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Winter Braids Lecture Notes
Vol. 4 (2017) 1-24
Course no III

Ordered groups, knots, braids and hyperbolic 3-manifolds

DALE ROLFSEN

1. Introduction

These notes are based on a minicourse of three one-hour lectures given at the Winterbraids
conference at the University of Caen from February 27 to March 2, 2017. Here are the titles
of my lectures:

Lecture 1: Introduction to ordered groups

Lecture 2: Ordering knot groups; fibred knots and surgery

Lecture 3: Braids, At(Fn) and minimal volume hyperbolic 3-manifolds.

It’s more convenient to group the material by subject, so there are more than three sections
to these notes. I posed certain problems for the audience to solve on their own, and leave
these as exercises for the reader. I have added some material which was not in my talks, but
in the spirit of lecture notes, some things will be discussed rather informally and certainly not
everything of interest will be covered. Much of the discussion involves joint work at various
times with Steve Boyer, Adam Clay, Eiko Kin, Thomas Koberda, Bernard Perron, Bert Wiest,
Jun Zhu and others.

I also want to thank Patrick Dehornoy – whose birthday we are celebrating at this conference
– for his amazing work on ordering braid groups (and, of course many other things!). That’s
what got me started on, and somewhat addicted to, orderable groups and their connections
with topology. Also a great friendship.

2. Ordered groups

A left-ordered group (G,<) is a group G and a strict total ordering < of its elements such that
g < h implies ƒg < ƒh for all ƒ , g, h ∈ G. If such an ordering exists, a group G is said to be
left-orderable.

Left-orderable groups are also right-orderable, but by a possibly different ordering. If a group
has a strict total ordering < which is both right- and left-invariant, we call it bi-ordered (in
the classic literature, it is simply called “ordered”). There are many examples of orderable
groups which arise in nature:

• Zn (as an additive group) is bi-orderable.

For n = 1 there are exactly two bi-orderings, for n ≥ 2 there are uncountably many.
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• Free groups are bi-orderable.

We will discuss explicit orderings of free groups later.

• Braid groups are left-orderable [8]. But Bn is not bi-orderable if n ≥ 3.

• Pure braid groups are bi-orderable [24].

Our proof used the Artin “combing” technique expressing the pure braid group as a semidi-
rect product of free groups. The result also follows from a more general result that residually
torsion-free nilpotent groups are bi-orderable.

• Surface groups (that is, fundamental groups of surfaces) are bi-orderable, except the
Klein bottle group 〈, b| 2 = b2〉 which is only left-orderable, and the projective plane’s
group Z/2Z which is not even left-orderable.

Bi-orderability of surface groups was long known for the orientable case and shown in [23]
for the non-oriented (hyperbolic) cases, despite claims in the literature [18] that none of the
nonorientable surface groups are bi-orderable.

Consider the set Homeo+(R) of order-preserving homeomorphisms of the reals. It is a group
under composition of homeomorphisms.

• Homeo+(R) is left-orderable.

For example, take your favourite enumeration Q = {1, 2, . . .} of the rationals and compare
functions ƒ , g : R→ R by declaring ƒ ≺ g iff ƒ () < g() at the first  at which ƒ () and g()
differ (this will exist if ƒ 6= g).

Moreover, if G is a countable left-orderable group, then G is isomorphic with a subgroup of
Homeo+(R). So Homeo+(R) is universal in the sense that it “contains” all countable left-
orderable groups. This provides an intimate connection between ordered groups and dynam-
ics. See for example [9].

Clearly left- or bi-orderability is inherited by subgroups. By using a lexicographic ordering,
one can also see easily that

• A direct product of bi-orderable groups is bi-orderable; similar for left-orderable.

The following theorem [27] is more difficult.

• A free product of bi-orderable groups is bi-orderable; similar for left-orderable.

The Lie group SL2(R) of 2 × 2 matrices with real entries and determinant 1 has a universal
covering group ÝSL2(R). It is one of the eight Thurston geometries for 3-manifolds.

• ÝSL2(R) is left-orderable.

This follows because ÝSL2(R) embeds in Homeo+(R). Indeed SL2(R) acts on the circle by
orientation-preserving homeomorphisms. For example it acts on lines through the origin in
R2. Another action is by fractional linear transformations of R ∪∞. Topologically, SL2(R) is
homeomorphic with S1 × D2, where D2 is the open unit disk. Its universal cover ÝSL2(R) is
an infinite cyclic cover and is a group which acts on R by orientation-preserving homeomor-
phisms.
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2.1. Special algebraic properties of ordered groups

Proposition 2.1.1. Left-ordered groups G are torsion-free, that is there are no elements of
finite order.

Indeed, suppose g ∈ G and g 6= 1. If 1 < g, then 1 < g < g2 < g3 < · · · . All powers of g are
greater than 1. Similarly, if g < 1, no power of g can be the identity.

One easily checks that in a bi-ordered group, one can multiply inequalities: g < h and g′ < h′

imply gg′ < hh′. (This is not true in general for left-ordered groups.) In particular, if in a bi-
ordered group we have g < h, we conclude g2 < h2, then g3 < h3, etc. That is if g and h are
unequal, then their powers gn and hn are also unequal.

Proposition 2.1.2.

In a bi-ordered group: gn = hn for some n > 0 =⇒ g = h.

Proposition 2.1.3.

In a bi-ordered group, if g commutes with hn, n 6= 0, then g commutes with h.

Exercise 2.1.4. Prove this (hint: compare g with h−1gh). Argue more generally that if any
two nonzero powers of g and h commute, then g and h also commute, in a bi-orderable
group.

2.2. Group rings

Recall that the group ring RG of a group G, with coefficients in a ring R, consists of formal
finite linear combinations of group elements with R coefficients. A typical element is of the
form

m
∑

=1

rg r ∈ R, g ∈ G.

Multiplication is defined as for polynomials:

(
m
∑

=1

rg)(
n
∑

j=1

sjhj) =
∑

,j

rsjghj

Suppose a group G has a torsion element, say for example g ∈ G has order 5, then we have
an equation:

(1 + g + g2 + g3 + g4)(1 − g) = 1 − g5 = 0.

The two terms on the left are nonzero in ZG, yet their product equals zero. Such elements
are called zero divisors.

Our example illustrates that if G contains elements of finite order, then ZG has zero divisors.
The converse (amazingly!) is still a matter of conjecture, attributed to Kaplansky in the late
1940’s.

Zero divisor Conjecture: If the ring R has no zero divisors and G is a torsion-free group,
then RG has no zero divisors.

This is unsolved, even for the case R = Z.

Theorem 2.2.1.
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Left-orderable groups satisfy the zero-divisor conjecture, that is, if R has no zero divisors and
G is left-orderable, then RG has no zero divisors.

Proof: Consider a product (
∑m
=1 rg)(

∑n
j=1 sjhj) =

∑

,j rsjghj, where we assume that the r
and sj are all nonzero, the g are distinct and the hj are written in strictly ascending order,
with respect to a given left-ordering of G.

At least one of the group elements ghj on the right-hand side is minimal in the left-ordering.
If j > 1 we have, by left-invariance, that gh1 < ghj and ghj is not minimal. Therefore we
must have j = 1.

On the other hand, since we are in a group and the g are distinct, we have that gh1 6= gkh1
for any k 6= . We have established that there is exactly one minimal term on the r.h.s. It
follows that it survives any cancellation, and so the r.h.s. cannot be zero (because rs1 6= 0).
Thus RG has no zero divisors.

Exercise 2.2.2. Assume R has no zero divisors and G is left-orderable. Show that the only
units (invertible elements) of RG are “monomials” of the form rg, where g ∈ G and r is an
invertible element of R. These are the so-called trivial units.

An idempotent in a ring is an element  such that 2 =  but 0 6=  6= 1. Show that idempo-
tents are zero divisors, so that under our assumptions, RG contains no idempotents.

Example 2.2.3. Consider the ring of integers R = Z and the cyclic group of order five,
G = 〈 | 5 = 1〉. Define the following elements of RG:

γ = 1 − 2 − 3, δ = 1 −  − 4

Exercise 2.2.4. Verify that γδ = 1. Therefore, the group ring in this example has nontrivial
units as well as zero divisors.

Here is another reason to be interested in whether a group is orderable.

Proposition 2.2.5 ([17]). If G is left-orderable and H is any group, and there is a ring
isomorphism ZG ∼= ZH then there is a group isomorphism G ∼= H.

3. Spaces of orderings of a group

We’ll consider a natural topology on the set LO(G) of left-orderings of a given group G, and
apply it to gain insight into algebraic properties. This concept was introduced in the litera-
ture by [26]. We use a slightly different, though equivalent, approach, using the Tychonoff
topology on the power set P(G) of G, a structure familar to point-set topologists.

If (G,<) is a left-ordered group, then the positive cone

P = P< = {g ∈ G|1 < g}

is (1) a semigroup (P · P ⊂ P) and (2) G is partitioned as

G = P t P−1 t {1}.

Conversely, if a group G has a subset P satisfying (1) and (2), then G can be left-ordered by
the rule

g < h⇔ g−1h ∈ P

Exercise 3.0.1. Verify that this recipe defines a left order of G. The left-ordering is a bi-
ordering iff its positive cone is normal: for all g ∈ G we have g−1Pg ⊂ P.
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This gives us a one-to-one correspondence between left-orderings and certain subsets of
G, that is, elements of the power set P(G) so we may consider, by abuse of notation, that
LO(G) ⊂ P(G).

3.1. The Tychonoff topology

We now recall the Tychonoff topology of a cartesian product of (possibly infinitely many) topo-
logical spaces. It is the smallest topology such that the projection functions are continuous.

If X is any set, the power set P(X) can be identified with the set 2X = {0,1}X of all functions
ƒ : X → {0,1} via the correspondence of subsets Y ⊂ X with their characteristic functions
ƒY ∈ 2X where ƒY () = 1 ⇐⇒  ∈ Y.

Giving {0,1} the discrete topology, {0,1}X is a special case of a product space and can be
given the Tychonoff topology. This then defines a topology on P(X) ∼= {0,1}X.

Typical open sets in P(X) are U = {Y ⊂ X| ∈ Y} and its complement Uc = {Y ⊂ X| /∈ Y}.
Note that these correspond to the sets of functions {ƒ ∈ 2X | ƒ () = 1} and {ƒ ∈ 2X | ƒ () = 0},
respectively.

Finite intersections of such sets form a basis for the topology of P(X); by a theorem of Ty-
chonoff, it is compact.

It is also totally disconnected: if Y1 and Y2 are distinct elements of P(X), choose an  which
is in Y1 (say) but not in Y2. Then the sets U and Uc form a separation of P(X) with Y1 ∈ U
and Y2 ∈ Uc.

If X is countably infinite, P(X) is homeomorphic with the Cantor set.

The set LO(G) of left-orderings < of a group G is in this way identified with the set of subsets
P ⊂ G (i. e. elements of P(G)) satisfying

(1) P · P ⊂ P and

(2) G = P t P−1 t {1}

Identifying left-orderings with their positive cones, a basic neighborhood of a left-ordering <
of a group G can be defined by considering a finite number of inequalities g < h which hold
– the corresponding neighborhood of < is all orderings ≺ for which those inequalities remain
true: g ≺ h.

Proposition 3.1.1. LO(G) is a closed subset of P(G).

Proof: The set of P ⊂ G which do not satisfy (1) is exactly the union over all g, h ∈ G of the
sets Ug ∩ Uh ∩ Ucgh, and is therefore open.

Similarly, one checks that (2) is a closed condition. �

Corollary 3.1.2. LO(G) is compact and totally disconnected.

One can also check that the set of all bi-orders of a group G is closed in LO(G), hence also
forms a compact, totally disconnected space... Possibly empty!

A basic question regarding a group G is whether it is left-orderable, or in other words, is
LO(G) nonempty? If G is nontrivial, a necessary condition for left-orderability is that G be
torsion-free. But that is by no means sufficient; there are many examples of torsion-free
groups which are not left-orderable (see Example 4.0.2).
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Suppose G is finitely-generated with generating set S, and let Bn(G) be the n-ball in the
Cayley graph of G with respect to the set S. In other words this is the set of all elements of G
which can be written as a product of n or fewer elements of S and their inverses.

Call a subset Q of Bn(G) a pre-order if

(1’) (Q ·Q) ∩ Bn(G) ⊂ Q and

(2’) Bn(G) = Q tQ−1 t {1}.

If G has a positive cone, then the cone’s intersection with Bn(G) is a pre-order for Bn(G), so
the following is clear.

Proposition 3.1.3. If G is left-orderable, then every Bn(G) has a pre-order.

This is the basis for an algorithm, discussed in [3], to test for left-orderability of a finitely
generated group for which the word problem has a solution. Basically it searches expanding
balls in the Cayley graph for possible pre-orders, and quits and reports when it finds an n-ball
without any pre-order. If the group is left orderable, the algorithm continues forever. Perhaps
surprisingly, the converse to Proposition 3.1.3 is also true.

Theorem 3.1.4. If every Bn(G), n ≥ 1 has a pre-order, then G is left-orderable.

Proof: Note that the restriction to Bn(G) of a pre-order for Bn+1(G) is a pre-order for Bn(G).
Define

Qn = {R ⊂ G|R ∩ Bn(G) is a pre-order for Bn(G)}.

One checks that Qn is a closed subset of P(G) and that Qn+1 ⊂ Qn. In a compact space, the
intersection of a nested sequence of nonempty closed sets is nonempty. It is easy to check
that a set P ⊂ G is in every Qn, if and only if P satisfies (1) and (2). Thus we have

LO(G) =
∞
⋂

n=1
Qn 6= ∅.

�

The assumption of being finitely-generated is not really essential.

Theorem 3.1.5. A group is left-orderable if and only each of its finitely-generated subgroups
is left-orderable.

Proof: The forward implication is obvious. For the reverse implication, consider any finite
subset F of the given group G and let 〈F〉 denote the subgroup of G generated by F. Define

Q(F) := {Q ⊂ G|Q ∩ 〈F〉 is a positive cone for 〈F〉}

For each finite F ⊂ G, Q(F) is a closed nonempty subset of P(G).

The family of all Q(F), for finite F ⊂ G, is a collection of closed sets which has the finite
intersection property, because

Q(F1 ∪ F2 ∪ · · · ∪ Fn) ⊂ Q(F1) ∩ Q(F2) ∩ · · · ∩ Q(Fn).

By compactness, the entire family must have a nonempty intersection:

LO(G) =
⋂

F⊂Gfinite
Q(F) 6= ∅. �

We note that the same argument may be used to show that a group is bi-orderable if and
only if each finitely generated subgroup is bi-orderable.
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Corollary 3.1.6. An abelian group is bi-orderable if and only if it is torsion-free.

Proof: Bi-orderable groups are torsion-free. To see the other direction, it is enough to observe
that a finitely-generated torsion-free abelian group is isomorphic with Zn for some finite n. �

Theorem 3.1.7. A group G can be left-ordered if and only if for every finite subset {1, . . . , n}
of G \ {1}, there exist ε = ±1 such that 1 does not belong to the semigroup S(ε11 , . . . , εnn )
generated by ε11 , . . . , εnn in G.

Proof: One direction is clear, for if < is a left-ordering of G, just choose ε so that ε1 is
greater than the identity. For the converse, we may assume that G is finitely generated, and
we need only show that each k-ball Bk(G), with respect to a fixed finite generating set, has
a pre-order. Now consider {1, . . . , n} to be the entire set Bk(G) \ {1}, and choose ε = ±1
such that 1 6∈ S(ε11 , . . . , εnn ). We easily check that the set {ε11 , . . . , εnn } is a pre-order of
Bk(G), completing the proof. �

Theorem 3.1.8 (Burns-Hale). A group G is left-orderable if and only if for every finitely-
generated subgroup H 6= {1} of G, there exists a left-orderable group L and a nontrivial
homomorphism H→ L.

Proof: One direction is obvious. To prove the other direction, assume the subgroup condition.
The result will follow if one can show:

Claim: For every finite subset {1, . . . , n} of G \ {1} , there exist ε = ±1 such that 1 does
not belong to S(ε11 , . . . , εnn ).

We will establish this claim by induction on n. It is certainly true for n = 1, for S(1) cannot
contain the identity unless 1 has finite order, which is impossible since the cyclic subgroup
〈1〉 must map nontrivially to a left-orderable (hence torsion-free) group.

Next assume the claim true for all finite subsets of G \ {1} having fewer than n elements,
and consider {1, . . . , n} ⊂ G \ {1}.

By hypothesis, there is a nontrivial homomorphism

h : 〈1, . . . , n〉 → L

where (L,≺) is a left-ordered group. Not all the  are in the kernel; we may assume they are
numbered so that

h()

(

6= 1 if  = 1, . . . , r,

= 1 if r <  ≤ n.

Now choose ε1, . . . , εr so that 1 ≺ h(ε ) in L for  = 1, . . . , r.

For  > r, the induction hypothesis allows us to choose ε = ±1 so that 1 6∈ S(εr+1r+1 , . . . , 
εn
n ).

We now check that 1 6∈ S(ε11 , . . . , εnn ) by contradiction. Suppose that 1 is a product of some

of the ε . If all the  are greater than r, this is impossible, as 1 6∈ S(εr+1r+1 , . . . , 
εn
n ). On the

other hand if some  is less than or equal to r, we see that h must send the product to an
element strictly greater than the identity in L, again a contradiction. �

Definition 3.1.9. A group is indicable if there is a surjection of the group to Z, the infinite
cyclic group. A group is locally indicable if every nontrivial finitely generated subgroup is
indicable.

Corollary 3.1.10. Locally indicable groups are left-orderable.

Exercise 3.1.11. Verify that the properties of being torsion-free, left-orderable or locally
indicable are preserved under extensions. That is, if 1→ K → G→ H→ 1 is exact and K and
H have the given property, then so does G.
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This is not the case for bi-orderability. The Klein bottle group demonstrates this.

Exercise 3.1.12. Let G = 〈, y|−1y = y−1〉 be the fundamental group of the Klein bottle.
Let K be the subgroup generated by y.

Verify that K is normal in G and isomorphic to Z, the group of integers. Moreover H := G/K is
also isomorphic to Z.

Therefore we have an exact sequence 1 → Z → G → Z → 1 and can conclude that G is
left-orderable, and in fact locally indicable. Yet it is not bi-orderable, because if it were, the
defining relation would imply the contradiction that y is positive if and only if y−1 is positive.

4. Knot groups and orderability.

This is the beginning of the second lecture. Recall that we discussed orderability of groups
and the closely related concept of local indicability. We have the following implications among
these properties:

Theorem 4.0.1. For a group, the following implications hold: Bi-orderable =⇒ Locally
indicable =⇒ Left-orderable =⇒ Torsion-free

We did not (and won’t!) prove the first implication, which is nontrivial and depends on a
classical result [13]. Recall that the other implications were proven in the previous lectures.

None of these implications is reversible, as the following examples show. We already ob-
served that the Klein bottle group is locally indicable but not bi-orderable.

An example of a group which is left-orderable but not locally indicable is Example 4.3.1
discussed below. It is the fundamental group of a closed 3-manifold and is finitely generated
and left-orderable. On the other hand the manifold has trivial first homology. That implies that
the fundamental group is perfect, equal to its commutator subgroup. Any homomorphism
from a perfect group to Z must be trivial.

It remains to give an example of a torsion-free group which is not left-orderable.

Example 4.0.2. We will consider a crystallographic group G which is torsion-free but not
left-orderable. Specifically consider the group G with generators , b, c acting on R3 with
coordinates (, y, z) by the rigid motions:

(, y, z) = ( + 1,1 − y,−z)

b(, y, z) = (−, y + 1,1 − z)
c(, y, z) = (1 − ,−y, z + 1)

One can easily check the relations 2b2 = b, b2b2 =  and bc = d. By the last relation we
see that one generator may be eliminated. In fact G has the presentation G = 〈, b | 2b2 =
b, b2b2 = 〉.

Exercise 4.0.3. Check the relations cited above. Argue that the group G is torsion-free.

Exercise 4.0.4. Argue that G is not left-orderable as follows. First show that for all choices
of m,n ∈ {−1,+1} one has 2mbn2m = bn and b2nmb2n = m. Then argue that

(mbn)2(bnm)2 = mb−nb2nmb2nmbnm

= mb−n2mbn2m−m

= mb−nbn−m = 1

Conclude that if G were left-orderable, all choices of sign for  and b would lead to a contra-
diction.
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Exercise 4.0.5. Show that the subgroup A = 〈2, b2, c2〉 is generated by shifts (by even
integral amounts) in the directions of the coordinate axes, and so is a free abelian group of
rank 3. Moreover A is normal in G and of finite index. Therefore G is virtually bi-orderable, in
the sense that a finite index subgroup is bi-orderable.

4.1. Knot groups and 3-manifold groups

If K is a knot in S3, its knot group is π1(S3 \ K). Our goal is to show that all knot groups are
left-orderable, in fact locally indicable. This will be a special case of a more general result
about 3-dimensional manifolds.

We will need a few ideas from 3-manifold theory.

Definition: A 3-manifold is irreducible if every tame 2-sphere in the manifold bounds a 3-
dimensional ball in the manifold.

A nontrivial fact is that if X̃ → X is a covering space, with X (and therefore X̃) a 3-manifold,
then X is irreducible if and only if X̃ is irreducible [12].

If X = S3 \ K is a knot complement, then X is irreducible. This is also true if K is a link if (and
only if) it is not a split link.

By Alexander duality, we also have that H1(S3 \ K;Z) ∼= Z. That is, the first Betti number
(the number of copies of Z appearing in the direct sum decomposition of the first homology
group) equals one.

Theorem 4.1.1. Suppose X is a connected, orientable, irreducible 3-manifold (possibly with
boundary). If X has positive first Betti number, then π1(X) is locally indicable, and therefore
left-orderable.

The proof, essentially due to Howie and Short [14], will be given below.

Corollary 4.1.2. Knot groups are locally indicable.

Proof: To prove the theorem, consider X as in the hypothesis.

First note that π1(X) is indicable, using the (surjective) Hurewicz homomorphism and a further
homomorphism to one of the Z factors of H1(X).

π1(X)→ H1(X)→ Z

To show π1(X) is locally indicable, consider a finitely generated nontrivial subgroup H < π1(X).
We need to find a surjection H→ Z.

Case 1: H has finite index. This is easy; the Hurewicz map takes H to a finite index subgroup
of H1(X), which therefore maps onto Z.

Case 2: H has infinite index. Then there is a covering p : X̃ → X with p∗π1(X̃) = H. X̃ is
noncompact, but its fundamental group is f. g. so, by a theorem of Scott [25], there is a
compact submanifold C ⊂ X̃ with inclusion inducing an isomorphism π1(C) ∼= π1(X̃) ∼= H.

C necessarily has nonempty boundary. If B ⊂ ∂C is a boundary component which is a sphere,
then irreducibility implies that B bounds a 3-ball in X̃. That 3-ball either contains C or its
interior is disjoint from C, and the former can’t happen because that would imply the inclusion
map π1(C) → π1(X̃) is trivial. Therefore, we can adjoin that 3-ball to C removing B as a
boundary component and not changing π1(C). This process allows us to assume that ∂C is
nonempty and has infinite homology groups.

III–9



Dale Rolfsen

Exercise 4.1.3. Conclude that C also has infinite homology. [Hint: one way to do this is
by considering the Euler characteristic of the closed 3-manifold 2C, obtained by glueing two
copies of C together along the boundary.]

Then we have surjections H ∼= π1(C)→ H1(C)→ Z as required. �

4.2. Fibred knots

It is well known that every (tame) knot in S3 is the boundary of a compact orientable surface
(called a Seifert surface) in S3.

A knot is said to be fibred if there is a fibre bundle map S3 \ K → S1 with fibres being open
orientable surfaces each of whose closures has K as boundary.

In other words, the complement of K in S3 can be filled with a circle’s worth of orientable
surfaces.

If K is a fibred knot, with complement X = S3 \ K and with fibre F an open surface, the exact
homotopy sequence of a fibration gives the short exact sequence:

1→ π1(F)→ π1(X)→ π1(S1)→ 1.

But π1(F) is a free group and π1(S1) ∼= Z. Both these groups are locally indicable, so we
conclude that the knot group π1(X) is locally indicable, and therefore left orderable.

That is, the group of a fibred knot is seen to be locally indicable without the need for the
general theorem we have proved, which applies to all knots.

A fibration X→ S1 with fibre F can be considered as the mapping cylinder of a (monodromy)
homeomorphism h : F→ F:

X ∼=
F × [0,1]

(,1) ∼ (h(),0)
.

For a fibred knot with X = S3 \ K the Alexander polynomial is just the characteristic polyno-
mial of the homology monodromy H1(F) → H1(F). Non-fibred knots also have an Alexander
polynomial, but it may not be monic, as is the case for fibred knots.

Also, for fibred knots the knot group π1(X) is an HNN extension of the free group π1(F),
corresponding to the homotopy monodromy

h∗ : π1(F)→ π1(F),

where π1(F) ∼= 〈1, . . . , 2g〉 is a free group. So we have

π1(X) ∼= 〈1, . . . , 2g, t | h∗() = tt−1,  = 1, . . . ,2g〉.

Exercise 4.2.1. This group is bi-orderable if and only if there is a bi-ordering of π1(F) which
is preserved by h∗.

We will sketch the proofs of two theorems regarding bi-ordering fibred knot groups.

Theorem 4.2.2 ([21]). If K is fibred and ΔK (t) has all roots real and positive, then its group
π1(S3 \ K) is bi-orderable.

Theorem 4.2.3 ([6]). If K is a nontrivial fibred knot and its group is bi-orderable, then ΔK (t)
has some real positive roots.
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Before proving these theorems, we consider some examples.

Torus knots: curves which can be inscribed on the surface of an unknotted torus in S3. For
relatively prime integers p, q the torus knot Tp,q has group

〈, b|p = bq〉.

Note that  commutes with bq but not with b (unless the group is abelian, and the knot
unknotted). We’ve already observed that in a bi-orderable group, if an element commutes
with a nonzero power of another element, then the elements must themselves commute.
Therefore:

Proposition 4.2.4. The group of a nontrivial torus knot is not bi-orderable.

The figure-eight knot 41 is fibred and has Alexander polynomial Δ41 = t2 − 3t + 1 with

roots
3 ±
p
5

2
, both real and positive. From Theorem 4.2.2 we conclude

Proposition 4.2.5. The group of the knot 41 is bi-orderable.

More bi-orderable knot groups:

812 Δ = 1 − 7t + 13t2 − 7t3 + t4

10137 Δ = 1 − 6t + 11t2 − 6t3 + t4

115 Δ = 1 − 9t + 30t2 − 45t3 + 30t4 − 9t5 + t6

11n142 Δ = 1 − 8t + 15t2 − 8t3 + t4

120125 Δ = 1 − 12t + 44t2 − 67t3 + 44t4 − 12t5 + t6

120181 Δ = 1 − 11t + 40t2 − 61t3 + 40t4 − 11t5 + t6

121124 Δ = 1 − 13t + 50t2 − 77t3 + 50t4 − 13t5 + t6

12n0013 Δ = 1 − 7t + 13t2 − 7t3 + t4
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12n0145 Δ = 1 − 6t + 11t2 − 6t3 + t4

12n0462 Δ = 1 − 6t + 11t2 − 6t3 + t4

12n0838 Δ = 1 − 6t + 11t2 − 6t3 + t4

Recall the Theorem: fibred and bi-orderable =⇒ Δ has positive roots.

This can be used for an alternative proof that torus knots Tp,q, which are fibred, have non-bi-
orderable group, because

ΔT(p,q) =
(tpq − 1)(t − 1)

(tp − 1)(tq − 1)

whose roots are on the unit circle and not real.

There are many other fibred knots which have non-biorderable group for similar reasons.
Recently, orderability properties have been decided for many non-fibred knots as well; see
[5] and [15].

As motivation for the proof of Theorem 4.2.2, consider an upper triangular matrix multiplied
by a vector:





λ1 ∗ ∗
0 λ2 ∗
0 0 λ3









1
2
3



 =





λ11 + ∗2 + ∗3
λ22 + ∗3

λ33





Now, declaring a vector (in R3) to be “positive” if its last nonzero entry is greater than zero,
we see that, if also the eigenvectors λ are positive, then multiplication by such a matrix
preserves that positive cone of R3, considered as an additive group. This generalizes to the
following:

Proposition 4.2.6. If all the eigenvalues of a linear transformation L : Rn → Rn are real and
positive, then there is a bi-ordering of Rn which is preserved by L.

So our problem reduces to showing:

Proposition 4.2.7. Let F be a finitely generated free group and h : F→ F an automorphism.
If all the eigenvalues of h∗ : H1(F;Q) → H1(F;Q) are real and positive, then there is a bi-
ordering of F preserved by h.

Proof: One way to order a free group F is to use the lower central series γ0(F) ⊃ γ1(F) ⊃ · · ·
defined by

γ0(F) = F, γ+1(F) = [F, γ(F)].

These are all normal subgroups and for free groups have the properties that ∩∞=0γ(F) = {1}
and all the quotients γ(F)/γ+1(F) are finitely generated free abelian groups. One can choose
an arbitrary ordering of each quotient γ(F)/γ+1(F) and declare 1 6=  ∈ F to be positive if
its class in γ(F)/γ+1(F) is positive in the chosen ordering, where  is the greatest subscript
such that  ∈ F. It’s quite routine to verify that this defines a bi-ordering of F.
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If h : F → F is an automorphism it preserves the lower central series and therefore induces
maps of the lower central quotients:

h : γ(F)/γ+1(F)→ γ(F)/γ+1(F).

With this notation, h0 is just the abelianization hb. In a sense, all the h are determined by
h0. Specifically, there is an embedding of γ(F)/γ+1(F) in the tensor power F⊗b, and the map

h is just the restriction of h⊗b.

The assumption that all eigenvalues of hb are real and positive implies that the same is
true of all its tensor powers. This allows us to find bi-orderings of the free abelian groups
γ(F)/γ+1(F) which are invariant under the h according to Proposition 4.2.6. Using these to
bi-order F, we get invariance under h, which proves the proposition and the theorem. �

We now turn to the proof of Theorem 4.2.3 that If K is fibred and its group is bi-orderable,
then ΔK (t) has some real positive roots. That result follows from this more general algebraic
result:

Theorem 4.2.8. Suppose G is a nontrivial finitely generated bi-orderable group and that
ϕ : G→ G preserves a bi-ordering of G. Then the induced map

ϕ∗ : H1(G;Q)→ H1(G;Q)

has a positive eigenvalue.

Proof: The key idea is to consider a linear automorphism L : Qn → Qn which preserves an
ordering. Regarding Qn as a subset of Rn, there is a hyperplane H ⊂ Rn defined by

H = { ∈ Rn| every nbhd. of  contains positive and negative points}

One easily checks that H is a linear subspace, that H separates Rn (and hence has codimen-
sion 1) and is invariant under L.

Consider the unit sphere Sn−1 of Rn, and let D denote the closed hemisphere of Sn−1 which
lies on the “positive" side of H. There is a mapping D→ D defined by

→
L()

|L()|
.

Since D is an (n − 1)-ball, this map has a fixed point (Brouwer). This fixed point corresponds
to an eigenvector of L, which has a positive real eigenvalue. �

4.3. Surgery

Now let’s consider some applications to surgery on a knot K in S3. In our context, surgery
means that one removes a tubular neighborhood of K and attaches a solid torus S1 × D2 so
that the meridian {∗}×S1 is attached to a specified “framing” curve on the boundary of the
neighborhood.

By theorem of Wallace and Lickorish, every compact, orientable 3-manifold (without bound-
ary) can be constructed by surgery on some disjoint union of knots (i. e. a link) in S3.

Consider surgery on the trefoil knot as depicted in Figure 4.3

With +1 framing, as pictured, one gets the Poincaré homology sphere, as constructed by Max
Dehn [7]. This is a 3-manifold with the same homology as S3, with fundamental group
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Figure 4.1: Surgery on the trefoil with coefficient +1

〈, b|(b)2 = 3 = b5〉

This is a finite group, of order 120, so its group is certainly not left-orderable.

For the next example, we’ll need to consider ÝSL2(R), which is one of the eight Thurston
3-manifold geometries, as we’ve already discussed.

Example 4.3.1. If we do surgery on the trefoil using -1 framing, the resulting 3-manifold M,
again a homology sphere, has fundamental group

〈, b|(b)2 = 3 = b7〉.

G. Bergman [2] observed that this group maps injectively to ÝSL2(R), which is a left-orderable
group. Thus π1(M) is left-orderable (even though its first Betti number is zero).

It is not bi-orderable or even locally indicable, because it is finitely-generated and perfect
(that is, abelianizes to the trivial group).

In [6] we show the following two theorems concerning surgery and orderability.

Theorem 4.3.2. Suppose K is a fibred knot in S3 and nontrivial surgery on K produces a 3-
manifold M whose fundamental group is bi-orderable. Then the surgery must be longitudinal
(that is, 0-framed) and ΔK (t) must have a positive real root. Moreover, M fibres over S1.

In [20] an L-space is defined to be a closed 3-manifold M such that H1(M;Q) = 0 and its
Heegaard-Floer homology ÓHF(M) is a free abelian group of rank equal to |H1(M;Z)|. Lens
spaces, and more generally 3-manifolds with finite fundamental group are examples of L-
spaces. But there are also many L-spaces whose fundamental group is infinite.

Theorem 4.3.3. Suppose K ⊂ S3 is a knot whose group is bi-orderable. Then one cannot
obtain an L-space by surgery on K.

Proof sketch: Suppose surgery on K results in an L-space. By Yi Ni [19], K must be fibred.
Moreover, Ozsváth and Szabó show that the Alexander polynomial of K must have a special
form. Then one argues that a polynomial of this form has no positive real roots, so the knot
group cannot be bi-ordered (see [6] for details). �
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Figure 5.1: (1) pictures the braid σ ∈ Bn. (2) is the 3-braid σ1σ
−1
2 (3) shows

the action of σ on the mapping class group of the n-punctured disk.

5. Braids, At(Fn) and hyperbolic 3-manifolds

This is the beginning of the third lecture, and represents joint work with Eiko Kin, Osaka Uni-
versity. Much of this will appear soon in [16]. The central theme of today’s talk is the interplay
between braids and bi-orderings of free groups. We’ll see that this also has connections with
orderability of certain link groups, and application to understanding minimal volume cusped
hyperbolic 3-manifolds.

5.1. Braids and automorphisms

You are all familiar with the braid groups Bn, so I’ll just review a few things to make my
conventions clear. We think of braids as strings or equivalently certain homeomorphisms of
a punctured disk, in both cases up to a natural equivalence. Figure 2 illustrates the standard
Artin generators σ1, . . . , σn−1 of Bn.

Bn acts on the fundamental group of the punctured disk, which is the free group Fn. The Artin
action of σ on Fn ∼= 〈1, . . . , n〉 is

 → +1−1 +1 →  j → j, j 6= ,  + 1

i+1i

(1) (2)

x x

ix

ix i+1x ix1 2 n
x x x

i+1x' =

ix' =

Figure 5.2: Mapping class of the disk corresponding to σ.
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The Artin representation is an injective homomorphism

Bn → At(Fn).

Because we customarily read braid words from left to right, we’ll consider braids to act on
the right and use the notation

→ β

to denote the action of the braid β upon the group element  ∈ Fn under this representation.
Note that βγ = (β)γ.

We say the braid β ∈ Bn is order preserving if and only if there exists a bi-ordering < of Fn
such that

 < y ⇐⇒ β < yβ

We begin with some easy observations regarding order-preserving braids.

Proposition 5.1.1. The braid σ is not order-preserving.

To see this, recall that σ acts by +1 →  → +1
−1
 .

If < is a supposed invariant bi-ordering of Fn, we may assume w.l.o.g. that  < +1. Then, by
invariance, +1

−1
 < . Since bi-orderings are invariant under conjugation we conclude

that +1 < , a contradiction. �

Proposition 5.1.2. The full-twist n-braid Δ2 = (σ1σ2 · · ·σn−1)n is order-preserving. In fact its
action preserves every bi-ordering of Fn.

Proof: That’s because Δ2 acts on Fn by conjugation, by 12 . . . n. And every bi-ordering is
invariant under conjugation. �

Recall in the proof of Proposition 4.2.7 we ordered free groups by considering their lower
central quotients. Orderings constructed as we’ve described in the proof of Proposition 4.2.7
will be called LCS-type orderings.

Note that any automorphism ϕ : Fn → Fn takes each lower central subgroup into itself, so ϕ
induces homomorphisms

ϕk : γk(Fn)/γk+1(Fn)→ γk(Fn)/γk+1(Fn).

The homomorphism ϕ0 is just the abelianization ϕb : Zn → Zn.

The key to the following theorem is an algebraic lemma.

Lemma 5.1.3. Suppose G is a group, ϕ : G→ G is an automorphism, and ϕ : γ(G)/γ+1(G)→
γ(G)/γ+1(G) are the induced mappings. If ϕ0 is the identity mapping, then so is every ϕ.

Exercise 5.1.4. Prove this lemma using induction. Show that it implies the following theo-
rem.

Theorem 5.1.5. Suppose that ϕ : Fn → Fn is an automorphism and that ϕb : Zn → Zn is the
identity mapping. Then ϕ : Fn → Fn preserves every ordering of LCS-type.

Recall that a pure braid is one whose underlying permutation is the identity. The pure braids
form a normal subgroup of Bn of index n!.

Under the Artin representation, a pure braid sends each generator to some conjugate of itself.
Such an automorphism abelianizes to the identity.

Corollary 5.1.6. If β ∈ Bn is a pure braid, then β is order-preserving. In fact, β preserves
every ordering of Fn of LCS-type.
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axis

β β

(1) (2)
A

(3)

Figure 5.3: (1) Closure bβ. (2) br(β) = bβ ∪ A. (3) br(σ1σ2) is equivalent to the
(6,2)-torus link.

We recall the HNN extension of a group K associated with an automorphism ϕ : K → K. If
k1, . . . , kn are generators, we introduce a new symbol t and impose the relations

t−1kt = k
ϕ


Denote the resulting group G = K oϕ Z.

The following was Exercise 4.2.1.

Proposition 5.1.7. Suppose K is bi-orderable and ϕ : K → K is an automorphism. Then
G = K oϕ Z is bi-orderable if and only if there exists a bi-ordering of K which is preserved by
ϕ.

An example of this is the fundamental group of a fibre bundle over the circle. If h : X→ X is a
homeomorphism of the space X, then the mapping torus is the space

Th := X × [0,1]/(,1) ∼ (h(),0).

There is a natural fibration Th → S1, with fibre X.

The fundamental group of the mapping torus is the extension

π1(Th) ∼= π1(X)oh∗ Z

where h∗ : π1(X)→ π1(X) is the ‘homotopy monodromy.’

Back to the situation of braids, any braid β ∈ Bn gives rise to a knot or link β̂ in the 3-sphere
S3, as in Figure 5.3 (1). We also consider the “braided link” br(β) = β̂ ∪ A consisting of β̂
together with the braid axis, as depicted in Figure 5.3 (2).

Recall that a braid β ∈ Bn acts on the punctured disk Dn. The mapping torus of this action is
homeomorphic with the complement of the braided link br(β) = β̂ ∪ A:

Tβ ∼= S3 \ br(β).

Proposition 5.1.7 implies the following.

Proposition 5.1.8. For braid β ∈ Bn the following are equivalent:

• β is order preserving,

• the fundamental group of Tβ is bi-orderable

• the link group π1(S3 \ br(β)) is bi-orderable.

Proposition 5.1.9. If a braid β ∈ Bn is order-preserving, then so are all its powers and all its
conjugates.
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The proof of this is left as an easy exercise. Also, since every braid has some power which is
a pure braid, Corollary 5.1.6 implies the following.

Proposition 5.1.10. For any braid β some power βk is order-preserving.

We call a braid β ∈ Bn periodic if some power βk lies in the centre of Bn. Recall that, for n ≥ 3
the centre of Bn is infinite cyclic, generated by the full twist Δ2n.

Figure 5.4: Links whose groups are not bi-orderable.

Notice that the links in Figure 5.4 all have homeomorphic complements, by applying disk
twists, as described below. Similarly for the next figure.

Figure 5.5: Links whose groups are bi-orderable.

Define δn = σ1σ2 · · ·σn−1. Noting that δnn = Δ
2
n we see that δn is periodic, being an nth root of

a full twist. There is also an n − 1 root of a full twist, namely δnσ1.

The following result was proved in [11].

Proposition 5.1.11. Every periodic braid is conjugate to a power of δn or δnσ1.

Theorem 5.1.12. Let β ∈ Bn be a periodic braid. If β is conjugate to (δnσ1)k then β is order-
preserving. If β is conjugate to δkn then β is NOT order-preserving, unless k ≡ 0 (mod n).

Proof: Part of this theorem can be seen using a trick: a disk twist, which is a self-homeomorphism
of the complement of an unknotted component of a link. Since the complement of the unknot
is an open solid torus it has a self-homeomorphism which takes a meridian of the unknot to
meridian plus longitude. One can think of this as taking a thickening D2 × [0,1] of a disk
bounded by the unknotted component, and applying the homeomorphism

(z, t)→ (ze2πt, t), z ∈ D2 ⊂ C, 0 ≤ t ≤ 1.
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disk twist

Figure 5.6: nth power of the disk twist converts the braided link of σ21 to that
of σ1σ2 · · ·σn+1σ1. (n = 2 in this case.)

Note that in Figure 5.6 the link on the right and the link on the left have homeomorphic com-
plements. The braid on the right is pure, therefore order-preserving, and so the complement
of its braided link has bi-orderable group (in fact isomorphic to a direct product F2 × Z. We
conclude that (in this picture) δ4σ1 must be order-preserving. We see, in fact, that the link
group of br(δnσ1) is F2 × Z, We can also observe that for k > 1 there is a k-fold covering
space br((δnσ1)k)→ br(δnσ1), and the group br((δnσ1)k), being a subgroup, is therefore also
bi-orderable. �

5.2. Tensor product of braids.

Given braids α ∈ Bm and β ∈ Bn we can form the tensor product α ⊗ β ∈ Bm+n as shown in
Figure 5.7 .

β

(1) (2) (3)

β

Figure 5.7: (1) α ∈ Bm. (2) β ∈ Bn. (3) α ⊗ β ∈ Bm+n.

Proposition 5.2.1. The braid α⊗ β is order-preserving if and only if both α and β are order-
preserving.

This is a consequence of the following recent result of mine [22].

Theorem 5.2.2. Suppose (G,<G) and (H,<H) are bi-ordered groups. Then there is a bi-
ordering of G∗H which extends the orderings of the factors and such that whenever ϕ : G→ G
and ψ : H→ H are order-preserving automorphisms, the ordering of G∗H is preserved by the
automorphism ϕ∗ ψ : G∗H→ G∗H.

Corollary 5.2.3. A braid β ∈ Bm is order-preserving if and only if β ⊗ 1n ∈ Bm+n is order-
preserving.
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Note that the order-preserving braids in B2 are exactly the powers σk1 with k even. In other
words, it is the subgroup of pure 2-braids.

For n > 2 the situation is different.

Proposition 5.2.4. For n > 2, the set of order-preserving braids is NOT a subgroup of Bn.

Proof: Consider α = σ1σ2σ1, which is (an extension of) the periodic braid δ2σ1 ∈ B3, hence
order-preserving. Let β = σ−21 , a pure braid, so also order-preserving. But the product αβ =
σ1σ2σ

−1
1 is not order-preserving, as it is conjugate to σ2 which is not order-preserving. �

We saw that the set of order-preserving braids in Bn contains the index n! subgroup of pure
braids. But it contains more:

Proposition 5.2.5. For n > 2, the set of order-preserving braids in Bn generates Bn.

Proof: To see this, note that the above argument shows how to express σ2 as a product of
order-preserving braids. Since all the standard braid generators are conjugate, this tells us
how to express any σ as a product of order-preserving braids. �

6. Small hyperbolic 3-manifolds

We now turn attention to applications to understanding minimal volume hyperbolic man-
ifolds, possibly with cusps. Recalling Proposition 4.2.7 and Theorem 4.2.8, which may be
combined as follows.

Theorem 6.0.1. Let ϕ : Fn → Fn be an automorphism of the finitely generated free group
Fn. If every eigenvalue of ϕb : Zn → Zn is real and positive, then there is a bi-ordering of Fn
which is ϕ-invariant. If there exists a bi-ordering of Fn which is ϕ-invariant, then ϕb has at
least one real and positive eigenvalue.

Theorem 6.0.2 ([10]). The (unique) minimal volume closed hyperbolic 3-manifold is the
Fomenko-Matveev-Weeks manifold, which can be obtained from the Whitehead link by [5/2,5/1]
surgery.

Figure 6.1: The Whitehead link, which produces the Fomenko-Matveev-Weeks manifold

Theorem 6.0.3 ([3]). The fundamental group of the Weeks manifold is NOT left-orderable.

In the case of one cusp, there are two distinct examples.

Theorem 6.0.4 ([4]). A minimal volume one-cusped orientable hyperbolic 3-manifold is
homeomorphic to either the complement of the figure-eight knot 41, or its sibling, which can
be described as 5/1 surgery on one component of the Whitehead link.

The following shows they can be distinguished by orderability properties of their fundamental
groups.
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Theorem 6.0.5. The figure-eight complement has bi-orderable fundamental group. The
group of its sibling is NOT bi-orderable.

Proof: To see this, we note that both these manifolds can be realized as punctured torus
bundles over S1. In the case of the figure-eight complement, the (homology) monodromy
�

2 1
1 1

�

has two positive eigenvalues (3±
p
5)/2. Thus the homotopy monodromy preserves

an ordering of F2, the fundamental group of the fibre, and therefore the mapping torus S3 \41
has bi-orderable group.

The sibling has the monodromy
�

−2 −1
−1 −1

�

. This has the two negative eigenvalues (−3 ±
p
5)/2. Therefore the homotopy monodromy cannot preserve a bi-order and so its mapping

torus (the sibling) has NON-bi-orderable group. �

Theorem 6.0.6 ([1]). A minimal volume orientable hyperbolic 3-manifold with 2 cusps is
homeomorphic to either the Whitehead link complement or the (−2,3,8)-pretzel link com-
plement.

Figure 6.2: Two pictures of the (−2,3,8)-pretzel link. On the left, we may
consider it the braided link br(σ21δ5)

.

Theorem 6.0.7. The fundamental group of the Whitehead link complement is bi-orderable.
The group of the (−2,3,8)-pretzel link is NOT bi-orderable.

For the Whitehead link, whose complement fibres over S1 with fibre a twice-punctured torus,

one computes the homology monodromy





1 −1 −1
0 1 0
0 1 1



, which has 1 as a triple eigen-

value. Therefore the homotopy monodromy preserves a bi-order of F3, and so the group of
the Whitehead link is bi-orderable.

For the (−2,3,8)-pretzel, which is also br(δ5σ21), we conclude that its group cannot be bi-
ordered by the observation:

Proposition 6.0.8. For any n ≥ 3 and positive integer k, the braid δnσ2k1 is not order-
preserving.

This can be proved by calculating the action of δnσ2k1 on Fn, assuming it is order-preserving,
and arriving at a contradiction.

It is conjectured [1] that for 3, 4, 5, 6 cusps, and perhaps up to ten, a minimal volume ori-
entable hyperbolic manifold is homeomorphic with the complement of a “minimally twisted"
chain link as pictured in Figure 6.3. The case of 4 cusps was recently settled.
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(4)(1) (2) (3)

Figure 6.3: (1) C3. (2) C4. (3) C5. (4) C6.

Theorem 6.0.9 ([28]). A minimal volume orientable hyperbolic 3-manifold with 4 cusps is
homeomorphic to S3 \ C4.

Theorem 6.0.10. π1(S3 \ C4) is bi-orderable.

Proof: To prove this, we note that S3 \ C4 is homeomorphic (via a disk twist) to br(σ−21 σ22).

The braid σ−21 σ22 is order-preserving, as it is a pure braid. �

(1) (2) (3)

disk twist

Figure 6.4: S3\br(σ−21 σ22) and S3\C4 are homeomorphic. (1) br(σ−21 σ22). (2)(3)
Links which are equivalent to C4.

For five cusps, the complement of the minimally twisted 5-chain is conjectured to be minimal
among 5-cusped orientable hyperbolic manifolds.

Theorem 6.0.11. π1(S3 \ C5) is bi-orderable.

Proof: This follows from the observation in Figure 6.5 that the complement of C5 and the
complement of the braided link br(σ−21 σ−22 σ−23 ) are homeomorphic. This has bi-orderable
group as the braid is a pure braid. �

A similar construction can be used to establish the following.

Theorem 6.0.12. π1(S3 \ C6) is bi-orderable.
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(1) (2) (3)

disk 

-twist

disk 

-twist

Figure 6.5: S3 \ br(σ−21 σ−22 σ−23 ) and S3 \ C5 are homeomorphic. (1)
br(σ−21 σ−22 σ−23 ). (3) Link which is equivalent to C5.

As already mentioned, S3 \ C6 is conjectured to be minimal among 6-cusped examples. Sim-
ilarly, S3 \ C3, a.k.a. the “magic manifold,” is conjectured to be minimal among 3-cusped
orientable hyperbolic 3-manifolds. We do not know if its fundamental group is bi-orderable.
One can realize S3 \ C3 as the complement of br(σ21σ

−1
2 ). So we’ll conclude with an open

question.

Question: Is σ21σ
−1
2 ∈ B3 order-preserving?
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