence

IndGGξ(χGξ(Z
ss
ξ , E ⊗ Eul(Nξ)−1

ξ )) =
∑
λ∈k∆

χλ −
∑

(λ,α1)>k,(λ,α2)>k

χλ.

Since the contributions from ξ = (ω1 + ω2), 1
2 (ω1 + ω2) must have finite sum, the lattice Λ∨1 must

be the long root lattice. The contribution (for k = 6) is shown in Figure 10.3.

Figure 10.3: IndGT χZss
(ω1+ω2)/2,T

(E)

The positive contribution of the open stratum is finite (6 representations, for k = 6) and the
negative contribution infinite, that is dim(Hodd(Mξ, L

k)) = ∞, for any k. One can show that
the higher cohomology lies in H1, using the spectral sequence. The sum of the contributions is
χ(OX(k)) =

∑
λ∈k∆ χλ as claimed. This completes the example.

Taking invariants in Theorem 10.4.1 gives a formula expressing the difference between χ(X,E)G
and χ(X//G,E//G):

Theorem 10.4.4.

χ(X,E)G − χ(X//G,E//G) =
∑
λ6=0

χ(Zss
λ , E|Zss

λ
⊗ Eul(NZss

λ
Y ss
λ )−1

+ ⊗ Eul(g/p−λ ))Gλ

The spectral sequence also contains information about the individual cohomology groups. For
example, let C∗λ ⊂ Gλ denote the one-parameter subgroup generated by λ. The weight of C∗λ on
det(NXλX|Zss

λ
) is positive, if λ is non-trivial. Indeed, NXλX|Zss

λ
is the negative part of the tangent

bundle. Furthermore, g/p−λ has positive weights under C∗λ. Thus

Corollary 10.4.5 (Teleman [95]). Suppose that the weights of C∗λ on E|Zλ are positive for all
types λ. (This is automatically the case if E = OX(d) is the d-th tensor product of a polarization
OX(1) of X). Then Hj(X,E)G = Hj(X//G,E//G) for all j.
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In particular, if the higher cohomology of E vanishes then so does that of E//G.
The index maps naturally induce a diagram in K-theory

KG(X) K(X//G)

Z

-

Q
QQs

�
��+

which fails to commute by the above explicit sum of fixed point contributions for one-parameter
subgroups. There are similar results in the equivariant cohomology of X due to Paradan [80]
and the author [104], based on earlier work of Witten [100]: a natural diagram of equivariant
cohomology groups

HG(X) H(X//G)

R

-

Q
QQs

�
��+

fails to commute by an explicit sum of fixed point contributions from one-parameter subgroups.
The first explicit version of non-abelian localization is due to Jeffrey-Kirwan [51], and expresses the
difference as a sum over certain fixed point sets of the maximal torus. The versions of Paradan,
myself [104], and Beasley-Witten [9] express the difference as a sum over critical points of the
norm-square of the moment map. The left hand arrow in the diagram above takes some work to
define: morally speaking it is defined by α 7→

∫
X×g α, but this is not well-defined for polynomial

equivariant classes. Rather, the left-hand side must be defined by a suitable limit procedure,
either by taking the leading term in Riemann-Roch, or (in the context of equivariant de Rham
cohomology with smooth coefficients) shifting by equivariant Liouville form and taking the zero
limit of the shift, see [104]. From this point of view, the K-theory approach is more natural.
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