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Character varieties and knot symmetries

JOAN PORTI

Abstract

Those are notes of the mini-course given in the school Winter Braids VII, held in Caen from
February 27th to March 2nd 2017. They overview the variety of representations and characters
of a three-manifold in SL2C, putting emphasis on explicit computations. The notes also discuss
the canonical component of a hyperbolic knot, and a recent joint work with Luisa Paoluzzi, on the
invariant components of the variety of characters for knot symmetries.

Those are notes of a mini-course in the Winter Braids VII, so they are intended to non-
experts and they require only a basic background in geometry and topology of three-manifolds.

Varieties of representations and characters of a finitely generated group  in a Lie group
G constitute a rich research area; here I focus on representations of compact three-manifold
groups (mainly knot exteriors) in SL2C. In particular the notes do not cover representations
of surface nor free groups, nor representations in Lie groups G other than SL2C, despite
those are very active and interesting research topics, that have a lot of interactions with
three-manifolds. For the discussion of varieties of representations in a general (algebraic
reductive) Lie group G see for instance the paper by Sikora [37].

From the point of view of geometry and topology of three-dimensional manifolds, one
of the main motivations to consider varieties of characters is the natural isomorphism be-
tween the group of orientation preserving isometries of hyperbolic 3-space and PSL2C =
SL2C/{±d}. Then studying the variety of characters allows to study deformation of hyper-
bolic structures. As seminal works, let me mention that Thurston used the variety of repre-
sentations in [39] to prove the hyperbolic Dehn filling theorem, and Hodgson used it to study
degenerations of incomplete or singular structures in [18].

A beautiful relationship between three-manifold topology and the algebraic side of the
variety of characters started with the work by Culler and Shalen in [11]. They use the al-
gebraic structure of the variety of characters to find essential surfaces on three-manifolds,
corresponding to the ideal points of algebraic curves. This is used for instance in the study
of exceptional (non-hyperbolic) Dehn fillings on hyperbolic knots and cusped manifolds, see
[10, 2].

There has been an intense research in varieties of characters of three-manifolds in SL2C.
Let me mention a few subjects, like the A-polynomial [8], the dynamics of actions on the
variety of characters [6], or the study of the algebraic and arithmetic properties of the variety
of characters [31]. There are a lot of remarkable works on varieties of characters that I do
not mention, I just make a choice that omits relevant results. However, as those notes insist
in the computational side, I want to mention the pioneering work of Riley on varieties of
representations of three-manifolds [34, 35, 36], from which I have picked up several ideas,
especially when dealing with reduction mod p.
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This text starts with the basic definitions of varieties of representations and characters
and puts a lot of emphasis in explicit computations, specially for groups on two generators.
Next the discussion focuses in hyperbolic knots, in particular in the so called canonical or
canonical component of the variety of characters. The final section is devoted to a joint work
with Luisa Paoluzzi [30], that reflects a different behavior on the variety of characters for
different kinds of knot symmetries.

Acknowledgement. I am indebted to the organizers of the winter school Winter Braids
VII, Paolo Bellingeri, Vincent Florens, J.B. Meilhan, and Emmanuel Wagner, as well as the
anonymous referee. I have lectured on the same subject at two other places, at KIAS in
Spring 2016, and at Cortona in Summer 2017. I use this opportunity to thank also Inkang Kim
and Francesco Bonsante, Jeff Brock, Ken Bromberg, Dick Canary, Bruno Martelli, and Gabriele
Mondello. I also thank the anonymous referee for the suggestions that improved this text. My
research is partially supported by Meic through grant MTM2015-66165-P.
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1. Varieties of representations and characters

Consider a finitely generated group  with presentation

 = 〈γ1, . . . , γn | (rj)j∈J〉,

and the matrix group

SL2C =
��

 b
c d

��

�

�

�

, b, c, d ∈ C, d − bc = 1
�

.

A group morphism → SL2C is called a representation of  in SL2C.
The set of all representations of  in SL2C is called the variety of representations and it is

denoted by
R() = hom(,SL2C).

Proposition 1.1. R() is an affine algebraic set (the zero set of polynomials in Cm).

Proof. Map each representation to a n-tuple of matrices, consisting of the image of the gen-
erators:

R() → SL2C×
(n)
· · · × SL2C ⊂ C4n

ρ 7→ (ρ(γ1), . . . , ρ(γn))

and embed SL2C in C4 by using the entries of the matrices. Then R() is in bijection to the
zero set in C4n of the polynomials given by the matrix entries of the group relations rj and by
the determinant equal to one. �

Let me denote by  ⊂ C[1, . . . , 4n] the ideal generated by the polynomials in the proof of
Proposition 1.1. The function ring is

C[R()] = C[1, . . . , 4n]/ .

Remark 1.2. (1) The algebraic structure of Proposition 1.1 is independent of the generat-
ing set. More precisely, the structure of C[R()] as C-algebra does not depend on the
presentation [21].

II–2



Course no II— Character varieties and knot symmetries

(2) The defining ideal  may be non-prime or non-radical. Thus the most accurate way to
think of R() is not as a (reducible) variety but as an affine scheme [21, 37]. For instance
in the polynomial ring C[] consider the ideals generated by 2 and : they yield the
same variety as zero locus (the origin) in the line, but different schemes, the respective
spectra of C[]/() and C[]/(2).

Action by conjugation. The group SL2C acts on R() by conjugation:

SL2C× R() → R()
A, ρ 7→ γ 7→ Aρ(γ)A−1

.

The action is algebraic, but as SL2C is non-compact, the quotient R()/SL2C may be non-
Hausdorff. This problem is overcomed by taking the algebraic quotient, that we describe
next.

Definition 1.3. For γ ∈ , the trace function of γ is defined as:

τγ : R() → C

ρ 7→ tr(ρ(γ))
.

Notice that τγ ∈ C[R()], i.e. it is a polynomial function.
Instead of γ ∈  one may fix the representation ρ ∈ R(M). The character of ρ is the map

χρ :  → C

γ 7→ tr(ρ(γ))
.

To construct the quotient of the action of SL2C on R(), consider the algebra of polyno-
mial functions invariant by the action by conjugation C[R()]SL2C. The starting point is the
following theorem of Procesi, stated in [33] as the invariant of a product of matrices:

Theorem 1.4 (Procesi [33]). Let Fn be the free group of rank n. The C-algebra of invari-
ant functions C[R(Fn)]SL2C is finitely generated by trace functions τγ1 , . . . , τγN , for some
γ1, . . . , γN ∈ , i.e.

C[R(Fn)]SL2C = 〈τγ1 , . . . , τγN 〉.

Corollary 1.5. Let  be a finitely generated group. As a C-algebra, C[R()]SL2C is finitely
generated by trace functions τγ1 , . . . , τγN , for some γ1, . . . , γN ∈ , i.e.

C[R()]SL2C = 〈τγ1 , . . . , τγN 〉.

Proof. We have a surjective morphism Fn �  for some free group Fn. It induces an injection
R() ,→ R(Fn), which in turn induces another surjection C[R(Fn)] � C[R()]. To prove the
corollary, we need to show that the map restricted to invariant functions

C[R(Fn)]SL2C → C[R()]SL2C

is also a surjection. This follows from the fact that SL2C is the complexification of a compact
real group SU(2) and hence every SU(2)-invariant polynomial is also SL2C-invariant. There-
fore given any function ƒ ∈ C[R()]SL2C, chose any ƒ̃ ∈ C[R(Fn)] that is mapped to ƒ and
render it SU(2)-invariant by averaging, as SU(2) is compact. This construction is precisely
the proof of reductivity of SL2C (see for instance [27, 40, 38, 25, 12]). �

Corollary 1.6. The set of characters X() = {χρ | ρ ∈ R()} has a natural structure of
complex algebraic affine set such that

C[X()] = C[R()]SL2C.

Proof. We construct the affine algebraic set V whose algebra of functions is C[R()]SL2C

and show that it is in natural bijection with X(). Let γ1, . . . , γN ∈  be as in Corollary 1.5.
The kernel of the map C[1, . . . , N] → C[R()]SL2C that maps  7→ τγ is an ideal , thus
the natural variety to consider is V ⊂ CN the zero set of . This gives a natural map from
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X() to V, by mapping each character to the point whose coordinates are the evaluation at
γ1, . . . , γN. The map is injective, because by Corollary 1.5, for each γ ∈ , τγ is a polynomial
on τγ1 , . . . , τγN , hence the value of a character is determined by those N coordinates. On the
other hand, the projection R() → V is surjective [40, Theorem 4.6], thus the map X() → V
is also surjective. �

Definition 1.7. The variety of characters of  is the algebraic affine set X().

Remark 1.8. Defining the variety of characters from the algebra of invariant functions
C[R()]SL2C has several consequences:

1. This is an affine scheme, namely the spectrum of the ring C[X()] = C[R()]SL2C. This
is not only a matter of language, as the ring C[X()] may contain nilpotent elements
(the defined ideal may be non-reduced). See [21, 37].

2. This approach is independent of the choice of generators, as R() is independent of
the choice of generators, see Remark 1.2.

3. For each SL2C-invariant polynomial function ƒ : R()→ C there exists a unique ƒ̃ : X()→
C such that the following diagram commutes

R() C

X()

ƒ

ƒ̃

4. By looking at the non-Hausdorff points, one can prove that X() is the largest Haus-
dorff quotient. Namely, for every SL2C-invariant continuous map ƒ : R() → Y, if Y is
a Hausdorff topological space then there exists a unique continuous map ƒ̃ : X()→ Y
such that the following diagram commutes

R() Y

X()

ƒ

ƒ̃

See Remark 1.14 (3).

5. This construction of an affine invariant quotient is classical for actions of reductive
groups, see [27, 40, 38, 25].

To better understand the projection R() � X() we need to discuss irreducible represen-
tations.

Irreducible representations. This paragraph is devoted to showing that the set of char-
acters of irreducible representations is in bijection to the space of orbits. In fact a more gen-
eral result establishes a bijection between the variety of characters and the set of conjugacy
classes of semi-simple (direct sum of irreducible) representations [21].

Definition 1.9. A representation ρ ∈ R() is reducible if there exists a line in C2 invariant by
ρ(). Otherwise it is called irreducible.

Lemma 1.10 ([11]). For a representation ρ ∈ R(), the following are equivalent:

(i) ρ is reducible,
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(ii) ρ() is conjugated to a subgroup of the group of upper triangular matrices:

ρ() ∼
�

∗ ∗
0 ∗

�

,

(iii) tr(ρ(γ)) = 2, ∀γ ∈ [,].

Here ′ = [,] is the normal subgroup generated by commutators [γ1, γ2] = γ1γ2γ
−1
1 γ−12 .

Proof. Assertion (i) is a particular case of (ii), as the invariant line is C×0, and, by conjugation,
any invariant line can be assumed to be this one, so (i) and (ii) are equivalent. Assertion (ii)
implies (iii), as the commutator of two upper triangular matrices is conjugated to a matrix

(1.1)
�

1 ∗
0 1

�

.

This is a particular case of parabolic matrix. To see the converse, let γ ∈ ′ such that ρ(γ)
is nontrivial. As tr(ρ(γ)) = 2 and det(ρ(γ)) = 1, ρ(γ) is parabolic (conjugated to (1.1)), so
it has a unique invariant line in C2. We claim that this line is the same for every element
in ′. By contradiction, if γ1 and γ2 are commutators so that ρ(γ1) and ρ(γ2) are nontrivial
elements with different invariant lines, after conjugation we may assume that those lines are
the coordinate axis and therefore

ρ(γ1) =
�

1 α
0 1

�

and ρ(γ2) =
�

1 0
β 1

�

with α, β 6= 0. As tr(ρ(γ1γ2)) = 2 + αβ 6= 2, we get a contradiction. Thus ρ(′) has a unique
invariant line, and since ′ is a normal subgroup of , this line must be invariant by the
whole ρ(). It remains to consider the case ρ(′) trivial, but then the claim follows from the
description of the abelian subgroups of SL2C, they are either diagonal or consist of parabolic
matrices, conjugated to (1.1), up to sign, with the same invariant line. �

As a consequence of this lemma, being irreducible or reducible can be read at the charac-
ter level. Hence we may talk about reducible or irreducible characters. Let Rred(), Xred()
denote the respective sets of reducible representations and characters and similarly Rrr(),
Xrr() for irreducible ones.

Corollary 1.11 ([11]). Rred() and Xred() are Zariski closed subsets.

Lemma 1.12 ([11]). For ρ ∈ Rrr(), there exist γ1, γ2 ∈  such that ρ can be conjugated to
ρ′ with

ρ′(γ1) =
�

λ 0
0 1/λ

�

and ρ′(γ2) =
�

 b
1 d

�

with λ 6= ±1 and b 6= 0.

Proof. We must find two elements γ1, γ2 ∈  such that tr(ρ(γ1)) 6= ±2 and the group gener-
ated by ρ(γ1) and ρ(γ2) is irreducible. Seeking a contradiction, assume that tr(ρ(γ)) = ±2
for every γ ∈ . From the relation

tr(ρ(γ1γ2)) + tr(ρ(γ1γ−12 )) = tr(ρ(γ1)) tr(ρ(γ2)) ∀γ1, γ2 ∈ ,

(Lemma 2.1 below) it is straightforward that the map  → {±1} defined by γ 7→ 1
2 tr(ρ(γ)),

∀γ ∈ , is a group homomorphism. Notice that any commutator in  is mapped to +1 by this
homomorphism, hence by Lemma 1.10 ρ() is reducible, yielding a contradiction. Once we
have γ1 ∈  with tr(ρ(γ1)) 6= ±2, we notice that ρ(γ1) has two invariant lines, L1 and L2 ⊂ C2.
If we have an element γ2 such that ρ(γ2) does not preserve any of the subspaces L we are
done. Otherwise we have at least μ1, μ2 ∈  such that ρ(μ) preserves L but not L3−. Then it
is easy to see that ρ(μ1μ2) does not preserve none of the L, and we take γ2 = μ1μ2. �

Proposition 1.13. (i) Let ρ ∈ Rrr(), then ρ′ is conjugate to ρ if and only if χρ′ = χρ.
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(ii) The action of PSL2(C) on Rrr() identifies orbits with PSL2(C).

(iii) There is a principal analytic bundle with fibers orbits by conjugation:

PSL2(C)→ Rrr()→ Xrr().

Proof. Given an irreducible representation, it can be written as in the proof of Lemma 1.12.
Let me show that the coefficients λ, , b, and d, and hence ρ(γ1) and ρ(γ2), are determined
by traces (up to conjugation). Firstly λ + 1/λ = tr(ρ(γ1)) which determines λ±1. Once λ is
chosen instead of 1/λ, then the elements , d and b = d− 1 are determined from the traces
of ρ(γ2) and ρ(γ1γ2):

 + d = tr(ρ(γ2)),
λ + 1

λd = tr(ρ(γ1γ2)).
If we chose 1/λ instead of λ, then  and d are switched and b = d − 1 is unchanged, this
amounts to conjugating ρ(γ1) and ρ(γ2) simultaneously by

±
�

0 
p
b

/
p
b 0

�

.

Finally, for any γ ∈ , ρ(γ) is obtained from tr(ρ(γ)), tr(ρ(γγ1)), tr(ρ(γγ2)), and tr(ρ(γγ1γ2)).
This proves the first assertion. The second assertion is proved by checking that the only ma-
trices that commute with the image of ρ′ as in Lemma 1.10 are ± d. Finally, the coefficients
in the construction are analytic functions on the traces, so we have a locally defined analytic
section to the projection Rrr()→ Xrr(). �

Finally, we mention a few more results on the quotient.

Remark 1.14. (1) For reducible characters, the fibre of the map R() � X() has a unique
conjugacy class of diagonal representations.

(2) In addition, all orbits in the fibre of a reducible character accumulate to the conjugacy
class of diagonal representations (namely, a conjugacy class of upper triangular matrices
accumulates to diagonal matrices, without changing the character).

(3) It follows from the previous two items that X() is the largest Hausdorff quotient of R()
by the action of SL2C, as claimed in Remark 1.8.

The previous remark is elementary to prove, it is a particular case of a general result of
invariant theory, about the existence of a unique closed orbit in the fibre.

2. Computing varieties of characters

The goal of this section is to compute some explicit examples. We focus on groups on two
generators, when they have a simple presentation the variety of characters is not hard to
compute. However general computations must deal with a possible large complexity.

At the end of the section we discuss an explicit method of González-Acuña and Montesinos
[15] to compute the variety of characters of any finitely generated group. Their method
gives an algorithm for finitely presented groups, though the algorithm is not optimal. Another
advantage of this method is that it allows to take reduction mod p for every prime p 6= 2.

Computation in X(F2). Before varieties of characters of groups with two generators, let
me discuss the free group F2, in particular the Fricke-Klein theorem. The following lemma
yields the trace relations on pairs of matrices to compute varieties of characters.

Lemma 2.1 (Trace relations). For A, B ∈ SL2C:

(i) tr(AB) = tr(BA);
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(ii) tr(A−1) = tr(A);

(iii) tr(AB) + tr(A−1B) = tr(A) tr(B).

Proof. (i) is well known for any pair of matrices, (ii) uses the fact that a matrix in SL2C has
the same eigenvalues as its inverse. To prove (iii), apply Cayley Hamilton’s theorem to A:

A2 − tr(A)A + d = 0,

multiply the equality by A−1B and take traces. �

Theorem 2.2 (Fricke-Klein). Let F2 = 〈, b | 〉, we have an isomorphism

(τ, τb, τb) : X(F2)
∼=−→ C3.

See for instance [14] for a proof. The theorem says that for all γ ∈ F2, τγ is a polynomial
on the three variables τ, τb, and τb, and that the three variables are algebraically inde-
pendent. The algebraic independence follows for instance from taking the traces of γ1, γ2,
and γ1γ2 for a representation as ρ′ in Lemma 1.12. The proof that the variables generate
the algebra of polynomials is algorithmic, using Lemma 2.1. We illustrate it with examples.

Example 2.3. Let us compute the traces of a few elements in F2 = 〈, b | 〉. To simplify, write
the coordinates of Fricke-Klein as:

(2.1)  = τ, y = τb, z = τb.

(i) Trace of powers. Using B = A in (iii) of Lemma 2.1:

τ2 = τ
2
 − τ1 = 

2 − 2.

and similarly with B = A2:

τ3 = ττ2 − τ = 3 − 3.

In general, τn is defined recursively as a Chebyshev polynomial: starting from τ0 = 2
and τ1 = , then

τn = τn−1 − τn−2 .

(ii) Consider now the commutator [, b] = b−1b−1. By application of the trace relations
(Lemma 2.1):

τb−1b−1 = τb−1τb − τb−1b = y2 − τb−1b,

τb−1b = τbτ−1b − τ2 = zτ−1b − 2 + 2,

τ−1b = ττb − τb = y − z.

Putting together the three computations:

(2.2) τ[,b] = 2 + y2 + z2 − yz − 2.

From the computation of the commutator, notice that with two applications of Lemma 2.1
we can express τγ as a polynomial on the trace of elements of shorter word length.

Computing X() for groups of rank two.

Example 2.4 (Free abelian group of rank 2). For Z = 〈, b | [, b] = 1〉, using coordinates as
in (2.1), we claim that

X(Z2) = {(, y, z) ∈ C3 | 2 + y2 + z2 − yz − 4 = 0}.

Set V = {(, y, z) ∈ C3 | 2 + y2 + z2 − yz − 4 = 0}. The inclusion X(Z2) ⊂ V comes from re-
quiring that the trace of the commutator (2.2) is 2, the trace of the identity. To have equality,
chose a representation

ρ() =
�

λ 0
0 1/λ

�

ρ(b) =
�

μ 0
0 1/μ

�

.
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Then, given (, y, z) ∈ V, it is elementary to prove that there exist λ, μ ∈ C − {0} such that
 = λ + 1/λ, y = μ + 1/μ and z = λμ + 1/(λμ). Notice that there are two pairs of solutions,
(λ, μ) and (1/λ,1/μ) corresponding to conjugation by

�

0 1
−1 0

�

.

Example 2.5 (The trefoil). Set  = 〈, b | b = bb〉 the fundamental group of the trefoil
knot exterior. Since  and b are conjugate, we only need two coordinates, i.e. it is a plane
curve:

 = τ = τb and y = τb−1 .

We take traces on the equality bb−1 = b and use the trace relations in Lemma 2.1:

τb = ττb − τb−1 = 2 − y,

τbb−1 = τbτb−1 − τb2 = y(2 − y) − 2 + 2.

Hence τbb−1 = τb becomes:

y2 − 22 − y2 + y + 2 = (y − 2)(2 − y − 1) = 0.

This plane curve has two components, one of them is y = 2, and corresponds to abelian
representations (the abelianization maps  and b to the same element). On the other hand
on the component 2 = y + 1 we have

τb = 2 − y = 1 and τb = ττb − τb =  · 1 −  = 0.

By looking at the eigenvalues, a representation maps (b)3 and (b)2 to − d. Hence writing
α = b and β = b:

 ∼= 〈α, β | α3 = β2〉.

This presentation corresponds to a Seifert fibration, the central element α3 = β2 is repre-
sented by the fibre, and α and β are loops around singularities of order 2 and 3. From this
presentation, it is easy to check that every point in this curve can be realized as a character,
thus

X() = {(, y) ∈ C2 | (y − 2)(2 − y − 1) = 0}.

Example 2.6 (The figure eight knot). The fundamental group of the figure eight knot exterior
admits a presentation

(2.3)  = 〈, b | = b〉,

where  = b−1−1b and  and b represent meridians of the knot, in particular they are
conjugate (by ). As for the trefoil, we chose coordinates

 = τ = τb and y = τb−1 .

From the relation  = b−1 and using the trace relations in Lemma 2.1, we can easily
compute

τ − τb−1 = (y − 2)(y2 − (2 − 1)y + 2 − 1) = 0.

Thus the variety of characters must satisfy this equation. We deduce that it is precisely the
defining equation by looking at its components:

• y − 2 = 0 is the component consisting of characters of abelian representations.

• y2 − (2 − 1)y + 2 − 1 = 0 is the so called canonical component, that contains lifts
of the holonomy of the hyperbolic structure. The existence of this component is the
content of the next section (Theorem 3.1).
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Thus
X() ∼= {(, y) ∈ C2 | (y − 2)(y2 − (2 − 1)y + 2 − 1) = 0}.

Here we have used a theorem in hyperbolic geometry to determine the equations of the
variety of characters. In Theorem 2.13 we give a result of González-Acuña and Montesinos
[15] on a sufficient set of relations required to compute X().

Example 2.7 (Two-bridge knots). The method for the trefoil and the figure-eight knot is com-
mon to two-bridge knots. The fundamental group of a two-bridge knot admits a presentation

 = 〈, b |  =b〉

where  is a certain word on  and b depending on the knot, and  and b are different
representatives of a meridian. As  and b are conjugate, two coordinates are sufficient:

 = τ = τb and y = τb−1 .

There is always a component y = 2 consisting of abelian representations. Then the other
components are contained in C2. We show in next chapter that each component of X() has
dimension at least one (Theorem 3.5). On the other hand, any component cannot be the
whole plane C2, because we shall also prove that one of the representations is a smooth
point of a curve (Theorem 3.6). Thus the variety of characters of a two bridge knot is always
a plane curve, possibly with several components (with arbitrarily many of them, by [28]).

For computations and results on the variety of characters of two-bridge knots, see for
instance [22, 28, 36, 5].

Example 2.8 (The figure eight knot II). There is another approach due to Alice Whitte-
more [43] to compute the variety of characters of the figure eight knot exterior. Using the
presentation in (2.3), set

ρ() =
�

s 1
0 s−1

�

and ρ(b) =
�

s 0
2 − y s−1

�

with s + s−1 = τ = τb =  and τ−1b = y, as this is the generic expression for an irreducible
representation (it also may contain reducible nonabelian representations). Then

ρ() − ρ(b) = (y2 − (2 − 1)y + 2 − 1)
�

0 −1
y − 2 0

�

.

This proves precisely that the component of X() that contains irreducible characters is de-
fined by y2 − (2 − 1)y + 2 − 1 = 0, without requiring any result in hyperbolic geometry,
though the computation is slightly more involved.

Example 2.9 (The figure eight knot III). There is yet a third approach using the presentation
of the figure eight-knot exterior as a fibered manifold with fibre a punctured torus. Here we
use the presentation corresponding to the fibration:

 = 〈α, β, μ | μαμ−1 = αβ, μβμ−1 = βαβ〉.

Let ϕ : F2 = 〈α, β | 〉 → F2 be the conjugation by μ, i.e. the monodromy. One can compute the
subvariety characters of X(F2) invariant by ϕ:

X(F2)ϕ = {χ ∈ X(F2) | χ ◦ ϕ = χ}.

Set coordinates
1 = τα 2 = τβ, 3 = ταβ.

Then the condition χ ◦ ϕ = χ yields

1 = τϕ(α) = ταβ = 3;

2 = τϕ(β) = τβα = τβατβ − τα = 21 − 1;

3 = τϕ(αβ) = ταβ2αβ = 123 − 13 − 2.
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The last equation follows from the previous two, hence, setting 3 = 1, we get the plane
curve:

X(F2)ϕ ∼= {(1, 2) ∈ C2 | 1 + 2 = 12}.

Next we consider the fibre of the restriction map

res: X()→ X(F2)ϕ

More precisely, one needs to find how many possibilities there are for ρ(μ) conjugating ρ
and ρ ◦ ϕ, where ρ is a representation with a given character in X(F2)ϕ. The fibre of res
depends on whether the character is irreducible or not. It can be easily shown that the map
res: X(M)→ X(F2)ϕ is surjective and its fiber consist of

(a) 2 points at irreducible characters of X(F2)ϕ;

(b) 1 point at reducible characters of X(F2)ϕ that are nontrivial on ′;

(c) a line of abelian characters at characters that are trivial on ′.

From this, one can determine:

(1) The number of components of X(): there is a component that is a branched covering of
X(F2)ϕ and the component of abelian characters, that collapse to a point in X(F2)ϕ, the
trivial character.

(2) The variety of PSL2C-characters, that is precisely isomorphic to X(F2)ϕ.

Remark 2.10. This method works for any punctured torus bundle. The monodromy is con-
jugated to the composition of the maps

r : F2 → F2
 7→ 
b 7→ b

 : F2 → F2
 7→ b
b 7→ b

 : F2 → F2
 7→ −1

b 7→ b−1

Each one induces a map in the variety of characters X(F2) ∼= C3:

r∗(1, 2, 3) = (1, 3, 13 − 2),(2.4)

∗(1, 2, 3) = (3, 2, 23 − 1),(2.5)

∗(1, 2, 3) = (1, 2, 3).(2.6)

Hence X(F2)ϕ can be computed algorithmically [32].

Example 2.11 (Whitehead link). We use the presentation  = 〈, b |  = 〉 where  =
bb−1−1b−1b. With the coordinates

 = τ, y = τb, z = τb,

we can compute
X() = {(, y, z) ∈ C3 | pq = 0}

with
(

p = y − (2 + y2 − 2)z + yz2 − z3,
q = 2 + y2 + z2 − yz − 4.

Here q = 0 is the component of abelian characters. Notice that in p = 0 there are points with
 = ±2 and y = ±2. Then the values of z are ±2 and ±1 ±

p
−1. The values z = ±1 ±

p
−1

correspond to different lifts of the holonomy representation.
In general, a two bridge link that is not a knot admits a presentation as above, with a

different expression for . Then the variety of characters is a surface in C3, that may have
several components.
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General  of finite type and reduction mod p. In this paragraph we overview the work
of González-Acuña and Montesinos [15], based on works of Vogt [41] and Magnus [24], for
the variety of characters of a group of finite type.

We start describing the variety of characters of a free group. For a free group of rank 3,
F3 = 〈, b, c | 〉 we have that

(τ, τb, τc, τb, τbc, τc) : X(F3)→ C6

is a branched covering. In addition there is one further coordinate algebraically dependent:
τbc and τcb are the solutions of the equation

z2 − Pz + Q = 0

with

P = ττbc + τbτc + τcτb − ττbτc, and

Q = τ2 + τ
2
b + τ

2
c + τ

2
b + τ

2
bc + τ

2
c + τbτbcτc − ττbτb − τbτcτbc − τcττc − 4.

Namely:

τbc + τcb = P and τbcτcb = Q.

We next discuss the free group of rank 4, F4 = 〈, b, c, d | 〉. In this case we do not give the
explicit equations, but just the following remark:

Remark 2.12 ([15]). τbcd is a polynomial on the traces of words on , b, c and d of length
≤ 3 with coefficients in 1

2Z.

Thus the construction of [15] provides a natural way to construct X(Fn) as an affine alge-
braic set defined by polynomials with coefficients in 1

2Z.

Theorem 2.13 ([15]). For a group with presentation  = 〈γ1, . . . , γn | {j}j∈J〉,

X() ∼= {χ ∈ X(Fn) | χ(γj) = χ(γ),  = 1, . . . , n, j ∈ J}

as varieties.

This theorem and the explicit description of X(Fn) in [15] provide an algorithm to compute
the variety of characters of a finitely presented group.

By Remark 2.12, ∀γ ∈ Fn, τγ is a polynomial in the traces of words of length ≤ 3 on the
generators, with coefficients in 1

2Z. Thus from [15] we have:

Remark 2.14. One can take reduction mod p, p 6= 2 prime, of X() to compute the variety
of characters in SL2 F, where F is an algebraically closed field of characteristic p.

When computing the reduction mod p, for almost every prime p, the number of com-
ponents and their dimension does not change, but for finitely many primes there can be
ramification phenomena. We discuss an example in Remark 4.7 in Section 4.

3. Hyperbolic knots and the canonical component

Let K ⊂ S3 be a hyperbolic knot, namely S3−K admits a complete hyperbolic structure of finite
volume. The hyperbolic space is denoted by H3 and we recall that the group of orientation
preserving isometries of H3 is naturally isomorphic to PSL2(C). There is a representation,
called the holonomy representation

hol : π1(S3 − K)→ PSL2(C)

that is discrete and faithful, so that the complete hyperbolic structure on S3 − K is provided
by H3/hol(π1(S3− K)). By Mostow rigidity theorem, the hyperbolic structure is unique. Hence
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the holonomy is unique up to conjugation, and up to complex conjugation if the manifold
S3 − K is not oriented. By a theorem of Culler [9], the holonomy representation lifts to SL2C:

SL2C

π1(S3 − K) PSL2(C)

ρ0

hol

This yields 4 characters χ0, two lifts of the holonomy representation and two more lifts of its
complex conjugated.

To simplify, denote

X(K) = X(S3 − K).

The main theorem of this section is:

Theorem 3.1. The character χ0 of a lift of the holonomy ρ0 is a smooth point of X(K) and
the component X0 of X(K) that contains χ0 is a C-curve.

Definition 3.2. The component X0 is called the canonical component.

Remark 3.3. A priori, the canonical component does not need to be unique, as we just have
mentioned that there are four characters χ0 that are lifts of the holonomy of a hyperbolic
structure, up to orientation. To my knowledge, for all known examples of hyperbolic knots
the canonical component is unique. Other than knots, Casella, Luo, and Tillmann [7], have
an example of hyperbolic manifold with at least two canonical components.

Different canonical components are isomorphic, either by complex conjugation or by mul-
tiplying the characters by (−1)ε for some epimorphism ε : π1(S3 − K) → Z/2Z (again, this
holds for general hyperbolic manifolds, notice that for knots ε is unique).

Remark 3.4. (1) For a two bridge knot K, all the components of X(K) are curves, and it is
proved in [28] that the number of components is arbitrarily large. One can also show
that there is a unique canonical component. The components build by [28] come from
pulling back the canonical components of other knots by surjections of the fundamental
group. (Notice that in this section we deal only with hyperbolic knots, otherwise there are
two-bridge knots that are torus knots, like the trefoil, described before).

(2) For Montesinos knots K, the number of components of any dimension of X(K) can be
arbitrarily large [29].

(3) Theorem 3.1 is motivated by Thurston’s hyperbolic Dehn filling theorem: some of the rep-
resentations in a neighborhood of the holonomy of the complete structure are holonomies
of non complete structures on the knot exterior whose metric completion is a Dehn filling.

(4) One may prove further that the canonical component is locally parametrized around χ0
by the trace of any peripheral element, see Theorem 3.10. In particular this proves that
the A-polynomial is nontrivial (See [8] for the definition of A-polynomial).

For non-hyperbolic knots, the proof of the non-triviality of the A-polynomial is due to Dun-
field and Garoufalidis [13] and Boyer and Zhang [3], based on a theorem of Kronheimer
and Mrowka [20].

(5) Theorem 3.1 works for manifolds of finite volume, not only for knot exteriors, and the
dimension is the number of cusps.

The proof of Theorem 3.1 is based in the following two results:

Theorem 3.5. [39, 11] Let Y ⊂ X(K) be an irreducible component containing an irreducible
character. Then dimY ≥ 1.
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Theorem 3.6. The dimension of the Zariski tangent space at χ0 is

dimTZrχ0
X(K) = 1.

Theorem 3.5 is a a lower bound for the dimension and it is a particular case (for manifolds
other than knots) proved in Thurston’s notes [39], see also [11, Proposition 3.2.1]. Theo-
rem 3.6 gives an upper bound of the dimension and, due to the properties of the Zariski
tangent space, combination of both theorems yields smoothness of χ0. (The dimension of
the Zariski tangent space is an upper bound for the dimension, with equality precisely at
smooth points). This takes care also of the scheme issue, and it is smooth as both variety
and as scheme.

In his notes, Thurston only requires Theorem 3.5 to prove the hyperbolic Dehn filling, by
using other arguments, like Mostow rigidity and the openness theorem for complex functions.

It is important to mention a completely different approach to deformation spaces by means
of ideal triangulations defined by Neumann and Zagier in [26].

Proof of Theorem 3.5. We follow Thurston’s notes. Let M = S3 − N (K) be the compact man-
ifold obtained by removing a tubular neighborhood of the knot. Let ρ0 be an irreducible
representation of M whose character lies in Y. Since π1(M3) is normally generated by the
meridian, we may assume that ρ0(π1(∂M)) is not contained in {± d}, the center of SL2C. We
shall chose a generic curve with base point in ∂M, so that

(1) tr(ρ0(α)) 6= ±2, and

(2) the restriction ρ0|〈α,π1(∂M)〉 is irreducible.

We may assume that α is a simple closed curve, so

M′ = M − N (α)

is a manifold with boundary a surface of genus 2. In particular, χ(M′) = 1
2χ(∂M) = −1, so it

has the homotopy type of a 2-CW complex with 1 0-cell, r 1-cells and (r − 2) 2-cells. This
gives a presentation of π1(M′) with r generators and r − 2 relations. Thus the dimensions of
R(M′) and X(M′) have lower bounds

dimR(M′) ≥(r − (r − 2))dimSL2C = 6,

dimX(M′) ≥dimR(M′) − dimSL2C ≥ 3.

View α as a peripheral element of π1(M′) and chose β ∈ π1(M′) another peripheral element
that represents a meridian around α, so that the commutator [α, β] is the boundary of the
punctured torus ∂M ∩ ∂M′.

Claim 3.7. Let ρ ∈ R(M′) be in a neighborhood of ρ0 such that

tr(ρ(β)) = tr(ρ([α, β])) = 2.

Then ρ(β) = d.

Assume the claim. As ρ(β) = d implies ρ ∈ R(M), the claim tells that, in a neighborhood
of ρ0 in R(M′), R(M) is determined by 2 equations. Thus, a component of R(M) that contains
ρ0 has dimension ≥ 4, and the component of X(M) that contains χ0 has dimension ≥ 1. This
finishes the proof assuming the claim.

To prove the claim we may assume that tr(ρ(α)) 6= ±2. Hence, up to conjugation

ρ(α) =
�

λ 0
0 1/λ

�

λ 6= ±1.

As tr(ρ(β)) = tr(ρ([α, β])) = 2, then

ρ(β) =
�

1 
0 1

�

or
�

1 0
 1

�

,  6= 0.
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In particular

ρ([α, β]) =
�

1 y
0 1

�

or
�

1 0
y 1

�

, y 6= 0.

Now [α, β] represents a peripheral curve in the punctured torus ∂M − D, for a disk D ⊂ ∂M.
Hence it is the commutator in π1(∂M − D), and by the proof of Lemma 1.10, ρ(π1(∂M − D))
is reducible, with an invariant line in common with ρ(α), which contradicts the hypothesis
(2). �

Before talking about proof of Theorem 3.6, let me discuss the Zariski tangent space. Given
an affine algebraic set

V = { ∈ CN | p1() = · · · = pr() = 0}

where p1, . . . , pr ∈ C[1, . . . , N] are polynomials, the Zariski tangent space at  ∈ V (as
scheme) is

(3.1) TZr V = { ∈ CN | p1( + ϵ), . . . , pr( + ϵ) ∈ o(ϵ2)}.

To compute this space we use a construction due to André Weil. Define the space of crossed
morphisms

Z1(,Adρ) = {θ : → sl2C | θ(γ1γ2) = θ(γ1) + ρ(γ1)θ(γ2)ρ(γ−11 )};

there is a natural isomorphism

(3.2)
Z1(,Adρ)

∼=−→ TZrρ R(γ)

θ 7−→ γ 7→ (d+ϵθ(γ))ρ(γ) = ρϵ(γ)
.

Notice that θ ∈ Z1(,Adρ) if and only if ρϵ(γ1γ2) = ρϵ(γ1)ρϵ(γ2) + o(ϵ2). The isomorphism
(3.2) identifies the orbit by conjugation to the space of inner crossed morphisms

B1(,Adρ) = {θ ∈ Z1(,Adρ) | θ(γ) = ρ(γ)ρ(γ−1) − ,∀γ ∈ }.

Namely, for  ∈ sl2C, θ is tangent to the conjugation by exp(ϵ ). Setting

H1(,Adρ) = Z1(,Adρ)/B1(,Adρ)

by Proposition 1.13 (and using that the analytic and algebraic Zariski tangent space are
isomorphic) we have:

Theorem 3.8. For ρ ∈ R() irreducible,

H1(,Adρ) ∼= TZrχρ
X().

Using this cohomological interpretation of the Zariski tangent space, Theorem 3.6 is a
consequence of the infinitesimal rigidity theorem of Calabi-Weil, that for a knot exterior is
stated as follows:

Theorem 3.9 (Calabi [42], Weil [42]). Let ρ ∈ R(K) be a lift of the holonomy representation.
Then H1(π1(S3 − K),Adρ) ∼= C.

This theorem is proved by means of de Rham cohomology. Let

Eρ = M̃ × sl2(C)/π1M

denote the flat bundle over M with fibre sl2(C), and let Ωp(M,Eρ) denote the space of Eρ-
valued smooth p forms on M. Then the de Rham cohomology of Ω∗(M,Eρ) is naturally iso-
morphic to H∗(S3 − K,Adρ).

The key result in the proof of Theorem 3.9 is that every closed form in Ω1(M,Eρ) that is L2

is exact (one can find a Harmonic representative in the cohomology class, that must vanish
by a Bochner-type argument). Once we have this vanishing theorem, we deduce that we
have an injection by the long exact sequence of the pair:

(3.3) 0→ H1dR(S
3 − K, sl2C)→ H1dR(U, sl2C)
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where U is an end of the manifold, because the kernel is realized by forms with compact sup-
port, in particular L2. Then the deformation space and the cohomology group of the periph-
eral torus are easily computed to be two dimensional, and we get dim(H1(S3 − K, sl2C)) = 1
by a Poincaré duality argument, cf. [37].

See [1] for an accessible account on Calabi-Weil infinitesimal rigidity or [19] for further
applications and another approach to the Calabi-Weil theorem.

One of the consequences of this approach using (3.3) is that all infinitesimal deformations
are described by the end of S3 − K. Furthermore, by showing that the non-L2 deformations
must deform the trace of any peripheral element, as done by Bromberg in [4], it can be
shown that:

Theorem 3.10. Let ρ0 ∈ R(K) be a lift of the holonomy representation. Then for any non-
trivial peripheral element γ ∈ π1(S3 − K), its trace is a local parameter around χρ0 :

τγ : X(S3 − K)→ C.

4. Knot symmetries

This section is devoted to a joint work with Luisa Paoluzzi [30].
Let K be a knot in S3 and ψ : (S3, K) → (S3, K) a diffeomorphism of finite order p, that

preserves the orientation of S3. By the Smith conjecture, either F(ψ) = ∅ or F(ψ) ∼= S1 is
unknotted in S3.

Definition 4.1. The finite order diffeomorphism ψ : (S3, K) → (S3, K) that preserves the ori-
entation is said to be:

• a free symmetry if the group 〈ψ〉 ∼= Z/pZ acts freely,

• a periodic symmetry if F(ψ) is a circle disjoint from K,

• a strong inversion if it has order 2 and |F(ψ) ∩ K | = 2,

• a pseudo–periodic symmetry otherwise.

Remark 4.2. We shall assume that ψ has order a prime p 6= 2, hence ψ is either free or
periodic. More precisely, F(ψ) is either empty or an unknotted circle in S3, and F(ψ) =
F(ψr) for every r coprime with p.

The goal of this section is to show that periodic and free symmetries have different behav-
ior in the number of components in the fixed subvariety in the variety of characters.

Example 4.3 (Periodic symmetry). Start with the three-strand braid of Figure 4.1, and glue
five copies of it as in Figure 4.2, yielding the knot 10123. This is a hyperbolic knot with
a periodic symmetry of order five, the fixed point set being the axis perpendicular to the
projection plane.

Figure 4.1: The braid with three strands.

The quotient of S3 by the action of ψ is S3 with branching locus an unknotted circle. The
union of the branching locus and the projection of the knot is the link 622, Figure 4.3.
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ψ

Figure 4.2: The periodic knot 10123 with the symmetry ψ of order 5.

Figure 4.3: The quotient link 622, one component is the projection of the fixed
point set of ψ, the other one is the projection of the symmetric knot 10123.

This construction is taken from [17], where they consider the knot 818, that has a period
of order 4 instead of 5.

Example 4.4 (Free symmetry). Modify slightly the construction in Example 4.3 by adding a
twist of a strip that would contain the three strands of the braid, namely composing with the
central element of the braid group, see Figure 4.4.

To visualize the action, view the sphere S3 as the joint of two circles, arranged as the Hopf
link. One of the circles is the axis perpendicular to the projection, the other one is contained
in the plane of the projection and is the core of a solid torus containing the braid. The action
of ψ is a rotation of order five along each of the circles, because we have added the twist. (In
the Example 4.3, the action was trivial along one of the circles).

The quotient is the Lens space L(5,1), that can be described by 1
5 -Dehn filling along the

trivial knot. Thus the quotient of the knot in S3 is a knot in a Lens space, that can be again
described by a Dehn filling along the link 622, see Figure 4.5.

Let K ⊂ S3 be a hyperbolic knot, the variety of characters is denoted by X(K) := X(S3 −
K). Let ψ : (S3, K) → (S3, K) be a symmetry of prime order p 6= 2, the variety of invariant
characters is denoted by

X(K)ψ = {χ ∈ X(K) | χ ◦ ψ∗ = χ}.

The main result of this section is
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Figure 4.4: The knot with a free symmetry of order 5. In order to visualize the
symmetry, the full turn of the strip should be distributed in five times 1/5-th
of turn along the strip.

1
5

Figure 4.5: Representation of the quotient knot in the Lens space L(5,1) =
S3/ψ, by Dehn filling on one component of 622.

Theorem 4.5 (Paoluzzi-P. [30]). If ψ is a periodic symmetry of the knot of order an odd prime
p, then X(K)ψ has at least p−1

2 components that are also components of X(K).

The idea is to contrast this behavior with the case of free symmetry, so we make the
following remarks:

Remark 4.6. (a) For each prime p > 4 there is a knot Kp with a free symmetry ψ of order p
so that X(Kp)ψ has at most 20 components.

(b) If we look at components of X(K), without ψ-invariance, many further components may
appear, for ψ either free or periodic. This can be achieved by considering Montesinos
knots.

Another remark is the reduction mod p:

Remark 4.7. When reducing mod p, all the components of the theorem become a single
one.

Remark 4.6 (a) and Remark 4.7 are discussed after the proof of the theorem.
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Proof of Theorem 4.5. Set M = S3 − K, O = M/ψ. The proof has 3 steps:

(1) The restriction map res: Xrr(O)→ Xrr(M)ψ is a bijection.

(2) Find several components for X(O) using Galois conjugates and the element of finite order.

(3) Use (1) + (2) to find several components for X(M)ψ

Step 1: Extending ψ-invariant representations. Set M = S3 − K and O = M/ψ. We have
a extension of fundamental groups

π1M→ π1O→ Z/pZ
μ← 1

that splits because μ has order p. However the extension works without requiring the split-
ting. Viewing π1M in π1O, the induced action of the period ψ on π1M satisfies

ψ∗ : π1M → π1M
γ 7→ μγμ−1

.

Thus we write

π1O = 〈π1M,μ|μp = 1, μγμ−1 = ψ∗μ, ∀γ ∈ π1M〉.

Lemma 4.8. The restriction map res: Xrr(O)→ Xrr(M)ψ is a bijection.

Proof of the lemma. First we show that the restriction of an irreducible character is irre-
ducible. By contradiction, assume that ρ ∈ R(O) is irreducible but res(ρ) ∈ R(M) is reducible.
The restriction res(ρ) is not contained in {± d} because otherwise the image of ρ would be
generated by ±ρ(μ) and it would be reducible. The restriction res(ρ) has either one or two
invariant lines in C2. If one of these invariant lines was preserved by ρ(μ), then ρ would be re-
ducible, therefore res(ρ) has two invariant lines and ρ(μ) permutes them, but this contradicts
that the order of μ is odd.

Once we know that res(Xrr(O)) ⊂ Xrr(M), it is clear that res(Xrr(O)) ⊂ Xrr(M)ψ and next
we show that every character in Xrr(M)ψ extends to π1O in a unique way. Let χρ ∈ Xrr(M)ψ.
Since χρ◦ψ∗ = χρ by Lemma 1.10 ρ ◦ ψ∗ and ρ are conjugate. There exists a matrix A ∈ SL2C
such that ρ(ψ∗(γ)) = Aρ(γ)A−1, ∀γ ∈ π1M, which is unique up to sign by irreducibility. An
extension of ρ must map μ to ±A, and since μ has odd order p, the choice of sign is unique
so that Ap = d. �

The proof can be easily adapted without requiring that μ has finite order, but just that
μp ∈ π1M, by replacing the identity by an inner automorphism of π1M. On the other hand, the
fact that p is odd cannot be skipped.

Step 2: Finding components for X(O). The orbifold O is hyperbolic and the holonomy
representation hol : π1O→ PSL2C lifts to

ρ0 : π1O→ SL2C

because p is odd. One way to see that the lift ρ0 exists is to lift the holonomy of the (smooth
incomplete) structure on the complement of the branching locus, and then to consider the
induced representation on the orbifold by asking that the meridian is mapped to an element
of order p. Another possibility is just to apply Lemma 4.8 to the lift of the holonomy of M.

By a theorem of Vinberg (cf. [23, Theorem 3.1.2]), after conjugation the image ρ0(π1O)
is contained in SL2(K) for K a number field, i.e. the extension K|Q is algebraic. By taking a
larger field if necessary, we may assume that the extension K|Q is a Galois extension.
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Next we use the element of finite order, whose trace lies in the real part of the cyclotomic
field, contained in K. Since μp = 1,

tr(ρ0(μ)) = −2cos
π

p
.

Therefore the set of Galois conjugates of this trace gives:
¦

τμ(ρσ0)|σ ∈ Glois(K)
©

= {−2cos
πr

p
|r = 1,3,5, . . . , p − 2}.

Now the equations

τμ = −2cos
πr

p
,

for r = 1,3,5, . . . , p − 2, distinguish p−1
2 components

Y1, . . . , Y p−1
2

of X(O) that contain different Galois conjugates χρσ0 of χρ0 .

Finally we claim that each Yr is a curve. By Theorem 3.9, since O has a cusp, H1(π1O,Adρ0) =
C hence H1(π1O,Adρσ0) = C, ∀σ ∈ Glois(K), that with Theorem 3.5 proves the claim.

The next step is, using that res: Xrr(O) → Xrr(M)ψ is a bijection, the curves Y1, . . . , Y p−1
2

yield different components of X(M)ψ.

Step 3: components for X(M)ψ. We know that res: Xrr(O) → Xrr(M)ψ is a bijection. We
have Y1, . . . , Y p−1

2
components of Xrr(O) that are curves. We take W to be the Zariski closure

of res(Y) in X(M):
X(O) res−→ X(M)ψ ⊂ X(M)
Y1
... W = res(Y)

Y p−1
2

Since Y = Y rr ∪(a finite set), W = res(Y)∪(a finite set) and W1, . . . ,W p−1
2

are different compo-

nents of X(M)ψ. In addition, as dimH1(π1M,Adρσ0) = dimH1(π1M,Adρ0) = 1, W1, . . . ,W p−1
2

are also components of X(M). �

Remark 4.9. We justify now Remark 4.7. Let F be an algebraically closed field of character-
istic p. As an element of SL2F of order p is conjugate to

�

1 ∗
0 1

�

,

all components Y1, . . . , Y p−1
2

in the proof of the theorem become a single one mod p. Therefore

all components W1, . . . ,W p−1
2

in the theorem become a single one mod p.

Finally, we sketch the examples of Remark 4.6 (a). This is based in the construction of
Example 4.4. Denote by A and K0 the components of the link 622 (the components of the link
can be permuted). See Figure 4.6. Consider a q

p -Dehn filling on A and take the covering

(S3, K q
p
)→ (L(p, q), K0)

where p > 4 is prime and p and q are coprime. Notice that when p = 3 we do not get a
knot but a link. Since p and q are coprime, K0 lifts to a knot K q

p
⊂ S3 and since p > 4 it is

hyperbolic. Then the automorphism of the covering transformation ψ : (S3, K q
p
) → (S3, K q

p
) is

a free symmetry of order p.
The variety of characters X(622) has precisely two components, the canonical component

X0(622) and the abelian component Xb(622), see [16] or [30]. We use the following two prop-
erties:
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K0

A

Figure 4.6: The link 622, the component A for Dehn filling and the component
K0 that lifts to K.

(1) The restriction map X0(622) → X(∂N (A)) is dominant and its generic fibre is finite. This
can be easily checked, see [30].

(2) ∀γ ∈ π1∂N (A) primitive, {τγ = 2} is a line in X(∂N (A)). It suffices to replace  = 2 on the
equation in Example 2.4, and the equation becomes (y − z)2 = 0.

From these properties, it is straightforward that X(L(p, q)−K0) has at most C components, for
some uniform constant C that does not depend on p or q. By Lemma 4.8 (whose proof does
not use that the symmetry has fixed points), X(S3 − K q

p
)ψ has also at most C components,

with C uniform, but ψ has order p (that can be any prime > 4). See more details in [30],
where it is shown that we can take C = 20.
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