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Winter Braids Lecture Notes
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Course no IV

From Heegaard splittings to trisections; porting 3-dimensional
ideas to dimension 4

DAVID T GAY

Abstract

These notes summarize and expand on a mini-course given at CIRM in February 2018 as part
of Winter Braids VIII. We somewhat obsessively develop the slogan “Trisections are to 4–manifolds
as Heegaard splittings are to 3–manifolds”, focusing on and clarifying the distinction between
three ways of thinking of things: the basic definitions as decompositions of manifolds, the Morse
theoretic perspective and descriptions in terms of diagrams. We also lay out these themes in
two important relative settings: 4–manifolds with boundary and 4–manifolds with embedded 2–
dimensional submanifolds.

1. Introduction

All manifolds are smooth in this paper, except that a very mild form of manifold with boundary
and corners appears without comment at various places, and the appropriate rounding of
corners is assumed without comment.

Most of the content of this paper is in the form of definitions and statements of basic
results, and some discussion. There are no proofs; either proofs are suggested as exercises,
sometimes with hints, or external references are given. We necessarily present a very limited
range of material and hope that this a useful launching point for more in-depth reading and,
especially, for new and original research.

At the risk of overdoing it, we maintain a format throughout which heavily emphasizes the
parallels between the 3– and 4–dimensional settings. In particular, we use a 2–column format
for most definitions and theorems, with parallel bulleted items for the 4–dimensional setting
on the left and the 3–dimensional setting on the right; sometimes there is an extra condition
in dimension four which does not have a three dimensional analog, in which case to avoid
excessive white space we drop the 2–column format for this last condition. This format is
based on the approach taken on the blackboard in the original mini-course, and we hope the
experiment is equally effective in printed form.

One goal of these notes is to emphasize the Morse theoretic perspective where it often
gets conveniently ignored in other presentations. In principle one can understand everything
one needs to know about trisections without thinking Morse theoretically, but this seems
to miss an essential piece of the intuition. For this reason, in Section 2, we quickly cover
the basic definitions of Heegaard splittings and trisections as decompositions of manifolds
somewhat drily and minimally so as to get on to the Morse theory of Section 3 quickly.
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2. The basic definitions: decompositions

We use the symbol # for connected sum and ♮ for boundary connected sum, so that ∂(A♮B) =
(∂A)#(∂B). Then #nA is the connected sum of n copies of A, with #0A = Sm, when A is a
manifold of dimension m. Similarly ♮nB is the boundary connected sum of n copies of B, with
♮0B = Bm, when B is a manifold with connected boundary of dimension m. With this in mind
we name the following standard manifolds of dimensions 2, 3 and 4:

• The standard genus g surface is g = #g(S1 × S1).

• The standard genus g handlebody is Hg = ♮g(S1 × B2), with ∂Hg = g.

• The standard 4–dimensional 1–handlebody (of “genus k”) is Zk = ♮k(S1 × B3).

Definition 1. In which we define Heegaard splittings and trisections and establish orienta-
tion conventions. (See Figure 2.1.)

Dimension four: A (g;k1, k2, k3) trisection
of a closed, connected, oriented 4–manifold
X is a decomposition X = X1 ∪ X2 ∪ X3 such
that:

Dimension three: A genus g Heegaard
splitting of a closed, connected, oriented 3–
manifold M is a decomposition M = M1 ∪M2
such that:

• For each , X is diffeomorphic to Zk . • For each , M is diffeomorphic to Hg.
• Taking indices mod 3, each X ∩X+1 is dif-
feomorphic to Hg. We orient X ∩ X+1 as a
submanifold of ∂X+1.

• M1 ∩M2 is diffeomorphic to g. We orient
M1 ∩M2 as ∂M1 = −∂M2.

• X1 ∩ X2 ∩ X3 is diffeomorphic to g. We orient X1 ∩ X2 ∩ X3 as ∂(X1 ∩ X2) = ∂(X2 ∩ X3) =
∂(X3 ∩ X1).

A (g;k1, k2, k3) trisection is balanced if k1 = k2 = k3 = k, in which case we call it a (g, k)
trisection.

A Heegaard splitting will often be labelled S, to refer to the triple S = (M,M1,M2), and
similarly a trisection will often be labelled T , to refer to the 4–tuple T = (X,X1, X2, X3). Note
that the labeling of the pieces matters; (M,M1,M2) and (M,M2,M1) are different Heegaard
splittings of the same underlying oriented 3–manifold.

To digest the orientation conventions, a good exercise is to verify first that, in a trisection
T = (X,X1, X2, X3), the orientations of  = X1 ∩X2 ∩X3 as ∂(X1 ∩X2), ∂(X2 ∩X3) and ∂(X3 ∩X1)
really do agree. Then one should verify that this orientation of  from the T agrees with its
orientation as the splitting surface in each of the the Heegaard splittings S = (∂X, X−1 ∩
X, X ∩ X+1).

Definition 2. In which we define a stabilization operation for both kinds of decompositions.

Dimension four: Given a trisection T =
(X,X1, X2, X3) of a 4–manifold X and an in-
dex  ∈ Z/3Z, an –stabilization of this tri-
section is a trisection T ′ = (X,X′1, X

′
2, X

′
3) ob-

tained as follows:

Dimension three: Given a Heegaard split-
ting S = (M,M1,M2) of a 3–manifold M, and
an index  ∈ Z/2Z, an –stabilization of S is
a Heegaard splitting S′ = (M,M′1,M

′
2) of M

obtained as follows:
• Choose an arc  properly embedded and
boundary parallel in X−1 ∩X+1, with a regu-
lar neighborhood ν ∼= B3 ×  so that ν ∩ X ∼=
B3 × ∂ and ν ∩ X1 ∩ X2 ∩ X3 ∼= B2 × ∂.

• Choose an arc  properly embedded and
boundary parallel in M+1, with a regular
neighborhood ν ∼= B2 ×  so that ν ∩ M

∼=
B2 × ∂.

• Let X′ = X ∪ ν. • Let M′ = M ∪ ν.
• Let X′±1 = X±1 \ ν̊. • Let M′+1 = M+1 \ ν̊.
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X1

X2

X3

(a) Trisection

M1

M2

(b) Heegaard Splitting

Figure 2.1. Schematics of trisections and Heegaard splittings

Several comments are in order. The fact that a stabilization of a Heegaard splitting or tri-
section is again a Heegaard splitting or trisection is a lemma that needs to be proved, and is
a worthwhile exercise. In both dimensions, any –stabilization of a given Heegaard splitting
or trisection is isotopic to any other. In dimension three, 1–stabilization and 2–stabilization
are isotopic, and both turn a genus g splitting into a genus g + 1 splitting. For this reason
in dimension three we dispense with the index and simply say “stabilization”, an opera-
tion defined uniquely up to ambient isotopy. In dimension four, any two –stabilizations of
the same trisection are isotopic, but an –stabilizations turns a (g;k1, k2, k3) trisection into
a (g + 1;k′1, k

′
2, k

′
3) trisection where k′ = k + 1 and, for j 6= , k′j = kj. Thus 1–stabilization,

2–stabilization and 3–stabilization are necessarily different. By stabilization, any trisection
can be made balanced, and “stabilization” for a balanced trisection means the result of per-
forming one 1–, one 2– and one 3–stabilization. This balanced stabilization is the stabilization
process originally presented in [4].

The basic results (some discussion of their proofs appears in the following section) are:

Theorem 3 (Existence and Uniqueness). The above decompositions exist and are unique
up to stabilization. More precisely:

Dimension four: Every closed, connected,
oriented 4–manifold has a trisection, and
any two trisections of the same 4–manifold
become isotopic after some number of sta-
bilizations. [4]

Dimension three: Every closed, con-
nected, oriented 3–manifold has a Heegaard
splitting, and any two Heegaard splittings of
the same 3–manifold become isotopic after
some number of stabilizations.[15, 17]
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3. The Morse theoretic perspective

We assume familiarity with basic Morse theory and the connection between Morse functions
on manifolds and handle decompositions. We will define some of these basic notions below
in certain cases, only for the purpose of establishing parallels between 3– and 4–dimensional
phenomena.

Definition 4. In which we define Morse functions and Morse 2–functions in the limited con-
text of dimensions three and four.

Dimension four: A Morse 2–function on a
4–manifold X is a smooth function ƒ : X→ R2

which, at every point p ∈ X, has one of the
following three forms with respect to appro-
priate local coordinates (t, , y, z) near p and
(,) near ƒ (p):

Dimension three: A Morse function on a
3–manifold M is a smooth function ƒ : M→ R

which, at every point p ∈ M, has one of the
following two forms with respect to appro-
priate local coordinates (, y, z) near p and
 near ƒ (p):

• (t, , y, z) 7→ ( = t,  = ); here p is called
a regular point.

• (, y, z) 7→  = ; here p is called a regular
point.

• (t, , y, z) 7→ ( = t,  = ±2 ± y2 ± z2);
here p is called a fold point and p is called
definite or indefinite according to whether
the quadratic form ±2 ± y2 ± z2 is definite
or indefinite.

• (, y, z) 7→  = ±2±y2±z2; here p is called
a critical point, and the number of −’s in the
quadratic form ±2 ± y2 ± z2 is the index of
p.

• (t, , y, z) 7→ ( = t,  = 3 − t ± y2 ± z2); here p is called a cusp point.

In both cases, a point q in the codomain of ƒ is called a regular value if all points p ∈ ƒ−1(q)
are regular points, otherwise q is a critical value. In dimension four, both fold and cusp points
are critical points.

A good way to think about the connection between Morse functions and Morse 2–functions
is that, locally, a Morse 2–function looks like time crossed with a generic homotopy between
Morse functions. Along a fold we can parametrize things so that we see a single Morse critical
point not moving in time, while a cusp corresponds to a birth or death of a cancelling pair of
critical points.

Here we recommend that the reader verify the following facts as an exercise in building
the correct intution (assume here that the domain of ƒ is closed):

• In both cases the inverse image of a regular value is a closed surface.

• In both cases the singular locus, the set of all critical points, is a closed codimension
three submanifold, i.e. a finite collection of points in dimension three and a finite
collection of embedded circles in dimension four.

• In dimension four, the cusp points form a finite collection of points on the singular
locus.

• Via a small perturbation, in dimension three one may assume that the critical points
of a Morse function have distinct critical values

• Returning to dimension four, letting Z be the singular locus of a Morse 2–function ƒ ,
via a small perturbation one may assume that ƒ |Z is an immersion with semicubical
cusps, with at worst double point self intersections, none of which occur at cusps.
(Figure 3.1 is an attempt at a cartoon illustrating many of the features of a Morse
2–function discussed in this and the following bullet points.)
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0

2

1

Figure 3.1. Some characteristic features of a Morse 2–function. The darker arc
is a definite fold and the remaining solid arcs are indefinite folds. The dotted
arc is an oriented arc A transverse to the folds, with indices of the critical
points of the associated Morse function on ƒ−1(A) labelled at the crossings.
The surfaces are representative inverse images of regular values along the
arc.

• If ƒ : X → R2 is a Morse 2–function and A is an arc in R2 avoiding the cusps and
transverse to the image of the singular locus, then M = ƒ−1(A) is a 3–manifold in X,
with ∂M = ƒ−1(∂A).

• Furthermore, if we identify A with an interval in R via some embedding A ,→ R then
ƒ |M : M → A is a Morse function with critical points of index 0 and 3 where A crosses
definite folds and critical points of index 1 and 2 where A crosses indefinite folds.
Reversing the orientation of A changes the indices of these critical points, with index
0 becoming index 3 and vice versa, and index 1 becoming index 2 and vice versa.

• Crossing a definite fold in the index 0 direction adds a new S2 component to the fiber
(preimage of regular value) while crossing in the index 3 direction caps off such a
component. Crossing an indefinite fold in the index 1 direction either increases the
genus of a fiber component by one or connects two disconnected components, while
crossing in the index 2 direction surgers the fiber along a compressing circle, either
decreasing genus by one or splitting a component in two.

• If the arc A passes immediately adjacent to a cusp, thus crossing two folds, then
the corresponding Morse critical points are two cancelling critical points of successive
index.

Next we will define the kind of Morse functions and Morse 2–functions which produce, re-
spectively, Heegaard splittings and trisections. Our 3–dimensional definition will, as usual,
seem a little odd since it is set up to emphasize the parallel with the 4–dimensional setting.
First we introduce some notation (see Figure 3.2). For θ ∈ S1 = R/2πZ, let Rθ ⊂ R2 be the ray
making angle −θ with the positive –axis. (Yes, the negative sign in −θ is intentional, we ex-
plicitly want to move clockwise around the origin, simply because this fits well with other ori-
entation conventions.) Identify Rθ with [0,∞) via the parametrization (t cos(−θ), t sin(−θ)).
Thinking of R as the –axis in R2, the intervals [0,∞) ⊂ R and (−∞,0] ⊂ R are then identified
with the rays R0 and Rπ, respectively, except that when we think of (−∞,0] as Rπ and then
use the above parametrization to identify Rπ with [0,∞), we then see (−∞,0] oriented away
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R0

R2π/3

R4π/3

A1

A2

A3

Figure 3.2. The singular value set of a (4; 3,2,2) trisecting Morse 2–function

from 0. We also consider the “trisection” of R2 as R2 = A1 ∪ A2 ∪ A3 where A is the sector
bounded by R2π(−1)/3 and R2π/3.

Definition 5. In which we define Heegaard splitting Morse functions and trisecting Morse
2–functions.

Dimension four: A (g;k1, k2, k3) trisecting
Morse 2–function ƒ on a 4–manifold X is a
Morse 2–function ƒ : X→ R2 such that:

Dimension three: A genus g Heegard split-
ting Morse function ƒ on a 3–manifold M is a
Morse function ƒ : M→ R such that:

• 0 = (0,0) is a regular value of ƒ , and thus
ƒ−1(0) =  is a closed surface, which we re-
quire to be connected of genus g.

• 0 is a regular value of ƒ , and thus ƒ−1(0) =
 is a closed surface, which we require to be
connected of genus g.

• On each of the three rays R0, R2π/3 and
R4π/3, ƒ has exactly g index 2 and one index
3 critical points, all of which have distinct
critical values.

• On each of the two rays R0 and Rπ, ƒ has
exactly g index 2 and one index 3 critical
points, all of which have distinct critical val-
ues.

• Over each of sector A, the singular locus of ƒ has exactly g+ 1 components, all of which
are arcs from one bounding ray of A to the next, k of which are indefinite folds without
cusps, (g − k) of which are indefinite folds each with exactly one indefinite cusp, and one
of which (the outermost) is a definite fold. Furthermore, in R2 each of these components is
transverse to each ray Rθ except at cusps, which are tangent to the rays, and ƒ restricted
to the singular locus is an immersion with cusps and double points avoiding the cusps. This
is illustrated in Figure 3.2.

Lemma 6. These types of functions induce the indicated manifold decompositions:

Dimension four: Given a (g;k1, k2, k3) tri-
secting Morse 2–function ƒ : X → R2, let
X = ƒ−1(A). Then X = X1 ∪ X2 ∪ X3 is a
(g;k1, k2, k3) trisection of X.

Dimension three: Given a genus g Hee-
gaard splitting Morse function ƒ : M → R,
let M1 = ƒ−1(Rπ) and M2 = ƒ−1(R0). Then
M = M1 ∪M2 is a genus g Heegaard splitting
of X.

As a hint for the proof, the only nonstandard part is to prove, in the four dimensional case,
that each X is diffeomorphic to a “genus k” 4–dimensional 1–handlebody Zk . The best way
to see this is to consider orthogonal projection from the sector A ⊂ R2, which is bounded by
the rays R2π(−1)/3 and R2π/3, onto the intermediate ray Rπ(2−1)/3. After a suitable isotopy in
R2 fixed along the two bounding rays, we may assume that the only places where the image
of the singular locus is vertical with respect to this orthogonal projection are the midpoints of
the indefinite folds which do not have cusps and the midpoint of the definite fold. Composing
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ƒ with this projection can then be seen to be a Morse function on X with only critical points
of index 0 and 1, with one index 0 and k index 1 critical points.

Note that the distinct critical values condition (in dimension three) and double points avoid-
ing cusps condition (in dimension four) are not strictly necessary to make the above lemma
true, but we add them as a conceptual convenience.

The most basic example of a Heegaard splitting Morse function is the projection

(1, 2, 3, 4) 7→ 1

on S3 ⊂ R4, giving the standard genus 0 Heegaard splitting of S3. Similary, projection

(1, 2, 3, 4, 5) 7→ (1, 2)

is a trisecting Morse 2–function on S4 ⊂ R5, giving the (0,0) trisection of S4. The reader
should verify these basic facts. It is also not too hard to see a Heegaard splitting Morse
function on S1 × S2 inducing a genus 1 Heegaard splitting, and a trisecting Morse 2–function
on S1×S3 inducing a (1,1) trisection. Beyond this, it is in fact not usually very straightforward
to write down explicit Morse functions and Morse 2–functions, let alone ones that induce the
decompositions we desire. More frequently, we understand the decomposition first, from
some other description of the manifold, and from this we can understand an appropriate
Morse function or 2–function.

The existence part of Theorem 3 can, however, be proved by proving the existence of
Heegaard splitting Morse functions and trisecting Morse 2–functions. The former is standard,
done by proving first the existence of Morse functions, then showing that one can cancel
pairs of critical points until there is only one index 0 and one index 3 critical point, and finally
showing that critical points can be rearranged so that their corresponding critical values
increase with increasing index. A proof of the latter appears in [4] starting from a handle
decomposition of the 4–manifold, but can probably also be proved in a purely Morse 2–
function theoretic method, starting with the existence of Morse 2–functions and then arguing
that the critical locus of a Morse 2–function can be cleaned up by a sequence of standard
moves to become a trisecting Morse 2–function. The work of Baykur and Saeki [1] should
provide enough tools to do this.

The uniqueness part of Theorem 3 is proved in the three dimensional case using standard
Cerf theory, where stabilization of the Heegaard splitting corresponds to adding a cancelling
pair of index 1 and 2 critical points. See [10] for a careful exposition of this proof. The four
dimensional uniqueness proof in [4] unfortunately does not follow this parallel, i.e. does not
use a Morse 2–function version of Cerf theory, but is rather more ad hoc. For the sake of
completeness it would be nice to see a Cerf theoretic proof, although it is not clear if the
ultimate payoff would be worth the time.

One challenging but reachable example that the reader who likes working with explicit
expressions might enjoy is to write down a trisecting Morse 2–function on CP2. This can be
done by suitably perturbing the following moment map:

[z0 : z1 : z2] 7→
�

|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2

�

The moment map itself is not a Morse 2–function, but adding a generic perturbation term
should make it Morse, and careful choice of this perturbation should make it trisecting.

On the other hand, one can extract a trisection directly from this moment map without
perturbing it to a Morse 2–function. Let  = |z1|2/(|z0|2 + |z1|2 + |z2|2) and y = |z2|2/(|z0|2 +
|z1|2 + |z2|2). Then the following “tropical” decomposition is in fact a (1,0) trisection of X =
CP2, and verifying this is also a good exercise:

X1 = { ≤ 1/4, y ≤ 1/4}

X2 = {y ≥ 1/4, y ≥ }

X3 = { ≥ 1/4,  ≥ y}
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α

α′

αj



Figure 4.1. A handle slide.

k g − k

(a) Standard Heegaard diagrams (g, αg,k , βg,k )

g

(b) Standard genus g cut system (g, αg)

Figure 4.2. Standard diagrams needed for the definition of trisection and Hee-
gaard diagrams. Red is α and blue is β.

This trisection is used in [8] to give a combinatorial proof of the Thom conjecture (that al-
gebraic curves in CP2 minimize genus in their homology classes), and is also used in [9] to
produce minimal genus trisections of a large class of algebraic surfaces.

It is well known, from standard Morse theory, that stabilization of a Heegaard splitting can
be realized via a homotopy of Morse functions supported in a ball, in which a cancelling pair
of index 1 and 2 critical points is born near the Heegaard surface. Similarly, stabilization of a
trisection can be realized via a homotopy of Morse 2–functions supported in a ball; this is the
“introduction of an eye” discussed in Section 5 of [4].

4. The diagrammatic perspective

Definition 7. Given a finite collection α = {α1, . . . , αn} of disjoint simple closed curves
on an oriented surface , given two of these curves α and αj and an arc  joining α and
αj and otherwise disjoint from the α curves, one can produce a new collection of curves
α′ = {α′1, . . . , α

′
n} by sliding α over αj along  as follows: For k 6= , αk is unchanged, i.e.

α′k = αk, while α′ is the unique boundary component of a regular neighborhood of α ∪  ∪ αj
which is not isotopic to either α or αj (see Figure 4.1). Two collections of disjoint simple
closed curves on the same surface are slide equivalent if one can be transformed to the
other by a sequence of handle slides and isotopies. Two pairs of collections of simple closed
curves (α, β) and (α′, β′) on the same surface are slide equivalent if α is slide equivalent to
α′ and β is slide equivalent to β′. Two triples (, α, β) and (′, α′, β′) are slide diffeomorphic
if (α, β) is slide equivalent to some (α′′, β′′) such that (, α′′, β′′) is orientation preserving
diffeomorphic to (′, α′, β′).

IV–8



Course no IV— From Heegaard splittings to trisections

Figure 4.3. A selection of trisection diagrams. Red is α, blue is β and green is γ.

Definition 8. In which we define Heegaard and trisection diagrams.

Dimension four: A (g;k1, k2, k3) trisection
diagram is a tuple (, α, β, γ) where  is
a closed oriented surface of genus g and
the triples (, α, β), (, β, γ) and (, γ, δ) are
each slide diffeomorphic to the standard
Heegaard diagram (g, αg,k , βg,k ) shown in
Figure 4.2a. (Here  = 1 for (α, β),  = 2 for
(β, γ) and  = 3 for (γ,α).)

Dimension three: A genus g Heegaard
diagram is a tuple (, α, β) where  is a
closed oriented surface of genus g and the
pairs (, α) and (, β) are both diffeomor-
phic to the standard pair (g, αg) shown in
Figure 4.2b.

Note that any system of curves α on a surface  of genus g such that (, α) ∼= (g, αg)
is called a cut system, and cut systems are more standardly characterized by the property
that they cut the ambient surface into a punctured sphere. We should think of (g, αg) as the
“standard genus g cut system”.

The reader should now verify that all the diagrams in Figure 4.3 are in fact trisection di-
agrams. The genus 3 example is the only one in which handle slides are required to exhibit
the standardness of pairs of colors. An instructive additional exercise is simply to try to draw
new nontrivial diagrams from scratch; here “nontrivial” would first mean not diffeomorphic
to connected sums of any of these examples, and at a second pass, not slide diffeomorphic
to connected sums of these. Of special interest are diagrams which cannot be made “simul-
taneously standard” in the sense that no slides are needed to exhibit pairwise standardness.
In thinking carefully about this problem one may discover the following fact: Simultaneously
standard trisection diagrams are in fact connected sums of diagrams of genus 1 and 2. This
is proved by thinking about the euler characteristic and number of boundary components of
chains of curves each intersecting the next once.

Lemma 9. In which we relate Heegaard and trisection diagrams to Heegaard splittings and
trisections.
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(a) Stabilizing trisection diagram D∗
1

(b) Stabilizing Heegaard diagram D∗

Figure 4.4. Standard stabilization diagrams

Dimension four: Given a trisection di-
agram D = (, α, β, γ) there is a 4–
manifold X = X(D) with trisection T (D) =
(X,X1, X2, X3) such that  = X1∩X2∩X3, ori-
ented according to the conventions in Defi-
nition 1, and such that the α curves bound
embedded disks in X3 ∩ X1, the β curves in
X1 ∩ X2 and the γ curves in X2 ∩ X3.

Dimension three: Given a Heegaard di-
agram D = (, α, β) there is a 3–manifold
M = M(D) with Heegaard splitting S(D) =
(M,M1,M2) such that  = M1 ∩M2, oriented
according to the conventions in Definition 1,
and such that the α curves bound embed-
ded disks in M1 and the β curves bound em-
bedded disks in M2.

• Any other trisected 4–manifold satisfying
these same properties with respect to the
given diagram D is in fact orientation pre-
serving diffeomorphic to T (D).

• Any other Heegaard split 3–manifold sat-
isfying these same properties with respect
to the given diagram D is in fact orientation
preserving diffeomorphic to S(D).

• For every trisection T = (X,X1, X2, X3) of
a 4–manifold X there is a trisection diagram
D such that T ∼= T (D).

• For every Heegaard splitting S =
(M,M1,M2) of a 3–manifold M there is a Hee-
gaard diagram D such that S ∼= S(D).

The proof is again left as an exercise. In dimension three, the key point is that any col-
lection of curves on  diffeomorphic to (g, αg) (a cut system) uniquely determines a han-
dlebody filling of  in which these curves bound disks. In dimension four we need this fact,
the fact that the standard Heegaard diagram (g, αg,k , βg,k) used in the definition of trisec-
tion diagram is a diagram for #k(S1 × S2), and the fact [11] that any self diffeomorphism of
#k(S1 × S2) extends to a self diffeomorphism of #k(S1 × B3).

Now we consider how the uniqueness statement for Heegaard splittings of 3–manifolds
and trisections of 4–manifolds translates into the world of diagrams.

Definition 10. In which we define certain standard diagrams used in the stabilization pro-
cess.

Dimension four: The standard (1; 1,0,0)
trisection diagram for S4 is the diagram
D∗
1 = (T

2, μ, μ, λ) shown in Figure 4.4a. Cycli-
cally permuting the curve systems gives
the standard (1; 0,1,0) diagram D∗

2 and the
standard (1; 0,0,1) diagram D∗

3 .

Dimension three: The standard genus 1
Heegaard diagram for S3 is the diagram
D∗ = (T2, μ, λ) shown on the right in Fig-
ure 4.4b.

The implication in the above definitions is of course that S(D1) is a Heegaard splitting of S3

and that T (D(1;1,0,0)) is a trisection of S4 (and the same for the other two standard trisection
diagrams). The reader should verify these facts, and also verify the following:
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Proposition 11. In which we relate stabilization of splittings and trisections to diagrams.

Dimension four: Given a trisection dia-
gram D with associated trisected 4–manifold
T = T (D), let T ′ be the result of an –
stabilization of T . Then T ′ ∼= T (D#D∗

 ).

Dimension three: Given a Heegaard dia-
gram D with associated Heegaard split 3–
manifold S = S(D), let S′ be the result of
stabilizing S. Then S′ ∼= S(D#D1).

• Given two trisection diagrams D and D′,
with

T (D) = (X,X1, X2, X3)
and

T (D′) = (X′, X′1, X
′
2, X

′
3),

we have that X ∼= X′ if and only if, for some
k1, k2, k3 and k′1, k

′
2, k

′
3, the following two tri-

section diagrams are slide diffeomorphic:

D#(#k1D∗
1 )#(#

k2D∗
2 )#(#

k3D∗
3 )

and
D′#(#k′1D∗

1 )#(#
k′2D∗

2 )#(#
k′3D∗

3 )

• Given two Heegaard diagrams D and D′,
with

S(D) = (M,M1,M2)
and

S(D′) = (M′,M′1,M
′
2),

we have that M ∼= M′ if and only if, for some
k and k′, the following two Heegaard dia-
grams are slide diffeomorphic:

D#(#kD∗)
and

D′#(#k′D∗)

Now we discuss trisection diagrams in relation to trisecting Morse 2–functions; the phe-
nomena discussed here are unique to the 4–dimensional setting and do not have obvious
3–dimensional analogues. Recall the notation from Section 3, in particular the “trisection” of
R2 as R2 = A1 ∪ A2 ∪ A3, the labelling of rays Rθ by angle −θ to the positive –axis, and the
identification of each ray with [0,∞). Fix a closed 4–manifold X with a trisecting Morse 2–
function ƒ : X→ R2, and consider the induced trisection X = X1 ∪ X2 ∪ X3, where X = ƒ−1(A),
as in Lemma 6. We can read off a trisection diagram from the function ƒ and a (generic)
choice of gradient-like vector field over each ray R2π/3, since this data gives us descending
manifolds for each of the index 2 critical points in each handlebody, i.e. a handle decomposi-
tion of each handlebody, with the attaching “spheres” in the central surface  = X1 ∩X2 ∩X3
being a collection of simple closed curves α, β or γ.

What we would like to emphasize here is that there is more information available in a Morse
2–function than just in the trisection diagram. In fact, if we choose a smoothly varying family
of gradient-like vector fields over the rays Rθ, i.e. on each ƒ−1(Rθ) we choose a gradient-
like vector field Vθ for the Morse functions ƒθ : Rθ → [0,∞), smooth in θ, then we can look
at the descending manifolds for the index 2 critical points of ƒθ in  = ƒ−1θ (0). There we
will see a “moving family” of cut systems, mostly moving by isotopy but, at isolated times,
experiencing discrete moves. More precisely, from a trisecting Morse 2–function on a closed
4–manifold X, we can first arrange that all the cusps in each sector appear at the same
θ value, and then choosing one representative θ–value during each θ interval when only
isotopies occur, we can produce an augmented trisection diagram

(, α1, . . . , α, β1, . . . , βb, γ1, . . . , γc)

satisfying the following properties:

• For any indices , j and k, (, α, βj, γk) is a trisection diagram for X.

• The cut system α+1 is obtained from α by a single handle slide, and similary for the
β’s and γ’s.

• The Heegaard diagrams (, α, β1), (, βb, γ1) and (, γc, α1) are each diffeomorphic
(not just slide diffeomorphic) to the standard diagram (g, αg,k , βg,k ).

(If we think of cut systems as ordered lists of simple closed curves, ordered by the relative
heights of the corresponding critical points, rather than just as sets of simple closed curves,
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then we should also include transposition of two adjacent curves in the list as a move, and
this would correspond to one critical point rising above another.)

In what sense does this augmented trisection diagram contain more information than an
ordinary trisection diagram? The main point is that rather than simply asserting that each
pair (, α, β), (, β, γ) and (, γ, α) is slide diffeomorphic to a standard Heegaard diagram,
with the augmented diagram we now know exactly how to slide handles to get each pair
to be standard. This in turn means that, rather than simply appealing to Laudenbach and
Poénaru to assert that we can fill in each sector with ♮kS1 × B3, i.e. with 3–handles and a
4–handle, and that any way of filling in is as good as any other way, we actually explicitly see
the attaching maps for the 3–handles. Also, the minimum length  + b + c of an augmented
trisection diagram for a given trisection is a measure of the complexity of the trisection,
which should be of interest and is closely related to certain complexity measures coming
from simplicial complexes associated to curve systems on surfaces; see [7] for example.

5. 4–manifolds with boundary

One advantage to thinking of trisections from a Morse 2–function perspective is that this
gives us the most natural definition of a trisection of a 4–manifold with boundary.

Definition 12. In Definition 5, we assumed that the manifolds we were working with were
closed. Now suppose they have nonempty boundary instead.

Dimension four: A (g, k) trisecting Morse
2–function ƒ on a 4–manifold X with
nonempty connected boundary is a Morse
2–function ƒ : X→ R2 such that:

Dimension three: A genus g Heegard split-
ting Morse function ƒ on a 3–manifold M with
nonempty connected boundary is a Morse
function ƒ : M→ R such that:

• ƒ (X) = D2. • ƒ (M) = [−1,1].
• For all points p ∈ S1 = ∂D2, ƒ−1(p) is a
compact surface with boundary, contained
in ∂X, and in fact the restriction of ƒ to
ƒ−1(S1) is a compact surface bundle over S1.

• ƒ−1(1) and ƒ−1(−1) are diffeomorphic
compact surfaces with boundary, contained
in ∂M.

• The closure of the complement of ƒ−1(S1)
in ∂M is diffeomorphic to B × D2, for B a col-
lection of circles and with ƒ being projection
onto the D2 factor. For each p ∈ S1, B × {p}
is the boundary of ƒ−1(p).

• The closure of the complement of
ƒ−1({−1,1}) in ∂M is diffeomorphic to B ×
[−1,1], for B a collection of circles and with
ƒ being projection onto the [−1,1] factor.
B × {−1} is the boundary of ƒ−1(−1) and
B × {1} is the boundary of ƒ−1(1).

• 0 = (0,0) is a regular value of ƒ , and thus
ƒ−1(0) =  is a compact surface with bound-
ary, where ∂ = B × {0} ⊂ B × D2.

• 0 is a regular value of ƒ , and thus
ƒ−1(0) =  is a compact surface with bound-
ary, where ∂ = B × {0} ⊂ B × [−1,1].

• On each of the three rays R0, R2π/3 and
R4π/3, ƒ has only index 2 critical points, all
of which have distinct critical values which
lie in the interiors of the rays (with the same
number of critical points on each ray).

• On each of the two rays R0 and Rπ, ƒ has
only index 2 critical points, all of which have
distinct critical values which lie in the inte-
riors of the rays (with the same number of
critical points on each ray).

• Over each of the three sectors A1, A2 and A3, each component of the singular locus of ƒ
is an arc from one bounding ray of A to the next, with at most one cusp per component.
All folds are indefinite folds. Furthermore, in R2 each of these components is transverse to
each ray Rθ except at cusps, which are tangent to the rays, and ƒ restricted to the singular
locus is an immersion with cusps and double points avoiding the cusps.

From this we can give the following definition:
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Definition 13. Let X, resp. M, be a compact 4–manifold, resp. 3–manifold, with nonempty
connected boundary.

Dimension four: A relative trisection of X
is a decomposition X = X1∪X2∪X3 for which
there exists a trisecting Morse 2–function ƒ :
M→ R2 with X = ƒ−1(A).

Dimension three: A sutured Heegaard
splitting of M is a decomposition M = M1∪M2
for which there exists a Heegaard splitting
Morse function ƒ : M → R with M1 = ƒ−1(Rπ)
and M2 = ƒ−1(R0).

These are not the standard definitions, but we feel that the Morse theoretic perspective
better conveys the central idea. The standard definitions can be recovered with some obser-
vations/exercises:

• Starting in dimension three, the induced structure on ∂M is a decomposition ∂M =
−R− ∪ ([−1,1] × ∂R−)∪R+ , where R− and R+ are diffeomorphic oriented compact sur-
faces with boundary. A 3–manifold with such a structure on its boundary is a balanced
sutured 3–manifold.

• The two pieces M1 and M2 can each be viewed as either sutured compression bod-
ies from the central surface  = ƒ−1(0) to R± or as handlebodies, where ∂M1 =
 ∪ ([−1,0] × ∂) ∪ −R− and ∂M2 = − ∪ ([0,1] × ∂) ∪ R+ .

• The 3–dimensional part of Definition 2, stabilization of Heegaard splittings, makes
sense in this relative setting, assuming the stabilizing arc lies entirely in the interior
of M. The assertion that the result is again a sutured Heegaard splitting, using the
Morse theoretic definition of splitting given above, requires seeing that stabilization is
achieved by perturbing the Morse function to introduce a cancelling 1–2 critical point
pair.

• Moving to dimension four, the induced structure on ∂X is an open book decomposi-
tion, namely a decomposition into a surface bundle over S1 (E ⊂ ∂X with ƒ : E → S1)
and a disjoint union of solid tori B × D2, such that the boundary of each fiber ƒ−1(θ)
of the surface bundle (each “page”) is the link B × {θ} in B × D2. These pages are
traditionally extended by adding on the annuli B × Rθ, to get Seifert surfaces for the
link B × 0, the “binding” of the open book.

• Each pairwise intersection X ∩ Xj is a sutured compression body from the central sur-
face  = ƒ−1(0) to the page ƒ−1(e2π/3) (identifying R2 with C).

• Each piece X is a 4–dimensional 1–handlebody, but it’s boundary comes with a de-
composition into three pieces: ∂X = (X ∩ X−1) ∪ (X ∩ X+1) ∪ (X ∩ ∂X). The first two
pieces are the above mentioned sutured compression bodies, and the third part X∩∂X
is one third of the open book decomposition of ∂X.

• The internal portion of ∂X, i.e. the closure of ∂X \ ∂X, comes equipped with a sutured
Heegaard splitting, i.e (X ∩ X−1) ∪ (X ∩ X+1).

• In fact each such X is diffeomorphic to C × [−1,1] for some sutured compression
body C from some surface ′ to the page ƒ−1(e2π/3), with the internal portion of ∂X
being diffeomorphic to (C × {−1}) ∪ (′ × [−1,1]) ∪ (C × {1}).

• Note that the preceding item also gives a sutured Heegaard splitting of the internal
portion of ∂X, namely as the union of (C× {−1})∪ (′× [−1,0]) and (C× {1})∪ (′×
[0,1]). The previous Heegaard splitting (X ∩X−1)∪ (X ∩X+1) is a stabilization of this
Heegaard splitting.
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• The 4–dimensional version of stabilization in Definition 2 also now makes sense, again
assuming the stabilizing lies entirely in the interior of X. Seeing that the result is again
a relative trisection according to our definition of relative trisections as coming from
trisecting Morse 2–functions requires seeing that stabilization can be achieved by a
perturbation of the Morse 2–function. The stabilization takes place in a neighborhood
of a boundary parallel arc in some X−1∩X+1. The perturbation of the Morse 2–function
takes place in a neighborhood of that arc and its boundary parallelizing disk, and
literally pulls the arc from lying over A−1 ∩A+1 back to lying over A. This is discussed
in detail in [4].

The fundamental existence and uniqueness result from the closed case still holds in this
relative setting, provided we work relative to fixed boundary data:

Theorem 14 (Existence and Uniqueness). The above decompositions exist and are unique
up to stabilization relative to fixed boundary data. More precisely:

Dimension four: Given any open book de-
composition on the boundary ∂X of a com-
pact connected oriented 4–manifold with
nonempty connected boundary, there exists
a relative trisection of X inducing this open
book on ∂X. Any two trisections of the same
4–manifold inducing the same open book on
the boundary become isotopic after some
number of stabilizations [4].

Dimension three: Given any balanced su-
tured decomposition of the boundary of a
compact connected oriented 3–manifold M
with nonempty connected boundary, there
exists a sutured Heegaard splitting on M in-
ducing the sutured structure on ∂M. Any two
sutured Heegaard splittings of the same 3–
manifold inducing the same boundary data
become isotopic after some number of sta-
bilizations.

Theorem 15 (Gluing). These relative decompositions are especially useful because they
can be glued together when the boundary data agree.

Dimension four: Given relatively trisected
4–manifolds X = X1 ∪ X2 ∪ X3 and X′ = X′1 ∪
X′2 ∪ X

′
3 and an orientation reversing diffeo-

morphism ϕ : ∂X → ∂X′ respecting the in-
duced open book decompositions, then the
following decomposition of the closed 4–
manifold X̃ = X ∪ϕ X′ is a trisection [2]:
X̃ = (X1 ∪ϕ X′1) ∪ (X2 ∪ϕ X

′
2) ∪ (X3 ∪ϕ X

′
3)

Dimension three: Given 3–manifolds with
sutured Heegaard splittings M = M1 ∪ M2
and M′ = M′1 ∪M

′
2 and an orientation revers-

ing diffeomorphism ϕ : ∂M→ ∂M′ respecting
the induced sutured decompositions, then
the following decomposition of the closed 3–
manifold M̃ = M∪ϕM′ is a Heegaard splitting:

M̃ = (M1 ∪ϕ M′1) ∪ (M2 ∪ϕ M
′
2)

The reader should prove the 3–dimensional statement as an exercise. The 4–dimensional
statement takes more work.

An important example of the boundary data one might consider comes, in both cases,
when studying a knot complement.

In dimension three, a classical knot K in S3 gives rise to its exterior E(K) = S3 \ ν(K), a
3–manifold with boundary parametrized as S1 × S1, where the first S1 factor is the meridian,
i.e. the boundary of D2 in ν(K) ∼= D2 × S1. Then (see Figure 5.1) identifying the second S1

factor as ∂([−1,1] × [−1,1]), we can decompose ∂E(K) as −R− ∪ (∂R × [−1,1]) ∪ R+ where
R− = S1× [−1,1]×{−1}, R+ = S1× [−1,1]×{1} and ∂R−× [−1,1] = S1×{−1,1}× [−1,1]. A
sutured Heegaard splitting of E(K) with respect to these sutures is precisely the restriction of
an ordinary Heegaard splitting of S3 to E(K) when E(K) is in 1–bridge position with respect to
this splitting (equivalently, when K is represented by a doubly pointed Heegaard diagram).
Also, it is not important here that the knot K is in S3, the same construction works in any
closed 3–manifold. But in S3 this is the standard construction used to apply sutured Floer
homology to knot complements [6].
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Figure 5.1. A knot in 1–bridge position giving a sutured Heegaard splitting.

(a) Standard sutured Heegaard diagrams for definition of relative trisection diagram.

(b) Standard curve system for definition of sutured Heegaard diagram.

Figure 5.2. Standard diagrams needed for the definition of relative trisection
and sutured Heegaard diagrams.

In dimension four, a knotted sphere K : S2 ,→ S4 has exterior E(K) with ∂E(K) parametrized
as S1 × S2, again with the first S1 factor being the meridian, i.e. the boundary of D2 in
ν(K) ∼= D2 × S2. Now if we identify S2 with ∂([−1,1] × D2), we get a natural open book
decomposition on ∂E(K), where the surface bundle part is the annulus bundle S1×[−1,1]×S1,
projecting onto the second S1 factor, and the neighborhood of the binding is the union of two
solid tori S1 × {−1,1} × D2. We can use the existence theorem above to conclude that this
open book extends to a relative trisection of the exterior, but in fact [5] shows that such a
relative trisection is actually the restriction to E(K) of an ordinary trisection of S4 when the
sphere K is in “1–bridge trisection position” with respect to this trisection, and [14] shows
how to put any sphere in such a position. As above, being in S4 is not essential.

It remains to discuss relative trisections from the diagrammatic perspective.

Definition 16. In which we define sutured Heegaard diagrams and relative trisection dia-
grams.
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Dimension four: A relative trisection di-
agram is a tuple (, α, β, γ) where  is a
compact oriented surface with nonempty
boundary and the triples (, α, β), (, β, γ)
and (, γ, δ) are each slide diffeomorphic to
a standard sutured Heegaard diagram as
shown in Figure 5.2a.

Dimension three: A sutured Heegaard di-
agram is a tuple (, α, β) where  is a com-
pact oriented surface with nonempty bound-
ary and the pairs (, α) and (, β) are both
diffeomorphic to a standard pair as shown
on the right in Figure 5.2b.

Note that we have dropped reference to the genus and other parameters describing the
exact standard diagrams used for these definitions since the naming of the parameters at
this point seems not to be helpful. Other references take care to name the genus, number of
boundary components, number of curves, and so forth.

Parts of the following result can be proved as basic exercises in both dimensions, but in
dimension four the heart of the result is perhaps nontrivial and is proved in [3], to which the
reader is referred.

Proposition 17. In which we relate sutured Heegaard diagrams and relative trisection dia-
grams to sutured Heegaard splittings and relative trisections.

Dimension four: Given a relative trisec-
tion diagram D = (, α, β, γ) there is a com-
pact 4–manifold X = X(D) with nonempty
connected boundary with relative trisection
T (D) = (X,X1, X2, X3) such that  = X1 ∩
X2 ∩ X3, oriented according to the conven-
tions in Definition 1, and such that the α
curves bound embedded disks in X3 ∩ X1,
the β curves in X1 ∩ X2 and the γ curves in
X2 ∩ X3.

Dimension three: Given a sutured Hee-
gaard diagram D = (, α, β) there is a su-
tured 3–manifold M = M(D) with sutured
Heegaard splitting S(D) = (M,M1,M2) such
that  = M1 ∩M2, oriented according to the
conventions in Definition 1, and such that
the α curves bound embedded disks in M1
and the β curves bound embedded disks in
M2.

• Any other relatively trisected 4–manifold
satisfying these same properties with re-
spect to the given diagram D is in fact ori-
entation preserving diffeomorphic to T (D).

• Any other 3–manifold with a sutured Hee-
gaard splitting satisfying these same prop-
erties with respect to the given diagram D is
in fact orientation preserving diffeomorphic
to S(D).

• For every relative trisection
T = (X,X1, X2, X3)

of a 4–manifold X there is a relative trisec-
tion diagram D such that T ∼= T (D).

• For every sutured Heegaard splitting
S = (M,M1,M2)

of a 3–manifold M there is a sutured Hee-
gaard diagram D such that S ∼= S(D).

Coming full circle to the Morse theoretic perspective, the last assertion in the result above,
that sutured Heegaard splittings and relative trisections come from diagrams, can be shown
by seeing that a Morse function or Morse 2–function inducing the given decomposition yields,
via the appropriate gradient-like vector fields, descending manifolds for the index 2 critical
points that intersect the central surface in precisely the curves of the diagram.

6. Surfaces in 4–manifolds

Meier and Zupan in [13] introduced the notion of bridge trisections of surfaces embedded
in S4, as the natural trisected generalization of bridge splittings of knots in S3, and further
generalized this to embedded surfaces in arbitrary 4–manifolds. Following our theme, we
introduce these decompositions from a Morse theoretic point of view. To do this we begin
with something easier than Definition 4:
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Definition 18. In which we define Morse functions and Morse 2–functions in the limited
context of dimensions one and two.

Dimension two: A Morse 2–function on a
2–manifold S is a smooth function ƒ : S→ R2

which, at every point p ∈ S, has one of the
following three forms with respect to ap-
propriate local coordinates (t, ) near p and
(,) near ƒ (p):

Dimension one: A Morse function on a 1–
manifold K is a smooth function ƒ : K → R

which, at every point p ∈ M, has one of the
following two forms with respect to appro-
priate local coordinates  near p and  near
ƒ (p):

• (t, ) 7→ ( = t,  = ); here p is called a
regular point.

•  7→  = ; here p is called a regular point.

• (t, ) 7→ ( = t,  = ±2); here p is called
a fold point; in this dimension all folds are
definite.

•  7→  = ±2; here p is called a critical
point, of index 0 if  = 2 and index 1 if  =
−2.

• (t, ) 7→ ( = t,  = 3 − t); here p is called a cusp point.

Here are the parallel basic facts to check (again assume that the domain of ƒ is closed):

• In both cases the inverse image of a regular value is an even number of points.

• In both cases the singular locus, the set of all critical points, is a closed codimen-
sion one submanifold, i.e. a finite collection of points in dimension one and a finite
collection of embedded circles in dimension two.

• In dimension two, the cusp points form a finite collection of points on the singular
locus.

• Via a small perturbation one may assume that the critical points of a Morse function
have distinct critical values

• Letting Z be the singular locus of a Morse 2–function ƒ , via a small perturbation one
may assume that ƒ |Z is an immersion with semicubical cusps, with at worst double
point self intersections, none of which occur at cusps.

• If ƒ : S → R2 is a Morse 2–function and A is an arc in R2 avoiding the cusps and
transverse to the image of the singular locus, then K = ƒ−1(A) is a 1–manifold in X,
with ∂K = ƒ−1(∂A).

• Furthermore, if we identify A with an interval in R via some embedding A ,→ R then
ƒ |M : M → A is a Morse function with critical points where A crosses folds. Reversing
the orientation of A changes the indices of these critical points, with index 0 becoming
index 1 and vice versa.

• Crossing a definite fold in the index 0 direction adds a new pair of points to the fiber
while crossing in the index 1 direction removes such a pair.

Definition 19. In which we define bridge splitting Morse functions and bridge trisecting
Morse 2–functions. (Recall the Rθ and A notation introduced earlier for rays and sectors in
R2.)

Dimension two: A bridge trisecting Morse
2–function ƒ on a surface S is a Morse 2–
function ƒ : S→ R2 such that:

Dimension one: A bridge splitting Morse
function ƒ on a 1–manifold K is a Morse func-
tion ƒ : K → R such that:

• 0 = (0,0) is a regular value of ƒ . • 0 is a regular value of ƒ .
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• On each of the three rays R0, R2π/3 and
R4π/3, ƒ has only index 1 critical points, all
of which have distinct critical values.

• On each of the two rays R0 and Rπ, ƒ has
only index 1 critical points, all of which have
distinct critical values.

• Over each of the three sectors A1, A2 and A3, the singular locus of ƒ consists of arcs from
one bounding ray of A to the next with at most one cusp on each arc. Furthermore, in R2

each of these components is transverse to each ray Rθ except at cusps, which are tangent
to the rays, and ƒ restricted to the singular locus is an immersion with cusps and double
points avoiding the cusps.

A bridge splitting function on a 1–manifold K decomposes K into K1∪K2, where each K is a
collection or arcs. A bridge trisecting function on a surface S decomposes S into S1 ∪ S2 ∪ S3,
where each S is a disjoint union of disks, each S∩Sj is a disjoint union of arcs, and S1∩S2∩S3
is an even number of points.

Definition 20. In which we define bridge splitting Morse functions and bridge trisecting
Morse 2–functions on pairs.

Dimensions two and four: A bridge tri-
secting Morse 2–function ƒ on a surface S
embedded in a 4–manifold X is a trisecting
Morse 2–function ƒ : X → R2 such that ƒ |S is
a bridge trisecting Morse 2–function on S.

Dimensions one and three: A bridge split-
ting Morse function ƒ on a 1–manifold K em-
bedded in a 3–manifold M is a Heegaard
splitting Morse function ƒ : M → R such that
ƒ |K is a bridge splitting Morse function on K.

• A generalized bridge trisection of a sur-
face S embedded in a 4–manifold X is a
decomposition (X, S) = (X1, S1) ∪ (X2, S2) ∪
(X3, S3) coming from a bridge trisecting
function in the the sense that X = ƒ−1(A)
and S = S ∩ X.

• A generalized bridge splitting of a knot or
link K in a 3–manifold M is a decomposition
(M,K) = (M1, K1) ∪ (M2, K2) coming from a
bridge splitting function ƒ , in the sense that
M1 = ƒ−1(Rπ), M2 = ƒ−1(R0) and K = K ∩M.

• A bridge trisection is a generalized bridge
trisection of an embedded surface in S4 for
which the underlying trisection of S4 has
genus 0.

• A bridge splitting is a generalized bridge
splitting of a knot or link in S3 for which the
underlying Heegaard splitting has genus 0.

The reader show now check that the following conditions follow; these are usually taken
as the standard definitions of bridge splitting and bridge trisection:

1. In dimensions one and three, the arcs making up K are properly embedded and si-
multaneously boundary parallel in the handlebody M.

2. In dimensions two and four, the disks making up S are properly embedded and simul-
taneously boundary parallel in the 4–dimensional 1–handlebody X.

3. The intersection S ∩ Sj is a collection of arcs properly embedded and simultaneously
boundary parallel in the handlebody X ∩ Xj.

Meier and Zupan [13] showed that every surface in S4 can be isotoped so as to be bridge
trisected by the standard genus 0 trisecting Morse 2–function, and later [14] showed how to
do this in arbitrary 4–manifolds with respect to arbitrary trisections. The analogous statement
for knots and links in 3–manifolds is standard. There are also uniqueness statements up to
stabilization moves, but we will not discuss those here.

There are actually several interesting ways to think about (generalized) bridge trisections
diagrammatically. Since there is quite a lot to say, we describe these vaguely and give ref-
erences for details. Honest bridge trisections, and bridge splittings, are described by tangles
in 3–balls, so these can simply be drawn as standard tangle diagrams. These are the dia-
grams discussed in [13], and are called triplane diagrams. Trivial (boundary parallel) tangles
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can also be described as half-plat closures of braids, and thus bridge trisections can also be
described by braids; this perspective is important in Saltz’s work [16] on Khovanov-style in-
variants of surfaces in S4. In more general 4–manifolds, one needs to record the trisection of
the 4–manifold as well as the surface, and this can be done either through multi-pointed dia-
grams or by “shadow diagrams”, in which each arc in each tangle is described by it’s shadow
on the trisecting surface. Shadow diagrams are used in [9], while multi-pointed diagrams are
discussed in [5].

As a final remark, in the discussion in this section we have assumed that the ambient
manifolds and submanifolds are closed; the fully relative case, in which either or both may
have boundary, is obviously more subtle but can be understood with care. The details have
been worked out by Meier [12].
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