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Vol. 1 no 1 (2010) 99-111

Classification of spherical varieties
Paolo Bravi

Abstract
We give a short introduction to the problem of classification of spherical varieties, by

presenting the Luna conjecture about the classification of wonderful varieties and illustrating
some of the related currently known results.

This is a revised version of notes of lectures given at the conference “Actions Hamiltoniennes :
Invariants et Classification” (CIRM Luminy, April 2009) on the classification of spherical varieties.

Before these one could read the lecture notes of M. Brion [Bri] and of G. Pezzini [P] providing a
first general introduction to the theory of spherical and wonderful varieties. Some of the most recent
results about the classification, which are only mentioned here, are more extensively illustrated in
the lecture notes of I.V. Losev [Lo].

Here we mainly focus on the Luna conjecture about the classification of wonderful varieties,
which implies the classification of general spherical varieties. Our aim is just to present the
conjecture and illustrate some of the related currently known results, without proofs.

Let me just say a few words about the state of the art in the classification of wonderful varieties.
The Luna conjecture is officially still open in general, that is, there is not yet any complete

proof on the literature, but a definitive solution is being achieved by S. Cupit-Foutou ([C08, C09]),
via invariant Hilbert schemes.

Another complete proof has been announced by G. Pezzini and the author ([BP09]), this proof
relies on the original constructive approach of D. Luna.

We will not try to give a full description of such proofs, here we prefer to refer to the definitive
versions of the above cited papers, which will likely appear soon.

In Section 1 we introduce the objects in use: wonderful varieties and their combinatorial coun-
terpart, the spherical systems; we state the Luna conjecture and some of the related partial results.

In Section 2 we recall the definition of invariant Hilbert schemes and explain their interrelation
with wonderful varieties.

In Section 3 we give some further insights into the relations between wonderful varieties (more
precisely their generic isotropy groups) and spherical systems.

In Appendix A, for reader’s convenience, we place some remarks on two different definitions of
the so-called spherical roots occurring in the literature.

In Appendix B we give the statement of the classification of general spherical varieties, assuming
the Luna conjecture.

1. Wonderful varieties

The basic reference for this section is [Lu01] (see also [P], Section 3).

1.1. Definition of wonderful varieties. Let G be a semisimple complex algebraic group, T a
maximal torus, B a Borel subgroup containing T , S the corresponding set of simple roots of the
root system of (G,T ).

Course taught during the meeting “Hamiltonian Actions: invariants et classification” organized by Michel Brion
and Thomas Delzant. 6-10 April 2009, C.I.R.M. (Luminy).
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Definition 1.1. A G-variety is called wonderful of rank r if it is smooth, complete, with r smooth
prime G-divisors X(1), . . . , X(r) with normal crossings, such that, for any I ⊆ {1, . . . , r}, ∩i∈IX(i)

is a (non-empty) G-orbit closure.

Notice that by definition, for I = ∅, the whole wonderful G-variety X is requested to be a G-
orbit closure, i.e. to contain an open (dense) G-orbit. For any I ⊆ {1, . . . , r}, the G-orbit closure
XI = ∩i∈IX(i) of X is a wonderful G-variety by itself, with rankXI = r − card I: the prime
G-divisors of XI are just X(i)

I = X(i) ∩XI for all i 6∈ I. In particular, the unique closed G-orbit,
∩ri=1X

(i), is a wonderful variety of rank 0. By definition, a wonderful variety of rank 0, being
homogeneous and complete, is a (generalized) flag variety, i.e. by Borel’s Theorem it contains a
(unique) point fixed by a Borel subgroup. Furthermore, recall that X is necessarily projective,
since it is complete and contains a unique closed G-orbit.

In [P], Section 3, several examples of wonderful varieties are given. Here are two further exam-
ples.

Example 1.2. Let X be the projective variety

{(P, `, P ′, `′) : P, P ′ points `, `′ lines in P2 s.t. P ∈ `, P ′ ∈ `, P ∈ `′}.
The group G = SL(3) acts on P2 and clearly on X. With this action, X is a wonderful G-variety

of rank 2.

Example 1.3. The variety Xn of complete quadrics in Pn is a wonderful SL(n+ 1)-variety of rank
n. The case of n = 2 has already been defined in detail in [P], Example 3.4.5. Let us briefly recall
the general set-theoretical definition ([DP, DGMP]). Notice that the non-degenerate quadrics
(non-singular degree 2 hypersurfaces) in Pn form a homogeneous space

for the action of SL(n + 1), this is the open SL(n + 1)-orbit of Xn. Furthermore, the singular
locus sing(Q) of a degenerate quadric Q in Pm is a (proper) projective subspace of Pm (here we
adopt the convention that the singular locus of a double hyperplane in Pm is the hyperplane itself):
so, if dim sing(Q) = d > 0, one can consider the set of quadrics (degree 2, dimension d − 1) in
sing(Q). Now, a complete quadric in Pn, i.e. a point x of the variety Xn, consists by definition in
a “complete” series of quadrics everyone lying in the singular locus of the preceding one, that is,
Q0, . . . , Ql(x) where

- Q0 is a quadric in Pn, with dim sing(Q0) > 0 if l(x) > 0,
- for all i, 0 < i < l(x), Qi is a quadric in sing(Qi−1) with dim sing(Qi) > 0,
- Ql(x) is a quadric in sing(Ql(x)−1) that is non-degenerate or such that dim sing(Ql(x)) = 0.

Theorem 1.4 ([Lu96]). Any wonderful variety is spherical.

If a spherical homogeneous space, say G/H, admits an embedding that is a wonderful G-variety,
then this embedding is unique (up to G-equivariant isomorphism) and corresponds to the canonical
embedding. In particular, the cone of G-invariant valuations is strictly convex and N(H)/H is
finite.

1.2. The spherical system of a wonderful variety. Denote by Λ(X) the lattice of weights of
B-semiinvariant rational functions on X.

Let X be a wonderful G-variety, embedding of G/H. Denote by z the (unique) point in X
stabilized by B− (where B− is the Borel subgroup opposite to B with respect to T , i.e. B−∩B = T ).
Clearly z lies in the closed G-orbit.

For us here the spherical roots of X are by definition equal to the T -weights occurring in the
normal space TzX/TzG.z, also equal (up to a minus sign) to the equations, primitive in Λ(X), of
the (hyper-)faces of the cone of G-invariant valuations. They are linearly independent and form a
basis of Λ(X).

Denote by ΣX the set of spherical roots of X. Clearly, they are in correspondence with prime
G-divisors.

We will comment this definition of spherical roots later in Appendix A.
Denote by ∆X the set of colors of X, the not G-stable prime B-divisors of X. They correspond

to the closures in X of the colors of G/H.
It is possible to define a Z-bilinear pairing, called Cartan pairing,
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Classification of spherical varieties

cX : Z∆X × Λ(X)→ Z
such that, for D ∈ ∆X , cX(D,−) corresponds to the discrete valuation associated to the divisor

D on C(X).
For all α ∈ S, set

∆X(α) = {D ∈ ∆X : P{α}.D 6= D},
where P{α} is the minimal parabolic subgroup containingB associated to α. One has ∪α∈S∆X(α) =

∆X and recall that, for all α ∈ S, card(∆X(α)) ≤ 2.
Set SpX = {α ∈ S : ∆X(α) = ∅}, then the parabolic subgroup PX containing P{α}, for all

α ∈ SpX , is the stabilizer of the open B-orbit, equal to the parabolic subgroup opposite to Gz with
respect to T .

If D ∈ ∆X(α) and card(∆X(α)) = 1 then cX(D,−) is uniquely determined by α: if 2α ∈ ΣX
then cX(D,−) = 1

2 〈α
∨,−〉; otherwise cX(D,−) = 〈α∨,−〉.

Last, card(∆X(α)) = 2 if and only if α ∈ ΣX , in this case, say ∆X(α) = {D+, D−}, cX(D+,−)+
cX(D−,−) = 〈α∨,−〉. Denote by AX an abstract set, in correspondence with the subset of colors
D ∈ ∪α∈S∩ΣX∆X(α), endowed with the elements cX(D,−) of Λ(X)∗.

Definition 1.5. The datum of SX = (SpX , ΣX , AX) is called the spherical system of X.

The spherical system of X carries some information on the variety X: the dimension of X is
given by rankX + dim G.z (i.e. cardΣX plus the number of positive roots of G not belonging to
the root subsystem generated by SpX).

Some properties of the generic stabilizer H of X, such as being reductive, very reductive in G
(i.e. contained in no proper parabolic subgroup) or very solvable in G (i.e. contained in a Borel
subgroup), can also be read off the spherical system SX . In particular, the rank of the character
group of H, namely the dimension of its connected center, is equal to card ∆X − cardΣX .

Example 1.6. Let X be the wonderful variety of Example 1.2. Then SpX = ∅, ΣX = S = {α1, α2},
AX = {D+

1 , D
−
1 , D

+
2 , D

−
2 } and the Cartan pairing is as follows.

α1 α2
D+

1 1 0
D−1 1 −1
D+

2 0 1
D−2 −1 1

Example 1.7. Let Xn be the wonderful variety of Example 1.3. Then SpX = ∅, ΣX = 2S =
{2α1, . . . , 2αn}, ∆X = {D1, . . . , Dn} and the Cartan pairing is c(Di, 2αj) = 〈α∨i , αj〉.

1.3. Classification of wonderful varieties. The set of spherical roots Σ′ = ΣX′ of a G-orbit
closure X ′ of X is a subset of ΣX , and X ′ is called the localization of X with respect to Σ′ and
denoted by X ′ = XΣ′ . The spherical system of X ′ is given by SpX′ = SpX , ΣX′ = Σ′ and AX′ , and
one can prove that AX′ can be identified with the subset of colors D ∈ ∪α∈S∩Σ′∆X(α) and set
cX′(D,σ) = cX(D,σ) for all σ ∈ Σ′.

In particular, any spherical root of X is the spherical root of a wonderful G-variety of rank 1.
The wonderful G-varieties of rank 1 are finitely many (up to G-equivariant isomorphism) and well
known, for all G (see [A]). The finite set of spherical roots of wonderful G-varieties of rank 1 is
denoted by Σ(G).

The spherical system of X is actually determined by the spherical systems of all the localizations
XΣ′ of rank 2 (actually, it is enough to restrict to the localizations of rank 1 and those of rank 2
with a simple spherical root). Furthermore, the wonderful G-varieties of rank 2 are finitely many
(up to G-equivariant isomorphism) and known, for all G (see [W]).

In the above cited papers the spherical systems of rank 1 and rank 2 wonderful varieties are
essentially given, and it follows that two wonderful G-varieties of rank r ≤ 2 with the same spherical
system are G-equivariantly isomorphic.

Here we give a first quick, quite involved, definition of abstract spherical systems, in Section 3
we will give the original axiomatic definition due to D. Luna.
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Definition 1.8.
• A spherical G-system of rank r ≤ 2 is the spherical system of a wonderful G-variety of

rank r.
• A spherical G-system of rank r > 2 is a triple S = (Sp, Σ,A), where Sp ⊂ S, Σ ⊂

Σ(G) with cardΣ = r and a set A = ∪α∈S∩ΣA(α), endowed with a Z-bilinear pairing
c : ZA × ZΣ → Z, such that for all Σ′ ⊂ Σ with cardΣ′ = 2 the triple Sp, Σ′ and
AΣ′ = ∪α∈S∩Σ′A(α), with the restriction of c, is a spherical G-system of rank 2.

Conjecture 1.9 ([Lu01]). Wonderful G-varieties are classified by spherical G-systems.

1.4. References of related known results.
Affine spherical homogeneous G-spaces (or equivalently reductive spherical subgroups of G) are

known, for all G, [Kr, Mi, Bri87]. Those which admit a wonderful completion can be explicitly
listed and the corresponding spherical systems are known (see [BP09]).

Two wonderful G-varieties with the same spherical system are G-equivariantly isomorphic, this
has been proved by I.V. Losev in [Lo09]. Actually, Losev’s Uniqueness Theorem is more generally
stated in terms of spherical homogeneous G̃-spaces. Two smooth affine spherical G̃-varieties with
the same weight monoid are G̃-equivariantly isomorphic, [Lo10]. Both results are presented more
in detail in [Lo].

Let G be of adjoint type. The above conjecture has been proved in case the Dynkin diagram
of the root system of G is simply laced [Lu01, BP05, Bra]. Regardless of the type of the root
system, it has also been proved that strict wonderful G-varieties are classified by a certain subclass
of spherical G-systems [BC10]: a wonderful G-variety is called strict if all its isotropy groups are
selfnormalizing; it is strict if and only if can be realized as G-subvariety in a simple projective
G-space [P07]. Recently, the same approach to the proof of the classification has been adapted to
the general case, [BP09].

Let G̃ be a connected reductive algebraic group. If the conjecture holds for the adjoint groupG =
G̃/CG̃, then spherical homogeneous G̃-spaces (and then also spherical G̃-varieties) are classified by
combinatorial objects ([Lu01]), this will be better stated in Appendix B. We can actually restrict
to the classification of spherically closed subgroups (see 3.4 for the definition of spherical closure).

Recently, a full intrinsic proof of the above conjecture has been proposed by S. Cupit-Foutou,
[BC08, C08, C09], via invariant Hilbert schemes, see Section 2.

2. Invariant Hilbert schemes

2.1. Definition of invariant Hilbert schemes. Here we recall freely results from [AB]. Invari-
ant Hilbert schemes can be defined for all not necessarily connected reductive groups G and all
rational G-modules R with finite multiplicities: here we will restrict to the spherical case and give
definitions just in this case, as follows.

Let G be connected (and reductive), T a maximal torus, B a Borel subgroup containing T
and U the unipotent radical of B (a maximal unipotent subgroup of G). Let V be a finite
dimensional G-module and Γ a (finitely generated) submonoid of Λ+ fulfilling the extra condition,
Q≥0Γ ∩ ZΓ = Γ , corresponding to the normality property (see [Bri], Theorem 2.14).

Let us give a preliminary simplified definition. Let A1 be the affine line, C[A1] = C[t].
A closed G-subvariety X ⊂ V ×A1, such that the projection π : X → A1 is G-invariant, is called

family of closed G-subvarieties of V over A1.
It is called of type Γ if, decomposing the C[t]-G-algebra R = C[X ] as C[t]-G-module one has

R ∼=
⊕
λ∈Γ

RUλ ⊗ V (λ),

and RUλ is a free C[t]-module of rank 1, for all λ ∈ Γ .
In particular, π is flat, surjective and maps closedG-subsets to closed subsets. Indeed, π//G : X//G→

A1 is an isomorphism.
More easily, fix a point t in A1, set Xt = π−1(t) ⊂ V , G-stable subvariety, then Xt is spherical

with weight monoid Λ+(Xt) = Γ , for all t.

Example 2.1. Consider the vector space V of quadratic forms in n variables, with the action of
G = SL(n) by change of variables. Set X = V , π : V → A1 given by the discriminant. Then
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X is a family of closed G-subvarieties of V of type Γ = N〈2ω1, . . . , 2ωn−1〉 over A1 (see [Bri],
Examples 1.27.3 and 2.11.4).

Definition 2.2. Let Z be a scheme, a closed G-subscheme X ⊂ V × Z, such that the projection
π : X → Z is G-invariant, is called family of closed G-subschemes of V over Z. It is called of type
Γ if, decomposing the sheaf of OZ-G-algebras R = π∗OX as sheaf of OZ-G-modules one has

R ∼=
⊕
λ∈Γ

RUλ ⊗ V (λ),

and RUλ is an invertible sheaf of OZ-modules, for all λ ∈ Γ .

In particular, π is flat, surjective and maps closedG-subsets to closed subsets. Indeed, π//G : X//G→
Z is an isomorphism.

There is a natural contravariant functor assigning to any scheme Z the set of families X of
closed G-subschemes of V of type Γ over Z: given a morphism Z1 → Z2 and a family X2 of closed
G-subschemes of V of type Γ over Z2, the pull-back of X2 is a family of closed G-subschemes of
V of type Γ over Z1.

This functor is representable, that is: there exists a scheme HilbGΓ (V ), called invariant Hilbert
scheme, and a family UnivGΓ (V ) of closed G-subschemes of V over HilbGΓ (V ), called universal family,
such that any family of closed G-subschemes of V of type Γ over Z is the pull-back of UnivGΓ (V )
through a morphism Z → HilbGΓ (V ).

Theorem 2.3 ([HS, AB]). The scheme HilbGΓ (V ) is quasiprojective.

A spherical G-subvariety X of V with weight monoid Λ+(X) = Γ can thus be regarded as a
closed point of HilbGΓ (V ).

In general, let X0 and X1 be two affine G-varieties, X0 is said to be a G-equivariant degeneration
of X1, or X1 to be a G-equivariant deformation of X0, if C[X0] is G-isomorphic (as algebra) to
the graded algebra associated to a filtration of C[X1].

The G-subvariety X of V is called non-degenerate if its projections to the isotypical components
of V are non-trivial.

Choose pairwise distinct generators λ1, . . . , λs of Γ , and set

V = V (λ1)∗ ⊕ . . .⊕ V (λs)∗.
In this case non-degenerate spherical G-subvarieties of V with weight monoid Γ are the closed

points of an open subscheme MΓ of HilbGΓ (V ).

Theorem 2.4. The scheme MΓ does not depend on the choice of the set of generators of Γ . It is
affine, of finite type.

Let vλ∗
i
be a highest weight vector in V (λi)∗, for all i = 1, . . . , s. Define X0 to be the closure of

G.v0 for v0 = vλ∗1 + . . .+vλ∗s , this is a horospherical variety with weight monoid Λ+(X0) = Γ , non-
degenerate in V : a closed point in MΓ . Each closed point of MΓ corresponds to a G-equivariant
deformation of X0.

The scheme MΓ can be directly defined as follows. Let Y be an affine T -variety of weight monoid
Γ . A family of affine G-schemes of type Y over Z is a family of affine G-schemes π : X → Z together
with an isomorphism X//U → Y × Z of families of affine T -schemes over Z.

Theorem 2.5. The contravariant functor assigning to a scheme Z the set of equivalence classes
of families of affine G-schemes of type Y over Z is represented by MΓ .

The affine scheme MΓ parametrizes G-equivariant multiplication laws on the G-module

R =
⊕
λ∈Γ

RUλ ⊗ V (λ)

extending the given T -equivariant multiplication law in RU = C[Y ].
A G-equivariant multiplication law on R can be seen as a G-equivariant morphism m : R⊗R→

R, satisfying some associativity and commutativity conditions.
A G-equivariant morphism m : R⊗R→ R is the sum of
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mλ,µ
ν : V (λ)⊗ V (µ)→ V (ν),

for λ, µ, ν ∈ Γ and λ+ µ− ν ∈ NS.
The natural action of the adjoint torus Tad (the maximal torus T modulo the center of G) on

MΓ

t.mλ,µ
ν = tλ+µ−νmλ,µ

ν

admits a unique extension to a morphism AS ×MΓ → MΓ .
Let us freely identify non-degenerate spherical G-subvariety of V with weight monoid Γ with

closed points in MΓ , as above. Two such subvarieties X1, X2 are G-isomorphic if and only if
Tad.X1 = Tad.X2; X1 is degeneration of X2 if and only if X1 ∈ Tad.X2. The point X0, correspond-
ing to the above defined horospherical G-subvariety, is Tad-stable and forms the unique closed
Tad-orbit.

Theorem 2.6 ([Kn], Theorem 1.3). Let X be an affine spherical G-variety with weight monoid Γ ,
let m be the G-equivariant morphism m : C[X]⊗C[X]→ C[X] corresponding to the multiplication
law. The saturation of the submonoid 〈λ+ µ− ν : mλ,µ

ν 6= 0〉 ⊂ NS is free.
Its basis, say Σ, equals the set of spherical roots of X, up to some integer multiples (see Appendix

A).

Therefore, the normalization of Tad.X is isomorphic to AΣ .
The horospherical variety X0 corresponds to the case where mλ,µ

ν = 0 if ν 6= λ+ µ.

Theorem 2.7. There are only finitely many Tad-orbits in MΓ .

2.2. The strict case. Assume now that Γ is Λ+-saturated (i.e. ZΓ ∩ Λ+ = Γ ) and free, say
Γ = N〈λ1, . . . , λs〉 with linearly independent λi’s.

As above, let vλ∗
i
∈ V (λi)∗ be a highest weight vector, i = 1, . . . , s, and set v0 = vλ∗1 + . . .+ vλ∗s ,

X0 = G.v0 is the horospherical G-variety corresponding to the Tad-stable point inMΓ ⊂ HilbGΓ (V ).
It is just the affine multicone over the flag variety

G/Gx0 ⊂ P(V (λi)∗)× . . .× P(V (λs)∗)
where

x0 = ([vλ∗1 ], . . . , [vλ∗s ]).
Set Sp to be the set of simple roots orthogonal to λ1, . . . , λs.
Now, it is easy to see that codimX0(X0 \G.v0) ≥ 2 and one can prove that this implies

TX0HilbGΓ (V ) ∼= (V/g.v0)Gv0

The “normalized” Tad-action on V ,

t.v = tλ−µv, v ∈ V (λ)(T )
µ ,

passes to TX0HilbGΓ (V ) and corresponds to the differential of the Tad-action defined above on
MΓ .

One can prove that TX0HilbGΓ (V ) is a multiplicity-free Tad-space. Set Σ to be the set of Tad-
weights in TX0HilbGΓ (V ). The triple S = (Sp, Σ,A = ∅) is a “strict” spherical G-system.

Example 2.8. Compute this for G = SL(3), λ1 = 2ω1, λ2 = 2ω2.

Theorem 2.9 ([BC08, BC10]).
(1) There exists a strict wonderful G-variety X with SX = S ,

G/Gx0 ⊂ X ⊂ P(V (λi)∗)× . . .× P(V (λs)∗)
(2) MΓ

∼= AΣ
(3) j∗MΓ

UnivGΓ (V ) ⊂ V × AΣ equals the normalization of the affine multicone X̃ over X,
X0 ⊂ X̃ ⊂ V . One has j∗MΓ

UnivGΓ (V )/Tad ∼= X.
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Classification of spherical varieties

By the way, X is therefore uniquely determined by S , up to G-equivariant isomorphism.

Example 2.10. Let G and Γ = N〈λ1, λ2〉 be as in Example 2.8. Find a vector v1 ∈ V such that
X1 = G.v1 is a non-degenerate spherical G-subvariety with Λ+(X1) = Γ and Tad.X1 = MΓ .

3. Spherical systems and wonderful subgroups

3.1. Axiomatic definition of spherical systems. Let G be (semisimple) of adjoint type.

Definition 3.1. A spherical G-system is a triple S = (Sp, Σ,A) with
• Sp ⊂ S,
• Σ is a set of linearly independent elements of Σ(G),
• A a finite set endowed with a Z-bilinear pairing (the restricted Cartan pairing) c : ZA ×

ZΣ → Z, for all α ∈ Σ ∩ S, set A(α) = {D ∈ A : c(D,α) = 1},
such that:
(A1) for all D ∈ A and σ ∈ Σ, c(D,σ) ≤ 1 and if c(D,σ) = 1 then σ ∈ S;
(A2) for all α ∈ S∩Σ, card(A(α)) = 2 and, if A(α) = {D+

α , D
−
α }, c(D+

α , σ)+c(D−α , σ) = 〈α∨, σ〉
for all σ;

(A3) A = ∪α∈S∩ΣA(α);
(Σ1) if 2α ∈ 2S ∩Σ then 1

2 〈α
∨, σ〉 ∈ Z≤0 for all σ ∈ Σ \ {2α};

(Σ2) if α, β ∈ S, with α ⊥ β and α+ β ∈ Σ, then 〈α∨, σ〉 = 〈β∨, σ〉 for all σ;
(S) for all σ ∈ Σ, there exists a wonderful G-variety X of rank 1 with ΣX = {σ} and Sp = SpX .

The set Σ(G) for any G (of adjoint type) is the set of σ ∈ NS such that
• σ = α+ β for orthogonal α, β ∈ S,
• or suppσ generates an irreducible root subsystem and, after restricting S to suppσ, σ is
one of the following:

type of supp σ
An, n ≥ 1

∑n
i=1 αi

A1 2α1
Bn, n ≥ 2

∑n
i=1 αi

Bn, n ≥ 2
∑n
i=1 2αi

B3 α1 + 2α2 + 3α3
Cn, n ≥ 3 α1 + (

∑n−1
i=2 2αi) + αn

Dn, n ≥ 3 (
∑n−2
i=1 2αi) + αn−1 + αn

F4 α1 + 2α2 + 3α3 + 2α4
G2 2α1 + α2
G2 4α1 + 2α2
G2 α1 + α2

The axiom (S) is equivalent to:
• {α ∈ suppσ : α ⊥ σ and σ − α is not a root} ⊂ Sp ⊂ {α ∈ S : α ⊥ σ}, if suppσ is of type

Bn or Cn,
• {α ∈ suppσ : α ⊥ σ} ⊂ Sp ⊂ {α ∈ S : α ⊥ σ}, if suppσ is of type F4,

or one of the two conditions (which are equivalent) in the other cases.
The set of colors ∆ of S is obtained extending A and c with colors
• D2α, for all 2α ∈ 2S ∩Σ, setting c(D2α, σ) = 1

2 〈α
∨, σ〉 for all σ,

• Dα, for all α ∈ S \ (Sp ∪Σ ∪ 1
2Σ), up to identifications Dα = Dβ if α ⊥ β and α+ β ∈ Σ,

setting c(Dα, σ) = 〈α∨, σ〉 for all σ.
Moreover, set ∆(α) = A(α) if α ∈ S ∩ Σ, ∆(α) = {D2α} if 2α ∈ 2S ∩ Σ, ∆(α) = {Dα} if

α ∈ S \ (Sp ∪Σ ∪ 1
2Σ).

For any G there exist only finitely many spherical G-systems (recall that Σ ⊂ Σ(G) and the
latter is finite). They can be enumerated. For example, here we give the number of spherical
G-systems, for all G simple of rank ≤ 4.
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Table 3.1

diagram spherical rooteq eq α1 + α′1

qee α1

q q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppppppppp ∑n
i=1 αi, n ≥ 2

qe 2α1

q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p ∑n
i=1 αi, n ≥ 2

q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p2 ∑n
i=1 2αi, n ≥ 2

q qq qpppppppppp pppppppppp eppp p pp p p pp p pp p p pp p pp p α1 + 2α2 + 3α3

q qq qq qq q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p α1 + (
∑n−1
i=2 2αi) + αn, n ≥ 3

eppp p pp p p pp p pp p p pp p pp pq q q qq q q
q

��

@@
(
∑n−2
i=1 2αi) + αn−1 + αn, n ≥ 3

q q q qq qpppppppppp pppppppppp eppp p pp p p pp p pp p p pp p pp p α1 + 2α2 + 3α3 + 2α4

q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p 2α1 + α2

q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p2 4α1 + 2α2

q qpppppppppppppppppppp eppp p pp p p pp p pp p p pp p pp pe α1 + α2

rk 0 rk 1 rk 2 rk 3 rk 4 tot
A1 21 2 4
A2 22 5 3 12
B2 22 7 8 19
G2 22 7 5 16
A3 23 15 17 10 50
B3 23 19 25 24 76
C3 23 17 23 18 66
A4 24 37 50 50 40 193
B4 24 45 76 89 83 309
C4 24 42 71 80 58 267
D4 24 41 63 75 32 227
F4 24 41 61 77 71 266

3.2. Luna diagrams. One can represent spherical systems just via diagrams, by adding some
lines and circles on the Dynkin diagram of the root system of (G,T ).

• Each spherical root has its own symbol to be drawn on the corresponding support, as in
Table 3.1.

• A circle must be around the vertex of a simple root not in Sp, S ∩Σ or S ∩ 1
2Σ.

• Each circle corresponds to a color, circles corresponding to the same color are joined by a
line. For the color D+

αi corresponding to a circle over the vertex αi ∈ S ∩Σ we can always
suppose c(D+

αi , σ) ≥ −1 for all σ ∈ Σ, if c(D+
αi , σ) = −1 for some σ ∈ Σ with αi 6⊥ σ, then

there is an arrow, “<” or “>”, pointing towards suppσ.
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Example 3.2.
(1) For the spherical system of Example 1.6:

q qqee qee
(2) For the spherical system of Example 1.7:

q q q qq qqe qe qe qe
(3) G of type A3, Sp = ∅, Σ = {α1 + α3, α2}, A = {D+

α2
, D−α2

} with restricted Cartan pairing
as follows:

α1+α3 α2
D+
α2

−1 1
D−α2

−1 1
Then the digram is:

q qq qe eqee
(4) G of type A3, Sp = ∅, Σ = S, A = {D+

α1
, D−α1

, D+
α2
, D−α2

, D−α3
} with Cartan pairing as

follows:

α1 α2 α3
D+
α1

1 −1 1
D−α1

1 0 −1
D+
α2

0 1 0
D−α2

−1 1 −1
D−α3

−1 0 1
Then the diagram is:

q qq qqee qee qee
3.3. Wonderful morphisms.

Definition 3.3.
• Let S = (Sp, Σ,A) be a spherical G-system with set of colors ∆. A subset of colors

∆∗ ⊂ ∆ is called distinguished if there exists D ∈ N>0∆∗ such that c(D,σ) ≥ 0 for all
σ ∈ Σ.

If the monoid

{σ ∈ NΣ : c(D,σ) = 0, ∀ D ∈ ∆∗}
is free, then the quotient of S by ∆∗ is the spherical G-system S̀ = (̀Sp, Σ̀, À), also

denoted by S /∆∗, defined as:
– S̀p = {α ∈ S : ∆(α) ⊂ ∆∗},
– Σ̀ basis of {σ ∈ NΣ : c(D,σ) = 0, ∀ D ∈ ∆∗},
– À = ∪A(α) for all α ∈ S such that A(α) ∩ ∆∗ = ∅, with the same Cartan pairing

restricted to Z À× Z Σ̀.
• A G-equivariant surjective morphism φ : X → X̀ with connected fibers between wonderful
G-varieties is called a wonderful G-morphism. The subset of colors of ∆X that map
dominantly onto X̀ is denoted by ∆φ.

Proposition 3.4 ([Lu01], Proposition 3.3.2).
• Let φ : X → X̀ be a wonderful G-morphism, then ∆φ is a distinguished subset of ∆X and

S X̀ = SX/∆φ.
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• Let X be a wonderful G-variety, if ∆∗ is a distinguished subset of ∆X with well defined
quotient SX/∆∗, then there exists a (unique) wonderful G-morphism φ : X → X̀ such
that ∆φ = ∆∗.

Example 3.5. In Example 3.2 (4) above there are three minimal distinguished subsets of colors:
{D+

α1
, D−α2

}, {D−α1
, D−α3

} and {D+
α2
}. The diagrams of the corresponding quotients appear in the

following picture.

q qq qqee qee qee
q qq qqee qeee
q qq qe eqee
q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp

@
@R

-
�
��

Let φ : X → X̀ be a wonderful G-morphism, if H̀ is a generic isotropy group of X̀ then a
generic isotropy group of X, say H, can be chosen in H̀ and therefore H̀/H is connected.

We usually write H = HuL for a Levi decomposition. When H = HuL ⊂ H̀ = H̀u L̀ we
usually assume L ⊂ L̀.

The wonderful G-morphism φ is minimal if it does not properly factorize into the composition
of two wonderful G-morphisms.

Suppose φ to be minimal, and choose H ⊂ H̀ as above: we call this a minimal co-connected
inclusion of wonderful subgroups.

We have three types of minimal co-connected inclusions ([BL09]):
(P) Hu % H̀u, H is a maximal parabolic subgroup of H̀,
(R) Hu = H̀u, H is maximal very reductive in H̀ (i.e. it is contained in no proper parabolic

subgroup)
(L ) Hu $ H̀u, LieHu is a co-simple L-submodule of Lie H̀u, L = N L̀(Hu) and L, L̀ differ

only by their connected centers.

Example 3.6.
(1) q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp - q qq qe e

This quotient corresponds to the inclusion ofH in H̀ = Q−, minimal parabolic subgroup
of PSL(4), with the same semisimple part SL(2) and LieHu co-simple SL(2)-submodule
of codimension 2 and in general position in LieQu−.

(2) q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp - q qq qep pp p pp p p pp p pp p p pp p pp p
This quotient corresponds to the inclusion of the same H as above in H̀ = PSp(4):

notice that H is a parabolic subgroup of PSp(4).
(3) q qq qep pp p pp p p pp p pp p p pp p pp p - q qq q

The subgroup H = PSp(4) is very reductive in H̀ = PSL(4).
(4) q qq qqee qee qee q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp-

Here the quotient corresponds to the inclusion of H as a parabolic subgroup of H̀,
the minimal parabolic subgroup of PSp(4) described in (1) and (2). Thus, H is a Borel
subgroup of PSp(4).

(5) q qq qqee qee qee q qq qqee qeee q qq qe e e- -
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The subgroup H, as in (4), is included in a Borel subgroup B− of PSL(4), indeed, these
quotients give two minimal co-connected inclusions of type L : H ⊂ H̀ ⊂ B−.

The type of the minimal co-connected inclusion can be read off the corresponding spherical
systems (see loc.cit.). In particular, recall that d(X) = card ∆X − cardΣX equals the dimension
of the connected center of H, therefore it is immediate to see that a minimal co-connected inclusion
is of type P if and only if d(̀X)−d(X) < 0, actually equal to −1 by minimality. If d(̀X)−d(X) > 0
then it is of type L . If it is of type R then d(̀X)− d(X) = 0.

The distinguished subset ∆∗ is called homogeneous if Σ̀ = ∅ (in this case the corresponding X̀
is homogeneous).

A minimal homogeneous subset ∆∗ ⊂ ∆X thus gives a parabolic subgroup Q− ⊂ G (containing
B−) such that a generic isotropy group H of X can be chosen in Q−, therefore no other parabolic
subgroup of G properly included in Q− can contain H. When we have such an inclusion H ⊂ Q−
we say that Q− is adapted for H. One has Hu ⊂ Qu−.

The structure of a general wonderful subgroup of G is essentially described by the following.

Theorem 3.7 ([Lo09], Lemma 4.3.4(2)). Let H be a wonderful subgroup of G, and choose Q− =
Qu−LQ adapted for H. Then there exists a (unique up to LQ-conjugation) wonderful subgroup H∗,
very reductive in Q−, such that the inclusion H ⊂ H∗ is of type L (i.e. composition of minimal
co-connected inclusions of type L ).

3.4. Spherically closed subgroups. Let G̃ be connected and reductive.
Let H be a spherical subgroup of G̃ and ∆G/H its set of colors. The normalizer N(H) acts on

∆G/H , indeed, BH = BN(H).

Definition 3.8. The stabilizer H of the action of N(H) on ∆G/H is called the spherical closure
of H in G. If H = H, we say that H is spherically closed.

It follows that:
• The spherical closure of a spherical subgroup is spherically closed.
• A self-normalizing spherical subgroup is clearly spherically closed.
• A spherically closed subgroup H of G̃ always contains the center of G̃, therefore the space
G̃/H can be thought as a homogeneous space under the action of an adjoint group (G̃
modulo its center).

• The set of colors of G/H can be identified with the set of colors of G/H.
The following result is deeper, it may be seen as a partial converse of Theorem 1.4 and is

crucial in relating the classification of wonderful varieties and the classification of general spherical
varieties (see Appendix B).

Theorem 3.9 ([Kn], Theorem 1.2). A spherically closed subgroup is wonderful.

Let S = (Sp, Σ,A) be a spherical G-system. The subset of loose spherical roots Σ` consists
of spherical roots that can be doubled, compatibly with the Cartan pairing. More explicitly, a
spherical root σ is loose if:

• σ ∈ S and c(D+
σ , σ

′) = c(D−σ , σ′) for all σ′ ∈ Σ, or
• suppσ is of type Bn, σ = α1 + . . .+ αn as in Table 3.1, and αn ∈ Sp, or
• suppσ is of type G2 and σ = 2α1 + α2 as in Table 3.1.

Let H be a wonderful subgroup, then the group N(H)/H is direct product of subgroups of order
two in bijective correspondence with elements of Σ` ([Lo09]).

A wonderful subgroup H is spherically closed if Σ` is included in S.

Example 3.10.
(1) The maximal torus T of PSL(2) is spherically closed but not self-normalizing: PSL(2)/T

is of rank 1, with the simple root as spherical root.

qee
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(2) The subgroup SO(2n) is wonderful but not spherically closed in SO(2n + 1): SO(2n +
1)/SO(2n) is of rank 1, with the highest short root α1 + . . .+ αn as spherical root.

q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p
To conclude it is worth remarking that:

Proposition 3.11 ([BL09], 2.4.2). Spherically closed subgroups are exactly those arising as isotropy
groups of spherical orbits in simple projective spaces.

The classification of spherically closed subgroups gives the classification of spherical orbits in
simple projective spaces, and vice versa (see loc.cit.).

Appendix A. Spherical roots

Essential references for this short appendix are [Bri90] and [Kn].
Let G be connected and reductive. Let H be just a spherical subgroup of G and denote by

C[G](H) the subring of right-H-semiinvariant regular functions on G. As a G-module, C[G](H) is
multiplicity-free and the occurring highest weights are sometimes called quasi-spherical weights.

Consider

m : C[G](H) ⊗ C[G](H) → C[G](H),

the G-equivariant morphism given by the multiplication on C[G], it is the sum of morphisms
mλ,µ
ν : V (λ) ⊗ V (µ) → V (ν), where λ, µ, ν are quasi-spherical weights such that λ + µ − ν ∈ NS.

Consider the set

M ′ = {λ+ µ− ν : mλ,µ
ν 6= 0},

the saturation of NM ′ in ZM ′ is free, call ΣN its basis.
An element η ∈ Hom(Λ(G/H),Q) lies in the cone of G-invariant valuations V(G/H) if and only

if 〈η, σ〉 ≤ 0 for all σ ∈M ′. Therefore, the elements of ΣN are just equations of the (hyper-)faces
of V(G/H).

Let Σ be the set of primitive equations of V(G/H) in Λ(G/H). The elements of ΣN can be the
same or the double of elements of Σ and one exactly has Σ \ΣN = Σ`, the set of loose spherical
roots (as defined in 3.4).

The quotient N(H)/H is isomorphic to Hom(Λ(G/H)/ZΣN,C×). If N(H)/H is finite (equiv-
alently V(G/H) is strictly convex, hence simplicial), denote with X the canonical embedding of
G/H. The set Σ corresponds to the set of T -weights in TzX/TzG.z, where z ∈ X is the unique
point stabilized by B− (as defined in 1.2).

One has that X is smooth (hence wonderful) if and only if Σ generates Λ(G/H). In particular,
if H = N(H), ΣN = Σ and X is wonderful.

In general V(X) is the fundamental chamber of a Weyl group W(X), the so-called little Weyl
group of X, and both Σ and ΣN are basis of a root system.

Appendix B. Spherical varieties

As already explained in [P], the Luna-Vust theory ([LV]) classifies the equivariant embeddings
of any given spherical homogeneous space. By a result in [Lu01] the classification of spherical
homogeneous spaces can be reduced to the classification of spherical homogeneous spaces G/H
with H spherically closed (recall that a spherically closed subgroup is wonderful, as stated in
Theorem 3.9).

Here we give the statement, after a slight reformulation, of Luna’s result in loc.cit.
Let H be a spherically closed subgroup of G, X the wonderful embedding of G/H, SX =

(Sp, Σ,A) its spherical system, ∆ its set of colors. Define Σt to be the set of spherical roots that
can be divided by 2 but are not the double of a simple root. Then, spherical subgroups of G with
spherical closure equal to H are in correspondence with lattices Λ′ ⊂ Λ endowed with a pairing
c′ : Z∆× Λ′ → Z such that Λ′ ⊃ Σ, Σ \Σt are primitive elements of Λ′, c′ extends c and
(A2) for all α ∈ S ∩Σ, c′(D+

α , ξ) + c′(D−α , ξ) = 〈α∨, ξ〉 for all ξ ∈ Λ′,
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(Σ1) for all 2α ∈ 2S ∩Σ, 〈α∨, ξ〉 ∈ 2Z for all ξ ∈ Λ′,
(Σ2) for all orthogonal α, β ∈ S with α+ β ∈ Σ, 〈α∨, ξ〉 = 〈β∨, ξ〉 for all ξ ∈ Λ′,
(S) for all α ∈ Sp, 〈α∨, ξ〉 = 0 for all ξ ∈ Λ′.
The above correspondence is realized by associating with the spherical subgroup H ′ the natural

pairing cG/H′ : Z∆G/H′ × Λ(G/H ′)→ Z.
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