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Course no I

Cluster algebras and cluster categories associated with
triangulated surfaces: an introduction

CLAIRE AMIOT

Abstract

These are the notes of a three hours minicourse given at the school Winterbraids VIII, CIRM
Luminy in March 2018.

Introduction

Cluster algebras have been introduced almost 20 years ago by Fomin and Zelevinsky. They
have immediately been linked with various fields of mathematics among which representa-
tion theory of finite dimensional algebras. This link has been very fruitful from both sides,
permitting on one hand a better understanding of cluster algebras, and on the other hand to
develop new ideas in representation theory.

The aim of this short note is to give a brief idea of this link. Cluster algebras and cluster
categories are defined in a very general setting, but in this course, we focus on the construc-
tion coming from triangulated surfaces. The definition of cluster algebra in this context is
very natural, and this setup already reflects all questions and difficulties that arise in gen-
eral. Lots of short courses have been already given on a similar subject, and we refer to the
following notes for more complete material [FWZ16], [FWZ17], [Kel11b], [Kel11a], or [Kel12],
[Pla].

1. Cluster algebras from triangulated surfaces

Throughout the paper,  will be an oriented Riemann surface with non empty boundary, and
M be a finite set of points (called marked points) on the boundary of  such that there is at
least one marked point on each boundary component of . We assume moreover that (,M)
is not a disc with 1 or 2 marked points.

The aim of this section is to give the definition of the cluster algebra associated to the
marked surface (,M). The material of this section comes entirely from [FZ02] and [FST08].

1.1. Triangulations

In this section, we recall some basic facts on arcs and triangulations of surfaces.

Definition 1.1. A boundary segment is a curve on the boundary ∂ so that it intersects M
only in its endpoints.

By an arc, we mean a continuous map γ : [0,1] →  such that γ|]0,1[ is injective and such
that γ(0) and γ(1) belong to M. We consider the set of arcs up to isoptopy (fixing endpoints).

I–1



Claire Amiot

We moreover assume that an arc is not isotopic to a marked point or to a boundary segment.
We denote by A(,M) the set of isotopy classes of arcs.

Two arcs are called compatible if they have representants in their isotopy class that do not
intersect, except possibly at their endpoints.

A triangulation of (,M) is a maximal collection of pairewise compatible arcs.

Since there is at least one marked point on each boundary component of the boundary, a
triangulation (together with the boundary segments) cuts out the surface  into triangles.

The following facts are classical (see [FST08, Section 2] for references).

Theorem 1.2. • Any arc can be completed into a triangulation.

• If τ = {τ1, . . . , τn} is a triangulation of (,M), then we have the equality n = 6g − 6 +
3b + c where g is the genus of , b the number of boundary components and c the
number of marked points.

• Let τ = {τ1, . . . , τn} be a triangulation of (,M). For any  = 1, . . . , n there exists a
unique arc (up to isotopy) τ∗


not isotopic to τ such that fτ (τ) := {τ1, . . . , τ

∗

, . . . , τn}

is a triangulation of (,M). Such new triangulation is called the flip of τ at the arc τ.

• Any two triangulations τ and τ′ can be related by a (non unique) sequence of flips.

τ
flip τ∗



1.2. Definition of cluster algebra

The keystone of the definition of cluster algebra associated to a triangulated surface is given
by the following result.

Theorem 1.3. Let (,M, τ) be a triangulated surface. Denote by n the number of arcs in τ.
Then there exists a map

xτ : A(,M) −→ Z(1, . . . , n),

such that

• for any  = 1, . . . , n xτ(τ) = ;

• for any arcs , b, c, d e and ƒ in the following local configuration



b

c

d

e

ƒ

we have

(1.1) xτ(e)xτ(ƒ ) = xτ()xτ(c) + xτ(b)xτ(d),

where xτ(γ) = 1 if γ is a boundary segment.
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Note that the relation (1.1) is the Ptolemey relation for the length of sizes of a quadrilateron
inscribed in a circle.

Combining this theorem with Proposition 1.2 one sees that the map xτ is uniquely defined.
The point here is to see that the map xτ is well-defined.

Example 1.4. Let (,M) be a disc with 5 marked points. The set A(,M) contains exactly 5
elements {γ1, γ2, γ3, γ4, γ5} as in the following picture:

1 2

3

4

5

γ1

γ2

γ3γ4

γ5

Fix the triangulation τ = {γ1, γ3}. Then we have xτ(γ1) = 1, xτ(γ3) = 2. Since γ1 and γ5
are diagonals of the quadrilateron 512γ3, we have the relation xτ(γ1)xτ(γ5) = 1+ xτ(γ3)
hence xτ(γ5) =

1+2
1

. For the same reason, we have xτ(γ4) =
1+1
2

. Now γ2 and γ1 are
diagonals of 123γ4, so get

xτ(γ2) =
1 + 1+1

2

1
=
1 + 1 + 2

12
.

We also see that γ2 and γ3 are diagonals of 234γ5, and we have

xτ(γ2) =
1 + 1+2

1

2
=
1 + 1 + 2

12
.

We can check similarly that the map xτ is here well defined.

We are now ready to state the main definition of the section.

Definition 1.5. The cluster algebra A(,τ) is the subalgebra of Z(1, . . . , n) generated by
the image of the map xτ.

The elements xτ(γ), where γ ∈ A(,M), are called cluster variables.
The set {xτ(γ1), . . . ,xτ(γn)} where {γ1, . . . , γn} is a triangulation is called a cluster.

Example 1.6. 1. Let (,M) be a disc with 4 marked points, and τ a triangulation (given
by one arc). Then there are two cluster variables 1 and 2

1
and the cluster algebra is

A(,τ) = Z[1,2−11 ].

2. In the example above, one has exactly 5 cluster variables which are

{1, 2,
1 + 1
2

,
1 + 2
1

,
1 + 1 + 2

12
}

and five clusters. The set {1,
1+1
2

} is a cluster while the set {1,
1+2
1

} is not since
{γ1, γ5} is not a triangulation.

3. Let (,M) be the disc with 6 marked points and τ be the following triangulation:

There are 9 cluster variables which are

1, 2, 3,
1 + 2
1

,
1 + 2
3

,
1 + 3
2

,
1 + 3 + 23

12
,

I–3



Claire Amiot

1 + 3 + 12
23

, and
1 + 3 + 12 + 23

123
.

Let τ′ be the following triangulation:

The 9 cluster variables are now: ′1, 
′
2, 

′
3,

′1+
′
2

′3
,
′2+

′
3

′1
,
′1+

′
3

′2
,
′1+

′
2+

′
3

′1
′
2

,
′1+

′
2+

′
3

′1
′
3

and

′1+
′
2+

′
3

′2
′
3

.

Here are some first basic facts on the map xτ.

Proposition 1.7. 1. The map xτ is injective, hence the cluster algebra A(,τ) is finitely
generated if and only if the set A(,M) is finite, that is if and only if the surface  is
a disc.

2. For any triangulation τ′ = {τ′1, . . . , τ
′
n
} the cluster {xτ(τ′1), . . . ,x

τ(τ′
n
)} is a transcen-

dental basis of Z(1, . . . , ) and the field isomorphism Z(′1, . . . 
′
n
) → Z(1, . . . , n)

sending ′


to xτ(τ′

) restricts to an isomorphism A(,τ′) → A(,τ).

So as a subalgebra of Z(1, . . . , n) the cluster algebra A(,τ) heavily depends on τ, but as
an abstract algebra (even as a cluster algebra), it only depends on the surface.

One first remarkable property that can be noted in the first example is the following.

Theorem 1.8. [FZ02](Laurent phenomenon) Let (, τ) be a triangulated surface. For any γ ∈
A(,M), xτ(γ) ∈ Z[±11 , . . . , ±1

n
], hence the cluster algebra is contained in Z[±11 , . . . , ±1

n
].

In fact we have more. Combining this result with Proposition 1.7 (2), we obtain the follow-
ing.

Corollary 1.9. For any arc γ and for any cluster y = {y1, . . . , yn}, xτ(γ) is in Z[y±1]. In
particular we have the inclusion

A(,τ) ⊂
⋂

y cluster

Z[y±1].

The algebra
⋂

y clusterZ[y
±1] is called the upper cluster algebra. In general it is strictly

bigger than the cluster algebra, but it is equal in some cases [GLS06].
The following was conjectured by Fomin and Zelevinsky in their first paper [FZ02]. It was

proved only ten years later.

Theorem 1.10. (Positivity Conjecture/theorem)[MSW11] Let (, τ) be a triangulated sur-
face. For any arc γ, we have

xτ(γ) ∈ N[±11 , . . . , ±1
n
].

One very important problem in cluster algebra theory is the construction of basis in gen-
eral, and basis with positive structure constant in particular. This has been achieved in the
surface setting in [MSW13].

Example 1.11. Let (,M) be an annulus with two marked points and τ be a triangulation.

τ1 τ1τ2
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We obtain here infinitely many cluster variables Xk, k ∈ Z that can be computed using the
following induction relation:

X0 = 1, X1 = 2 nd Xk+1Xk−1 = X2k + 1.

Fixing X0 = X1 = 1, a consequence of Laurent phenomenon and of the positivity conjecture
is that one obtains only positive integers for the sequence. This sequence is related with the
4-Somos sequence (see [Mus02]).

1.3. More general cluster algebras

As we already mentioned in the introduction of this note, the theory of cluster algebra is much
more general than the one explained here. Let us mention quickly different generalizations.

The most natural generalisation would be to consider the case with marked points not
only in the boundary but also in the interior of the surface. One problem in this setting is that
it is not always possible to flip triangulations: one may obtain “self-folded triangles” (that
are not really triangles from a topological point of view), that cannot be fliped. To handle
this problem, Fomin Shapiro and Thurston introduced the notion of tagged arcs and tagged
triangulations, and get a theorem very similar to Theorem 1.3. We refer to [FST08] for details.

In fact, as we will see in the next section, one can associate a quiver (= a finite oriented
graph) to any triangulation, in which every vertex corresponds to an arc. The flip of the trian-
gulation can be translated in a combinatorial way in term of an operation on the correspond-
ing quiver. This operation is called the mutation. Fomin and Zelevinsky associated (already
in their first paper [FZ02]) a cluster algebra to any quiver without loops and oriented cycle
of length 2. We refer here to [Kel] for a very useful java applet that permits (among other
things) to mutate any quiver, and compute the cluster variables. The positivity conjecture
and the construction of basis have been proved in this general setting [LS15], [GHKK18].

The data of a quiver Q without loops and oriented cycles of length 2 is equivalent to the
data of a skewsymmetric matrix B with integral entries. Cluster algebras can also be defined
starting with a skewsymmetrizable matrix, that is an integral matrix such that there exists a
diagonal matrix D so that DB is skewsymmetric.

One can also defined a cluster algebra starting with a r × n (r < n) matrix with upper part
being skew symmetrizable. Such cluster algebras are called with coefficients.

Several well studied rings have the structure of a cluster algebra. Let us list some of them:

1. The homogenous coordinate ring of the Grassmannian Gr(k, n) has a structure of clus-
ter algebra (with coefficients) the Plücker coordinates being cluster variables. [Sco06]

2. The ring C[SLn(C)] (or more generally C[G/N], C[N], where G is a Lie group of type
A,D, E, and N a unipotent subgroup) has a structure of cluster agebra [BFZ05]. For
these rings a beautiful categorification quite different from the one presented here
have been achieved by Geiss, Leclerc and Schröer, see for instance [GLS06]. We refer
to [GLS13] for a survey concerning this point of view.

3. The ring of functions of the decorated Teichmüller space of a surface with Penner
coordinates [FG06].

2. Categorification

Now that the basic definition of a cluster algebra associated to a surface is stated, we can
start with the categorification. Usually, in topology, the categorification of a ring is tha data
of a category in which the ring appear as an invariant of the category (for example the
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Grothendieck ring of a monoidal category). Such categorification can be done [HL10]. But
this is not the kind of categorification we are interested in here. In fact the categorification we
are dealing with is more the categorification of flips (or mutation) than the categorification of
the cluster algebra itself. As the reader will see, the cluster algebra does not really appear as
an invariant ring of the category. The idea is more to find a category in which the operations
of flip/mutation appears naturally.

2.1. The category Rep(Qτ)

We start by stating very basic facts on the representation theory of quivers. We only state
here what is really necessary for our exposition. All the material (and much more) can be
found for example in [ASS06].

To a triangulation τ = {τ1, . . . , τn} of (,M), we associate a quiver (= an oriented graph)
Qτ as follows: the vertices {1, . . . , n} of Qτ are in bijection with the (internal) arcs of τ. We
put an arrow  → j if (τ, τj) form a positive angle (recall that the surface is oriented) in the
triangulation τ.

Let us now describe the category Rep(Qτ). An object V in Rep(Qτ) is given by finite di-
mensional C-vector spaces V for each vertex , and linear maps Vα : V → Vj for each arrow
α :  → j, so that Vβ ◦ Vα vanishes if α and β are consecutive angles in a triangle of τ. The
dimension vector of V is the n-uple (dimC V,  = 1, . . . , n).

A morphism φ : V →W between two objects in Rep(Qτ) is given by C-linear maps φ : V →
W for each vertex  so that for each arrow α : → j the following square is commutative:

V
Vα //

φ

��

Vj

φj

��
W

Wα // Wj

.

A morphism φ is an isomorphism if every φ is an isomorphism.
Given two representations, one can form the direct sum of them, which is also a represen-

tation. An object V in Rep(Qτ) is then said to be indecomposable if it is not isomorphic to the
sum of two non zero representations.

Proposition 2.1. The category Rep(Qτ) is the category of a finite dimensional modules over
a finite dimensional algebra. In particular it is abelian, it satisfies the Krull-Schmidt property,
i.e. every object is isomorphic to a unique direct sum of indecomposable objects.

Example 2.2. Let (,M) be the triangulated pentagon as in example 1.4. Then the quiver Qτ

is 1→ 2. Denote by

S1 =(C 0),0
S2 = (0 C)0

the simple representations (that are the representations such that dimC
⊕

 V = 1). They are
clearly indecomposable. For λ ∈ C denote by

Vλ = (C C).λ

The representation V0 is clearly decomposable since V0 = S1 ⊕ S2, whereas if λ 6= 0, then
Vλ is indecomposable isomorphic to V1.

Now let W be a general object in Rep(Qτ). It is given as follows:

W = (Cm Cn)M

where M ∈Mn×m(C). There exist P ∈ GL(m,C) and Q ∈ GL(n,C) such that

QMP−1 =
�

r 0
0 0

�

,
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so in other words, there exists an isomorphism

W ' (S1)m−r ⊕ (S2)n−r ⊕ (V1)r .

Thus, up to isomorphism, the category Rep(Qτ) has finitely many indecomposables.

Example 2.3. Let (,M, τ) be as in Example 1.6(3).

1 3
2

One can check similarly that there are 6 indecomposable objects whose dimension vectors
are

(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,1,1).

Let τ′ be the following triangulation:

1 2

3

The category Rep(Qτ′ ) has also 6 indecomposable objects whose dimension vectors are

(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1).

Note that here there is no indecomposable with dimension vector (1,1,1) since the compo-
sition of any two arrows is zero.

Remark that the dimension vectors are exactly the denominators of the cluster variables.
This is of course not a coincidence.

Example 2.4. Take the triangulation of Example 1.11. The corresponding quiver is

1 2 .

There are infinitely many representations in this case, which are given as follows:

Cn Cn+1;

� n
0

�

� 0
n

�
Cn+1 Cn,

[ n 0 ]

[ 0 n ]
n ∈ N

Cn Cn,
[ Jn(λ) ]

[ n ]
Cn Cn, n ∈ N, λ ∈ C

[ n ]

[ Jn(0) ]

where Jn(λ) is the Jordan bloc of eigenvalue λ.

The category Rep(Qτ) is equivalent to the category of modules over a certain algebra,
which has the property to be gentle. These algebras has been strongly studied in represen-
tation theory. In particular a consequence of the description of the indecomposable modules
due Butler and Ringel [BR87] is the following.

Proposition 2.5. The category Rep(Qτ) has finitely many indecomposables if and only if 
is a disc.
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Remark 2.6. If the surface is a disc, or an annulus, one can find triangulations containing
no internal triangles (see for instance the examples 1.6 and 1.11). In this case, the quiver
Qτ does not have any oriented cycles and there is no relations involving the arrows. The
category Rep(Qτ) is the usual category of representations of the quiver Qτ. In the case of
a disc, the corresponding quiver has underlying graph of Dynkin type An−3 (where n is the
number of marked points on the boundary). In the case of an annulus, the corresponding
quiver has underlying graph of Euclidean type eAn−1. In these special cases, the result above
is also a consequence of Gabriel’s theorem [Gab72].

The quivers without oriented cycle of Dynkin type Dn can also be understood via trian-
gulations of a once punctured disc. But the quivers of type E6, E7 and E8 do not have any
geometric descriptions.

Now let us give a more precise description of the indecomposable objects of the cate-
gory Rep(Qτ) following [BR87] and [ABCJP10]. For (,M) a marked surface, define the set
Agen(,M) of homotopy classes of (non oriented) curves in  with endpoints in M, that are
not contractible, and not homotopic to a boundary segment. Let πfree1 () be the set of non
contractible loops in  up to free homotopy.

Theorem 2.7. [ABCJP10] Let (,M, τ) be a triangulated marked surface. The indecompos-
able objects of the category Rep(Qτ) are in bijection with the following sets:

• Agen(,M)\{τ1, . . . , τn};

• πfree1 () × C∗/ ∼.

where the equivalence relation ∼ is given by ([γ], λ) ∼ ([γ−1], λ−1).

This bijection is in fact very constructive. In particular for γ ∈ Agen(,M)\{τ1, . . . , τn}, if
we denote by Mτ(γ) the corresponding representation, then the dimension dimC(Mτ(γ)) is
equal to the number of intersections of γ with the arc τ. And the same hold for the objects
associated to ([γ], λ) in πfree1 () × C∗.

Example 2.8. Let (,M) be as in example 1.11. The representations associated to the arc in
blue are as follows:

C3 C2,

�

1 0 0
0 1 0

�

�

0 1 0
0 0 1

�

For λ 6= 0 C3 C3,

h

λ 1 0
0 λ 1
0 0 λ

i

3

C2 C2,
2

�

0 1
0 0

�

2.2. Cluster-tilting theory in triangulated categories

The aim of this section is to explain very roughly the basic ideas of cluster-tilting theory.
We refer to [Hap88] for basic properties of triangulated categories, and to [Kel12] for more
information on cluster-tilting theory.
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The framework of cluster-tilting theory takes place in triangulated C-categories with finite-
dimensional Hom-spaces and with the Krull-Schmidt property. In a such category C we denote
by [1] the shift functor. Moreover such a category is assumed to be 2-Calabi-Yau, that is there
exists a bifunctorial isomorphism

HomC(X, Y[1]) ' HomC(HomC(Y,X[1]),C).

Definition 2.9. An object X in C is said to be rigid if the space HomC(X,X[1]) vanishes.
An object T = ⊕n

=1T in C is said to be cluster-tilting if it is basic (i.e. for any  6= j, the
indecomposables T and Tj are not isomorphic), rigid, and maximal for this property that is if
HomC(X, T[1]) = 0 then X is isomorphic to a sum of the T’s.

The main feature of cluster-tilting objects is that they can be mutated.

Theorem 2.10 (Iyama-Yoshino). [IY08] Let C be a 2-Calabi-Yau triangulated category, and
T = ⊕n

=1T be a cluster-tilting object in C. Then for any  = 1, . . . , n there exists a unique
indecomposable object T∗


non isomorphic to T such that the object T′ = μT (T) := T/T ⊕ T∗

is cluster-tilting.

Moreover, one can associate a quiver QT to any object T =
∑n
=1 T in C whose vertices are

in bijection with the direct summands T’s. (This quiver QT is the Gabriel quiver of the finite
dimensional algebra EndC(T).) If  is the vertex of QT corresponding to the indecomposable
summand T and if QT does not have loops and 2-cycle at , then the quiver QT′ is the
mutation of QT at vertex  [BIRS09].

2.3. Cluster categories of a marked surface

We now come back to our original setup: let (,M, τ) be a triangulated surface.
Here is a theorem collecting differents facts concerning the categorification of triangulated

surfaces.

Theorem 2.11. There exists a triangulated 2-Calabi-Yau category C(,τ) with the following
properties:

1. there exists a bijection

T : A(,M) −→ {rigid indecomposables objects in C}/ iso.

2. for any two arcs γ and δ, the dimension of HomC(T(γ), T(δ)[1]) is the number of
intersections between γ and δ in the interior of the surface.

3. for τ = {τ1, . . . , τn} a triangulation, we define T(τ) :=
⊕n

=1 T(τ). Then the map T
induces a bijection

T : {τ triangulation of (,M)} −→ {cluster-tilting objects in C}/ iso.

Moreover the flip of an arc δ on the left hand side corresponds to the cluster-tilting
mutation at the summand T(δ) on the right hand side.

4. for any triangulation τ′ there is an equivalence

C,τ/〈T(τ′)〉 ' Rep(Qτ′ ),

where C,τ/〈T(τ′)〉 is the quotient of the category C,τ by the ideal of morphisms fac-
toring through a sum of summands of T(τ′).

5. for any triangulation τ′ there exists an equivalence of triangulated categories C(,τ) '
C(,τ′).

I–9



Claire Amiot

The general construction of the category C(,τ) follows from [Ami09, Kel11c]. It is defined
as the quotient of certain derived categories of differential graded algebras (see [Ami11] for
details). But several previous constructions have been given in some more specific situa-
tions: a geometric construction in the case where  is a disc can be found in [CCS06] while a
general construction for any acyclic quiver is done in [BMR+06]. In the latter the construction
is completely algebraic: the cluster category is defined as the orbit category of the derived
category of the path algebra of the quiver under a certain auto-equivalence. An “interme-
diate” generalization has been given in [Ami09], starting from algebras of global dimension
2 instead of path algebras. All these different constructions enter into the general definition
[Ami11].

The facts (1), (2) and (3) are shown in [BZ11], while (4) follows from [BMR07]. Point (5)
follows from [KY11].

Note that by the Calabi-Yau property, the dimension of the space HomC(T(γ), T(δ)[1]) is
the same as the dimension of HomC(T(δ), T(γ)[1]). This makes sense with point (2) since
the number of intersections between γ and δ is the same as the one of δ with γ.

As a consequence of point (5), we may write C instead of C,τ. But this notation may be a
bit dangerous since the equivalence in (4) is not canonical (see appendix in [CS17]).

Let us give more details about point (4) above. For any object X ∈ C := C,τ, the vector
space HomC(T(τ′)[−1], X) has a natural structure of right EndC(T(τ′)[−1])-module. Since
[−1] is an auto-equivalence of the triangulated category C, we have EndC(T(τ′)[−1]) '
EndC(T(τ′)). Moreover, one can show that the algebra End(T(τ′)) is isomorphic to the quo-
tient of the path algebra of the quiver Qτ′ by the relations αβ = 0 for any arrows corre-
sponding to consecutive angles in a triangle. Therefore we have an equivalence between
the category modEnd(T(τ′)[−1]) and the category Rep(Qτ′ ). Hence HomC(T(τ′)[−1],−) is
a functor C → Rep(Qτ′ ). Since the object T(τ′) is rigid, this functor sends any summand of
T(τ′) to the zero representation, and we obtain a functor C/〈T(τ′)〉 → Rep(Qτ′ ). One result
in [BMR07] shows that this functor is an equivalence of categories. As a corollary, we obtain
that the indecomposable objects of C are in bijection with

Agen(,M) ∪ (πfree1 () × C∗)/ ∼ .

Moreover if γ is an arc that do not belong to τ′, the object T(γ) is sent to Mτ(γ) through the
equivalence C/〈T(τ)〉 ' Rep(Qτ).

The autoequivalence [1] of the category C can be interpreted as an element of the map-
ping class group of  fixing globally the marked points. For each boundary component ∂
denote n the number of marked point on ∂. Then denote by σ the fractional 1

n
Dehn twist

around ∂, that is a homeomophism sending each marked point of ∂ to the next one in the
counterclockwise order. Then the homeomorphism of  associated with [1] is the product
σ =

∏b
=1 σ, that is for any generalised arc γ, we have an isomorphism T(γ)[1] ' T(σγ).

Example 2.12. Let (,M, τ = {τ1, τ2, τ3}) be the following triangulated surface, and let
α, β, γ, δ be the other arcs of .

τ1

τ2

τ3

γ

δ

βα

By the description of the shift functor above, there is an isomorphism T(α)[1] ' T(β).
The object T(α) seen a representation of Qτ is Mτ(α), that is the representation: (C→ C→ 0)

I–10



Course no I— Cluster Algebras and cluster categories from surfaces

2.4. Cluster characters and applications

As we have just seen, the operation of flip appears naturally in the cluster category asso-
ciated to a surface. In fact, the link between the category and the cluster algebra is much
stronger: in particular, one can recover the entire cluster algebra from the cluster category,
this can be done using a certain map called a cluster character (or a Caldero-Chapoton map).
We refer to [Pla] for more details.

Theorem 2.13 (Caldero-Chapoton [CC06], Palu [Pal08]). Let (,M, τ = {τ1, . . . , τn}) be a
triangulated surface, and let C be the associated category. There exists a map

Xτ : Obj(C) −→ Z[±11 , . . . , ±1
n
]

such that the following properties hold:

1. for any M,N ∈ C, we have Xτ(M ⊕ N) = Xτ(M)Xτ(N);

2. for any  = 1, . . . , n, Xτ(T(τ)) = ;

3. if dimk HomC(M,N[1]) = 1, then we have

Xτ(M)Xτ(N) = Xτ(B) + Xτ(B′)

where B and B′ appear in the non split triangles

M // B // N // M[1] nd N // B′ // M // N[1] .

Note that since the space HomC(M,N[1]) is one dimensional, then all non zero morphisms
M→ N[1] are multiplication of a scalar one of each other, and hence have isomorphic cones.
Hence in point (3) above, the objects B and B′ are uniquely determined.

The maps xτ and Xτ ◦ T coincide on the arcs of τ. Moreover combining Property (3) above
together with Property (2) of Theorem 2.11 implies that Xτ ◦ T satisfies the equation (1.1).
Hence for any arc γ of , we have that

xτ(γ) = Xτ(T(γ)).

In fact, the map xτ has been extended to any generalised arc and any closed curve on
the surface in [MSW11] using some resolving arc relations called Skein relations. Using the
bijection (2.3) one can show that the maps xτ and Xτ coincide on generalized arcs [BZ13].
They also coincide on primitive closed curves, but not on non-primitive ones.

Example 2.14. Let us come back to Examples 1.6 (2) and 2.12.
The arcs α and β have exactly one intersection. Hence by Theorem 2.11(2), the spaces

HomC(T(α), T(β)[1]) and HomC(T(β), T(α)[1]) are both one dimensional. We are in the setup
of Theorem 2.13(3). Let us compute the extensions B and B′. As just seen before, any non-
zero morphism between T(β) and T(α)[1] is an isomorphism. Hence there is a triangle:

T(α) // 0 // T(β) // T(α)[1] .

Completing one of the non-zero morphism from T(α) to T(β[1]) we obtain the following
triangle in the cluster category

(†) T(β) // T(γ) ⊕ T(δ) // T(α) // T(β)[1] .

Then one easily checks that

Xτ(T(α)).Xτ(T(β)) = xτ(α).xτ(β)
= 1+12+3

23
. 1+3+2312

;
= 1+3+12+23

123
1+3
2

+ 1
= xτ(δ)xτ(γ) + 1
= Xτ(T(δ) ⊕ T(γ)) + Xτ(0).

I–11
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Moreover, since T(α)[−1] ' T(τ2) and T(β)[1] ' T(τ2), applying the functor HomC(T(τ)[−1],−)
to the triangle (†), we obtain a short exact sequence in Rep(Qτ):

0 // Mτ(β) // Mτ(γ) ⊕ Mτ(δ) // Mτ(α) // 0 ,

which is the short exact sequence

0 (0→ C→ C)
(C→ C→ C)

(0→ C→ 0)
⊕ (C→ C→ 0) 0

There exists an explicit general formula (see [Pal08]) for the application Xτ, we give here
the formula in the case where Qτ does not contain oriented cycle [CC06]:

(2.1) Xτ(M) =
1

∏

 
d


∑

e≤d
χ(Gre(FM))

∏




m(d,e)


where FM ∈ Rep(Qτ) is the representation corresponding to M, where d = (d1, . . . , dn) is
its dimension vector, where Gre(FM) is the Grassmanian of subrepresentations of FM with
dimension vector e and where

m(e, d) =
∑

j→
ej −

∑

→j
(dj − ej).

Example 2.15. Let τ and Qτ be as in Example 1.11. Take for FM the indecomposable repre-
sentation with dimension vector d = (1,2). One then checks that for e = (1,0), (1,1) there
is no submodule of FM of dimension e. For e = (0,0) (resp. (0,2), resp. (1,2)) the Grass-
maniann of subrepresentations of dimension e is a point. Following the formula (2.1) the
corresponding monomial is 41 (resp. 22, resp. 1). And finally for e = (0,1) the Grassmannian
of subrepresentations of FM is isomorphic to P1(C) so the coefficient of the monomial 21 is
2. Finally we obtain

Xτ(M) =
41 + 2

2
1 + 

2
2 + 1

1
2
2

.

One easily checks that Xτ(M) = X−2 where the sequence (Xk) is defined in Example 1.11.

A notable application of this cluster character map is the following statement.

Theorem 2.16. [CIKLFP13] The cluster monomials are linearly independent. So in the sur-
face setup, the set

{τ(τ′1)
m1 . . . τ(τ′

n
)mn , τ′ tringltion of , m ∈ N}

is a linearly independent set.

Using combinatorial methods, Musiker, Schiffler and Williams have shown in [MSW13] that
this set can be completed in a basis using multiarcs on the surface. Note that this theo-
rem [CIKLFP13] is stated in the more general setup starting for any quiver. A more general
construction of a basis has been achieved in [GHKK18].

As previously said in the introduction, cluster-tilting theory has also been very useful for
solving pureley representation theoretic problems. This was not the purpose of this series of
lectures.
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