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Abstract

In this thesis we study particular solutions for some nonlinear dispersive partial
differential equations which appear in Physics, such as the nonlinear Schrédinger
equation, the Benney-Luke equation or the Benjamin-Ono equation. We are par-
ticularly interested in the stationary waves and in the travelling waves of these
equations. This gives nonlinear elliptic problems in the whole space. Solitary and
travelling waves for the considered equations have been observed in experiments and
in numerical simulations. In some cases, these solutions seem to play an important
role in the general dynamics of the corresponding evolution equations.

In the first chapter we prove the analyticity and we find the optimal algebraic
decay rate at infinity of solitary waves to the Benney-Luke equation and to the
generalized Benjamin-Ono equation.

The second chapter is devoted to the proof of existence of stationary solutions for
a nonlinear Schrodinger equation with potential in one dimension which describes
the flow of a fluid past an obstacle.

In the third chapter we prove the existence of unstationary bubbles for the
nonlinear Schrédinger equation in space dimension greather or equal than 4 by
using a new and general result in critical point theory.

Key words: Nonlinear elliptic equation, existence of solutions, regularity, de-
cay at infinity, nonlinear Schrodinger equation, stationary waves, travelling waves,
Mountain-Pass Theorem. ‘

AMS subject classification: 35A15, 35B32, 35B40, 35B65, 35J10, 35J20,
35J60, 35P05, 35Q35, 35Q51, 35Q53, 35Q55.
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Introduction

Les travaux présentés dans cette these portent sur I’étude des solutions particulieres
de certaines équations aux dérivées partielles dispersives issues de la physique,
comme par exemple I’équation de Schrodinger, ’équation de Benney-Luke ou I’équation
de Benjamin-Ono. Les solutions étudiées sont de type ondes stationnaires (in-
tuitivement, il s’agit d’un profil qui tourne périodiquement en temps) ou ondes
progressives (i. e. un profil qui se déplace & vitesse constante dans une certaine
direction de l’espace). Ceci nous conduit & des problémes elliptiques non-linéaires
dans 'espace R tout entier. Des solutions de type onde progressive ou bien onde
stationnaire pour les équations considérées ont été observées dans les expérimenta-
tions ou dans les calculs numériques. Dans certains cas, elles semblent jouer un réle
important dans la dynamique générale des équations d’évolution correspondantes.

Le premier chapitre est consacré a I’étude des propriétés qualitatives des solu-
tions de quelques équations elliptiques non-linéaires dans R". Plus précisément, on
s’intéresse a la régularité et a la décroissance a l'infini. Pour démontrer la régularité
dans les espaces de Sobolev W*? on utilise la théorie classique des multiplicateurs
de Fourier. Il s’avere que les solutions étudiées sont méme plus réguliéres que C'*
: elles sont analytiques. Pour prouver ce fait, on fait utilise la technique suivante:
tout d’abord on estime par récurrence |£[¥4, k € N (u étant la solution et U sa
transformée de Fourier) dans une certaine norme (le plus souvent, la norme L?).
Les majorations obtenues permettent d’estimer la norme de e°lél% pour un certain
o > 0. En utilisant la théorie de Paley-Wiener on en déduit 1’existence d’un pro-
longement analytique de u dans une N-bande {(z1,...,2y5) € CV | |Im(z)| < o}
Cette méthode a été utilisée par J. L. Bona et Yi A. Li pour des problémes en di-
mension 1 de l'espace dans [26]. Ils ont obtenu un résultat général qui implique
I’analyticité des ondes stationnaires et des ondes progressives d'un grand nombre
d’équations & une variable d’espace. L’intérét de notre travail a été d’adapter ces
techniques & quelques problemes en dimension supérieure.

Pour obtenir des résultats de décroissance a ’infini, on dispose d’une méthode
assez générale qui consiste a transformer 1’équation aux dérivées partielles en une



équation de convolution

u=kxG(u).

Ensuite, la preuve comporte généralement trois étapes:

1. Trouver le taux de décroissance du noyau de convolution k. Parfois on
connalt méme explicitement ce noyau, mais il existe aussi des cas ou on a besoin
d’estimations assez délicates. -

2. Obtenir une premiére estimation (non-optimale) de u. Cela se fait dans cer-
tains cas & ’aide méme de 1’équation de convolution, en exploitant la décroissance
de k et le comportement surlinéaire de G. Dans d’autres cas, il faut multiplier
’équation satisfaite par u par des multiplicateurs de Pohozaev bien choisis. Le
plus souvent on trouve a cette étape une estimation intégrale.

3. Améliorer I’estimation initiale par un argument de “boot-strap” en utilisant
I’équation de convolution et passer & une estimation ponctuelle. En général, on
peut s’attendre a ce que les solutions décroissent au moins aussi vite que le noyau
de convolution.

Cette méthode a aussi été utilisée par J. Bona et Yi Li pour des problemes
" unidimensionnels. Ils ont prouvé un théoreme général de décroissance qui s’applique
aux solutions d’une large classe d’équations. Une variante de la technique que nous
venons de décrire a été employée par A. de Bouard et J.-C.Saut pour démontrer la
décroissance & l'infini des ondes solitaires de I’équation de Kadomtsev-Petviashvili
(KP-I) en dimension 2 et 3.

Dans la section 1.2 nous étudions les ondes solitaires de 1’équation de Benney-
Luke. Cette équation décrit la propagation des vagues longues avec une petite
amplitude dans l’eau en présence d’une tension superficielle. Modulo un change-
ment d’échelle, une onde solitaire est une fonction de deux variables z, y qui satisfait
I’équation

(1) (2 — 1)Uzg — Uyy + (@ — b Uggae + (20 — D) Ugayy + QUyyyy—
c(3UzlUge + Ugllyy + 2Uylgy) = 0.

ol les paramétres a,b,c sont positifs et ¢ < min(l, %) L’existence des ondes
solitaires dans un espace de Sobolev a été démontrée par R. L. Pego et J. R.
Quintero en 1998 en utilisant la méthode de concentration-compacité (v. [39]).
Nous étudions les propriétés qualitatives des ondes qu’ils ont trouvées. En ce qui
concerne leur régularité, on obtient les résultats suivants:
Théoréme 1. Soit u une solution de (1). Alors:

a) u € W*P(R?) pour tout k € N et pour tout p €]2,0] ;

b) ug,uy € WHP(R?) pour tout k € N et pour tout p €)1, 00].
Théoreme 2 Soit u une solution de (1). Il existe o > 0 et une fonction U(z1, 23)
définie et holomorphe dans le domaine

Qy = {(21,22) € C* | |Im(2)| < o, [Im(2)| < o}

telle que U(z,y) = u(z,y), V(z,y) € R%
Le taux algébrique de décroissance des ondes solitaires est donné par

Théoréeme 3. Soit u une solution de (1). Alors:
a) r’D%u € L®(R?),Va e N2, |a| > 1 ot 1T = /22 + 92 ;
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b) ru € L®(R?).

Il est intéressant de remarquer que u ¢ L*(R?) et ug,u, ¢ L'(R?), donc les
taux de décroissance donnés par le Théoreme 3 pour u et u,,u, sont optimaux.

La preuve du Théoréme 3 se fait selon le schéma déja préseté et comporte

plusieurs étapes :
1. A l'aide des multiplicateurs de Pohozaev bien choisis on obtient les estima-

tions intégrales

/ r|V2ul’dzdy < 0o et / r?|V3ul*dzdy < co.
R? R2

2. Soit Q(£1,&) = (L= )&+ &2 + (a—bc)&d + (2a — be?) €262 + a5 le symbole
de la partie linéaire de ’équation (1) et soit g = 3uzUgy + Uglyy + 2Uyyy, On éerit
(1) sous la forme

ug = ichy x g, respectivement u, = ichp xg, ouh; = F1 <_§’__..) )

Q(€17 52)

3. On montre que rh; € L2(R?).
4. A laide de l'inégalité |ru,| < C(|rhi| * |g] + |h1] * |rg]) on prouve que
ruz € L*°(R?) et ru, € L®(R?).

5. Soit k;; = F! (Qéﬁz)) et ¢1 = Jul + jul, ¢ = ugu,. L’équation (1)

implique
Uy = —Ckiy x @1 — ckia* 2, Uy = —ckyy *p1 — cka x pa.

6. On prouve que l;,; € H'(R?), 0<s< 1, kjeLYR?, 1 <g<2et
r’k;; € L°(R?).

7. On obtient d’abord que r'*%u,, r'*u, € L*(R?), V§ € [0,1), ensuite que
rug, r?u, € L°(R?).

8. On démontre b) en utilisant I’identité u = ichy % 1 + icha * @o.

Dans la section 1.3 on étudie les ondes solitaires d’une généralisation en dimen-
sion 2 de I’équation de Benjamin-Ono

(2) A+ 0AA, — B(—A)F A, = 0.

Cette équation apparait dans plusieurs probléemes physiques. Les ondes solitaires
sont des solutions de type A(z,y,t) = u(z — ct,y). Apreés un changement d’échelle,
ces sont des solutions de I’équation

o

(3) u+ (—=A)zu =u®> dans R

1l est facile de montrer l'existence des ondes solitaires dans Hz(R?). On peut
utiliser soit le principe de concentration-compacité de P.-L. Lions, soit une méthode
alternative A ce principe diie & O. Lopes. Les solutions obtenues ont des propriétés
variationnelles remarquables: elles sont des minimiseurs de 1’“énergie” associée a
(2) sous la contrainte “charge”= constante. Nous avons obtenu le résultat suivant
sur la régularité des ondes solitaires:
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Théoréme 4. Soit u € H2(R?) une solution de (3). Alors:

a) u € WHP(R?), Vk € N, Vp € [1,00]. En particulier, u est une fonction
réguliére qui tend vers zéro d l'infins.

b) Il existe o > 0 et une fonction U(zy, z2) définie et holomorphe dans le domaine

Oy = {(21,22) € C* | |[Im(z)| < 0, |[Im(22)| < 0}

telle que U(z,y) = u(z,y), ¥(z,y) € R%
On a montré aussi un résultat de décroissance a l'infini des solutions d’une
généralisation de I’équation (3). Plus précisément, considérons 1’équation

(4) 1+ (=A)?)u = g(u) dans R",

ot g : C —> C est continue et il existe v > 1,C > 0 tels que |g(z)| < C|z|". On a

Théoréme 5. Soit u une solution de (4). Supposons que:
- soit u € LP(RY) pour unp € ](y —1)N,00[, p > 17,
- soitu € L°(RY) et lim u(z) = 0.

|z| =00

Alors |z|N*1u(z) € L®(RY).

Pour démontrer le Théoréme 5 on écrit (4) sous la forme

u=kx*g(u)
avec k = F1 (Fﬂ{]) Ensuite on estime le noyau de convolution £. On trouve
qu’il se comporte comme le% pour |z| petit, respectivement comme ﬁﬁ pour
|z| grand (N > 2). En utilisant I’équation de convolution on montre I’ “estimation
initiale”
|2/°u(z) € LYRY), Vg €]N,cof, V6 €01

Ce premier résultat de décroissance est amélioré aprés par un argument de “boot-
strap” et on aboutit & la conclusion du théoréme.

Le Théoréme 5 implique que les solutions de (3) dans RY décroissent comme
l—zl—ﬁ,ﬁ . ce taux algérique est optimal car on ne peut pas avoir |z|u € L}(RYM) a
cause du fait que Z;u = 0, U sont des fonctions discontinues & l’origine.

Dans le deuxiéme chapitre on étudie une équation de Schrodinger en dimension
1, avec potentiel. Celle-ci décrit, par exemple, ’écoulement derriere un obstacle
immobile d’un fluide de SNL injecté avec une vitesse constante v a 'infini. Elle peut
aussi étre interprétée comme 1’équation du mouvement avec une vitesse constante
v d’une impurité dans un fluide au repos a l'infini. L’équation est la suivante:

(5) iA; — Ay, = —Age — A+ |APA+U(z) A

Le potentiel U est une mesure positive et modélise ’obstacle (respectivement 'impurité).

On cherche des solutions stationnaires (i.e. qui ne dépendent pas de t) dont le mod-
ule tend vers 1 & +o0o. On a des raisons heuristiques de croire que de telles solutions
n’existent pas si v > v/2 (a I’échelle de ’équation, v/2 représente la vitesse du son
dans le milieu considéré).

v



L’équation (5) a été étudiée par V. Hakim dans [23]. Dans le cas ou le potentiel
est une masse de Dirac, il a montré I’existence d’une vitesse critique v, telle que
pour v < v, il existe deux solutions stationnaires de (5), 'une étant stable et
l’autre instable. En utilisant des développements asymptotyques formels et des
calculs numériques, il a montré qu’un phénomene similaire a lieu pour des potentiels
petits et pour des potentiels qui varient lentement (i.e. de la forme U(ez), € petit).
Dans tous ces cas les deux solutions stationnaires s’identifient lorsque v = v, et
disparaissent pour v > v.. La vitesse critique dépend du potentiel et est plus petite
que la vitesse du son. V. Hakim a aussi étudié numériquement les solutions de (5)
qui dépendent du temps lorsque v > v..

Notre but a été de démontrer rigoureusement une partie de ces résultats.

Dans le cas U = g (ou § est la masse de Dirac) I’équation (5) peut étre intégrée
et on obtient explicitement les solutions stationnaires. Pour une vitesse v donnée,
on trouve deux solutions distinctes si g < ¢(v); ces solutions s’identifient lorsque
g = ¢(v) et disparaissent quand g > ¢(v). Ici ¢(v) est une fonction positive qu’on
sait déterminer.

Dans le cas général, on a démontré ’existence de deux fonctions positives ¢, (v)
et ¢o(v) avec les propriétés suivantes:

1° Si ||U]|] < ¢1(v), (5) posséde au moins une solution stationnaire qui est un
minimiseur de 1’énergie associée sur un certain ouvert de H!(R). ||U|| représente
la variation totale de U.

2° Si ||U]] < ¢éa(v) et si U est a support compact, (5) admet une deuxiéme
solution stationnaire.

La preuve de 1° est classique. La démonstration de 2° est plus délicate et
repose sur une variante du Lemme du Col due & Ghoussoub et Preiss. La difficulté
essentielle est d’obtenir des informations assez précises sur les suites de Palais-
Smale pour déduire leur convergence et pour montrer que cette deuxieme solution
est différente de celle obtenue par minimisation au 1°.

Dans la section 6 on montre l’existence des ondes progressives non-triviales du
systeme

2ietYy, = —2uo + (U + Zlel* - 1)y,
©) { 2200y = —&2pus + (Y2 — 2k3))p TE€R, 1eR,

ou v et ¢ sont des fonctions complexes et vérifient les conditions au bord 1y — 1,
@ — 0 lorsque £ — +00. Ce systeme a été introduit par Gross et Clark dans les
années soixante et intervient dans ’étude du mouvement d’une impurité dans un
condensat de Bose. Le systéme a été étudié ensuite par J. Grant and P. H. Roberts
dans [22]. En utilisant des développements asymptotiques formels et des calculs
numériques, ils ont trouvé le rayon effectif et la masse induite de I'impurité.

On remarque qu’il existe des solutions de (6) de la forme ¥(z,t) = A(z — vt),
o(z,t) =0, ou A est (aprés un changement d’échelle) une solution stationnaire de
(5) avec U = 0. Ces sont les ondes progressives triviales de (6). Nous obtenons par
une technique classique de bifurcation une courbe réguliére d’ondes progressives
non-triviales.

Notons qu’il serait intéressant d’étudier le systeéme (6) en dimension 2 ou 3
d’espace (bien siir, dans ces cas il faudrait remplacer les dérivées secondes par le



laplacien); c’est dans ces dimensions qu’il décrit des phénomenes physiques réels.
L’existence des ondes progressives en dimension plus grande que 1 reste un probleme
ouvert.

Dans le troisiéme chapitre nous nous intéressons a l’existence des ondes progres-
sives (appellées également “bulles instationnaires”) pour I’équation de Schrédinger
non-linéaire

0
(7) za—f +Ap+F(le|)e=0 dans RY

oll ¢ est une fonction complexe qui satisfait la “condition aux limites”. |p| — 7
quand |z| — oo et Ty > 0 est tel que F(r3) = 0. Le cas modele est celui de
’équation de Schrédinger “43 — 9°”

®) i 4 Ay — an + ol — aslpl*p =0 dans R?,

ot
avec oy, s, a3>0etf‘—6<9%§‘—5<i.

Les équations (7) et (8) apparaissent dans une large variété de problémes physiques,
voir [3].

Il existe des solutions de (7) de la forme (¢, z) = e“'y)(z), qu’on appelle des
bulles stationnaires. Ce type de solutions a été étudié dans [13], o on a montré
par une analyse spectrale délicate qu’elles sont instables.

Nous nous intéressons a un autre type de solutions particuliéres, les bulles in-
stationnaires, qui sont les solutions de la forme (¢, z) = ®(x1 — ct, z2,...,Zn).

Il a été démontré qu’en dimensioin 1 il existe des solutions localisées de type
bulles instationnaires qui se déplacent avec une vitesse ¢ et ont la forme (¢, z) =

®(z — ct). La condition aux limites devient dans ce cas ligl ®(z) = roe™, ot p
T—T0

dépend de c et 4 = 0 quand ¢ = 0.

L’existence des bulles instationnaires en dimension 2 et 3 a été annoncée par
Zhiwu Lin dans [28] en 1999. Il fait appel & la formulation hydrodynamique de
I’équation de Schrédinger non linéaire et il a cherché des ondes progressives de la
forme \/pe® avec p € H*(RY) et § € H*(RY), N = 2,3. Ensuite il a appliqué
la méthode de Lyapounov-Schmidt aux équations en p et § (comme, par exemple,
dans [20]).

Si la nonlinéarité F' est d’un type différent (“op — ¢*”), (7) devient I’équation
de Gross-Pitaevskii

W + AP + 19 — [’ = 0.
Il a été démontré par F. Bethuel et J.-C. Saut que cette équation posséde des ondes
progressives de vitesse c si c est suffisament petite (voir [11]). Les ondes solitaires
qu’ils ont trouvées ont deux vortex de degrés +1, situés a une distance de ’ordre de
% quand ¢ — 0. La preuve est tres délicate et utilise des méthodes variationnelles
(le lemme du col de Ghoussoub et Preiss) et des techniques développées pour ’étude
des vortex dans ’équation de Ginzburg-Landau.

Les conditions que nous imposons sur la nonlinéarité F' sont trés proches des
hypothéses faites dans [13] ou dans [28]. Sous ces conditions, le probléme station-
naire

9) Ap+ F(lol)p =0

VI



admet en dimension N > 3 une solution de la forme ¢ = rp—u avec u € H'(R") qui

minimise parmi toutes les solutions de (9) I’énergie associée au probleme, E(p) =
3

E(ro —u) = /RN |Vu|?dz + /N V(|ro — u})dz, ot V(s) = / F(r)dr. On va

R s
appeler cette solution un état fondamentalet on la note ug. L’état fondamental a des

propriétés tout a fait remarquables: c’est une fonction réguliére, & symétrie radiale
et décroit exponentiellement & U'infini. Le résultat principal que nous obtenons est
le suivant:

Théoréeme. Soit N > 4. Il existe ¢y > 0 tel que pour tout |c| < co, I’équation (7)
posséde une solution de type bulle instationnaire p(z,t) = ®.(21 — ct,zs,...,Ty)
ot @, est de la forme ®, = 1y — uy . — iug,. avec u;, € H*(RV), uy, € DV2(RVN).
De plus, u1, — ug dans H*(RY) et uz, —» 0 dans DY(RV) quand ¢ — 0 et
les fonctions uy ¢, 2. ont une symétrie radiale dans les variables z,,...,zy.

Afin de démontrer ce théoréme, nous regardons les ondes progresives qui se
déplacent avec une vitesse ¢ petite comme des points critiques d’une certaine fonc-
tionnelle E, qui est une perturbation de la fonctionnelle d’énergie E. Cependant, les
résultats classiques de la théorie des points critiques ne s’appliquent pas a la fonc-
tionnelle F, car il semble extrémement difficile de mettre en évidence un change-
ment de topologie au niveau global dans les ensembles de niveau de E.. Pour
surmonter cette difficulté, nous démontrons un résultat général dans la théorie des
points critiques qui est une variante locale du théoréme du point selle de Rabi-
~ nowitz. Cependant, ce résultat abstrait nous donne I’existence des points critiques
seulement pour FE, restreinte au complément orthogonal du noyau d’un opérateur
linéaire A qui est le lindarisé de —Au + F(|ry — u|?)(ro — u) autour de ug. Il est
évident que les dérivées de wuy, %’;‘f, appartiennent & ce noyau. Une autre diffi-
culté importante a été de montrer que le noyau est engendré exactement par ces
dérivées. On concliit ensuite grace & I'invariance de E, par translations dans RY
que les “points critiques” trouvés sont des vrais points critiques (c’est a dire la
différentielle de E, en ces points s’annulle dans toutes les directions de 1’espace

fonctionnel considéré).

VII






Chapter 1

Qualitative properties of solutions
of some nonlinear elliptic
equations

1.1 Introduction

This chapter is essentially. devoted to the study of two kinds of properties of so-
lutions of elliptic equations in R": the regularity and the asymptotic decay at
infinity. We present several results and methods that can be applied to the solitary
and the standing waves of some types of equations.

In order to obtain W*P regularity, we use the classical theory of Fourier mul-
tipliers. In some cases it turns out that the solutions (and especially the solitons)
are even more regular than C'*°: they are analytic. This phenomenon is strongly
related to the properties of the symbol of the differential operator (the ellipticity is
needed in proofs) as well as to the nonlinearity. Essentially the method that we use
below to prove the analyticity of a solution u of an equation in the entire space is
the following: by an inductive argument we first estimate |£[*¥%, £ > 0 in a suitable
norm (usually, in the L?-norm). The bounds obtained allow us to estimate the
norm of €7 for a positive . Finally, the Paley-Wiener theory gives an analytic
extension of u in a symmetric N-strip {(21, - ,2,) € C¥| |Im(2;)| < o}. A de-
tailed description of this method and a general result which implies the analyticity
of solitons of a large class of equations in dimension 1 can be found in [26].

The decay at infinity of solitary waves was systematically studied in one di-
mension by Bona and Li (see [12]). They wrote a differential equation as a
convolution equation and then found the decay rate at infinity of solutions. They
obtained a general result which shows that the decay of solutions is related to the
decay of the convolution kernel k¥ (or, equivalently, to the regularity of its Fourier
transform) and to the nonlinearity present in the equation. It is proved that if the
Fourier transform k& € H*(R) for some s > 3, the solution decays at least as fast
as the kernel & itself. The main results of Bona and Li are the following:

Theorem 1.1 ([12]) Suppose that f € L*(R) wz’th‘ Ilim f(z) =0 is a solution of
T|—00



the convolution equation

(1.1) | f=kxG(f),

where G and k satisfy the following conditions:
i) G is measurable, bounded on any compact interval and there exist r > 1,

C > 0 such that
(1.2) |G(u)] < Clul", Vue[-1,1];

i) k is measurable and k € H*(R) for some s > 3

Then f € L' N L®(R) and |z|'f(z) € L* N L®(R) for alll € [0, s]. In particular,
feH®R).

Corollary 1.2 ([12]) In addition to the assumptions of Theorem 1.1, suppose that
there exists oy > 0 such that

e’k (z) € L*(R), Vo €[0,0).

Then e’®l f(z) € L*N L®(R), Vo € [0,00).
Theorem 1.3 ([12]) Suppose that f = k x G(f), where f, k and G satisfy the
assumptions in Theorem 1.1. Suppose also that there is a constant m > 1 such that

lim |z|™k(x) = Cy. Then it follows that

z—>+00

lim |o"f () = C. /_ " ).

z—+00

Theorem 1.4 ([12]) Under the assumptions of Corollary 1.2, suppose that for some
o9 >0,
lim eFlk(z) = C,.

T—>+00 -

Then el f(z) € L®(R) and

lim e®l"lf(z) = Ci/oo etollG(f(t))dt.

z—3+400 —

Bona and Li applied these results to a large class of equations, including those
of solitary-waves (i.e. solutions of the form u(z,t) = ¢(z — ct)) of the generalized
Korteweg - de Vries (KdV) equation

(1.3) U+ uz + Fu)y — (Mu), =0
and of the regularized long-waves (RLW) equation
(1.4) us + Uy + F(u), + (Mu)y =0

as well as to the stationary waves (i.e. solutions of the form u(z,t) = e“*p(z)) of
the nonlinear Schrodinger equation

(1.5) iuy — Mu + F(|u|)u = 0,



where M is a Fourier operator, that is m(f) = a(£)v(€). They found the decay
rate at infinity of these types of solutions under general assumptions on the symbol
a of M and on the nonlinearity F'.

There also exist several results about the decay of solutions of some particular
equations in higher dimensions (see [15], citeM1, citeM2). Although a general
theory containing all this results is not available, a careful analysis of the proofs
shows that in fact they all use the same method which we describe below.

For simplicity, consider a nonlinear equation of the form

(1.6) Au = F(u),

where A is a Fourier operator, i.e. @(5) = a(&)u(€). In order to get decay, some
conditions have to be imposed. We assume that k¥ = F~' (1) is a function which
decays “sufficiently fast” at infinity. We also suppose that F' has a superlinear
growth, that is there exists » > 1 such that

(1.7) |F(u)| < Clul".

—_—

At least formally, equation (1.6) can be written as a(§)u(€) = F(u)(€) or equiva-

lently @(§) = 57 F (u)(€), that is

(1.8) u = kxF(u).

Thus we have transformed equation (1.6) into a nonlinear convolution equation.
Next, the proof is usually divided into three steps:

1. Find the decay rate of the convolution kernel k. Sometimes this may be very
easy and there are even cases where k is known explicitly, but there are also cases
where a quite long and complicated calculation is needed.

2. Obtain a first decay estimate on u (usually, an integral bound). In some
cases, this can be done by multiplying the equation of u by suitable Pohozaev-type
multipliers and integrating, while in other cases we can get this directly from the
convolution equation (1.8) using the decay of k£ and the superlinear growth of F
near 0.

3. The estimate obtained in step 2 is improved by a boot-strap argument. In

general, one can expect that the solution u decays at least as fast as k.
Remark 1.5 The fact that F' has a superlinear growth is very important. The
solutions of a linear equation do not necessarily decay even if the convolution kernel
k decays very fast. For example, in the “limit case” when k is the Dirac mass §
(which decays as fast as one could imagine, that is vanishes outside {0}!), taking
F(z) = z equation (1.8) becomes d *xu = u and this is satisfied by any “reasonable”
function u (for example, by any function that lies in some Sobolev space).

On the other hand, one may ask if the solutions of (1.6) or (1.8) decay faster if
the exponent r in (1.7) is greater. The answer is negative even in dimension one.
For example, consider the solitary waves u(z,t) = ¢.(z — ct) of the KdV equation

Us + Uy + UPUL — Ugzy = 0.

It can be seen that ¢, behaves at infinity like e~Ve=112l, and this for all values of
p > 0.



Remark 1.6 Some obstructions may occur sometimes and prevent the solution of
an equation to decay too fast. One example is given by Theorem 1.3 or Theorem 1.4.
(o]

If C. #0or C_ # 0 and we know & prior: that / G(f(t))dt # 0 (respectively,

—00

that / et?G(f(t))dt # 0), then f decays exactly as |z|™™ (respectively, as

—00
e~ and not faster.
Another simple (and related) example is the following: suppose that v € L™ N

L*®(RN) satisfies (1.6) (or, equivalently, (1.8)) and / F(u)dz #0. If k(&) = a(g)

is not continuous at the origin, then u cannot belong to L}(RY). In particular, we
cannot have an estimate of the type |u(z)| < Tl —%+ for a positive 7. Indeed, suppose

that u € LY(RYN). Clearly F(u) € L*(R"). Hence ¥ and I*{'(\) are continuous. The
equamon gives U = kF( ) But this is absurd because % is not continuous at zero
and F(u)(O) = / F(u)dz # 0.

RN

A variant of the method described above was applied by A. DE BOUARD and
J.-C. SAUT to prove the decay of the solitary-waves v(z1,...,znN,t) = u(z; —
ct,Ta,...,zy) to the Kadomtsev-Petviashvili (KP-I) equation

(1.9) v + |VPvs, + Vgigz, — Dt ATv=0 inRY, N=2,3,

z1
where D h(z1,...,28) = / h(s,T2,...,zy)ds and At = 8;,,+. .. Ozpey- The

—00
equation satisfied by the solitary waves is, modulo a scale change,
| 1
(1.10) —Au+0, u+ m(up+l)x1x1 =0.

It was proved in [14] that solitary waves exist in the space Y = closure of 8, C{°(RY)
for the norm |0, 9|13 = ||[Vo|l3: + 1|02, ¢|[2. if and only if 1 < p < 4if N = 2,
respectively 1 < p < % if N = 3. Moreover, these solutions are radially symmetric
in y = (x9,...,zx) and belong to H*(RY) for all s (see [15]). The following (opti-
mal) result about the decay of the solitary waves was proved in the 2-dimensional
case:

Theorem 1.7 ([15]) Any non-trivial solitary-wave of (1.9) satisfies
r’u € L®(R?), wherer? =z? 4+ z2.

The proof of Theorem 1.7 consists in the following sequence of steps:
: / r(|Vu|* + |tg,4, |*)dz < 0o (use Pohozaev multipliers).
R2

Write u = ih % (uPu,), where h = F~! (5t

Show that h(z1,z2)| < <.
ru € L*(R?) (use 2, 3 and Young’s inequality).

Write u = :#k*u’”l, where k = F1 (#}Ef)
Show that k € H*(R?), Vs € [0,1) and r%k € L®(R?).

[u—y

)

o oW



7. Prove that r®u € L2(R?) for all § € [0,1) (use 5, 6 and Young’s inequality).
8. Prove that 717°Vu € L?(R?) and r'*%u,,,, € L?(R?) for all § € [0,1) (use
the equation and Pohozaev-type multipliers).
9. Conclusion: |r2u| < C[(r2%k) x |[ulP™ + k* (r?uP*1)] € L>°(R2).
In dimension N = 3, a similar proof gives
Theorem 1.8 [15] Any nontrivial solitary wave of (1.9) satisfies

3
ru € L*(R?), V6 €0, 5), where * = 3 + 13 + T2

In the next sections we show how the method presented above can be applied
to the solitary waves of the Benney-Luke equation and to the solitary waves of the
generalized Benjamin-Ono (BO) equation.






1.2 Analyticity and decay properties of the soli-
tary waves to the Benney-Luke equation
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1.2.1 Introduction

In a recent paper [39] PEGO and QUINTERO studied the propagation of long water
waves with small amplitude. They showed that in the presence of a surface tension,
the propagation of such waves is governed by the following equation originally
derived by BENNEY and LUKE (see [5] ):

(1.1) ®y — AP + p(aA?® — bAD,) +£(9,AP + (V)?) =0 .

Here a and b are positive and satisfy a — b = o — ; where o is the Bond number,
while the parameters € and p are supposed to be small.

Pego and Quintero looked for traveling-wave solutions of (1.1), that is solutions
of the form

uw o x—ct y

O(z,y,t :i/——u ,—) .

R L

The scaling was introduced here to eliminate € and p. A traveling-wave profile u
should satisfy the equation

(€ = Dugg — Uyy + (@ — ) Ugzzz + (2 — B )Ugayy + QUyyyy —

1.2

The energy associated to u is

1
(1.3) E(u) = 3 /Rz(l + Al + vl + (a+ bc?)ul, + (20 + be)ul, + aul, dzdy .

It was proved in [39] by the means of the concentration-compactness method
that if the wave speed c satisfies ¢ < min(1, %), then there exist non-trivial finite
energy solutions of (1.2) in a space V, where V is the completion of C$°(R?) for
the norm

e lI5= /R 02+ 02 + g2y + 202 + @2, dzdy .

The Benney-Luke equation reduces formally to the Kadomtsev-Petviashvili (KP)

.. . €t
equation after a suitable renormalization. Indeed, putting 7 = > X =11t

Y = ety and ®(z,y,t) = f(X,Y,7), neglecting O(e) terms we find that n = fx
satisfies the KP equation

1
(1.4) (nr — (o = g)ﬂxxx +3mx)x +nyy =0 .

DE BOUARD and SAUT proved (see [14]) that finite energy solitary waves exist
for the KP equation when o > 1 (the KP-I case).

Moreover, let o > } (that is, @ > b), ¢ = 1 — ¢? and let u, be the corresponding
solution of (1.2) obtained in [39]. Then if ¢ — 0, there exists a sequence (&;) such
that (u,) converges (after a suitable renormalization) to a distribution vy € D'(R?)
and 8,y is a nontrivial solitary wave of the KP equation (see [39]).

It is known (see DE BOUARD and SAUT [15]) that the solitary waves of the

1
KP equation are smooth and decay at infinity with an optimal algebraic rate (r_2

in dimension 2).



It is then natural to ask whether the Benney-Luke solitary waves have the same
properties. The aim of this paper is to give an answer to this question.

We suppose throughout that the parameters a, b, ¢ appearing in (1.2) satisfy:
a > 0 and if b > 0, then ¢* < min(1, $).

Our method follows very closely the ideas developed in [15].

This paper is organized as follows: in the next section we prove that the Benney-
Luke solitary waves are analytic functions. Section 3 contains our main result about
the decay at infinity of such waves. We give an algebraic decay rate which is optimal
for the solutions of (1.2) and their first order derivatives. In Section 4 we state some
integral identities satisfied by these solitary waves. Some technical facts about the
Fourier transform that we use in proofs are treated in an Appendix.

1.2.2 Analyticity

The aim of this section is to prove that any solution u € V of (1.2) is an analytic
function and tends to zero at infinity as well as all its derivatives. We begin with
the following result:
Theorem 2.1 Let u € V be a solution of (1.2). Then

a) u € WEP(R2) for all k € N and all p €]2, 00];

b) uz, uy, € WEP(R?) for all k € N and all p €]1, ).
Proof. We make extensively use of the following theorem on Fourier multipliers
due to LIZORKIN:
Theorem 2.2 ([30]) Let ® : R — R be a C™ function for || > 0, j =
1,...,n. Assume that

okd

k 0 n

"———— € L¥R") ,

& g e < (B

withk; =00r1l, k=k +...k,=0,1,...,n. Then ® € M,(R"™) for 1 < g < o0,
i.e. ® is a Fourier multiplier on LI(R™).

We have u,, u, € H'(R?) C LP(R?) for all p € [2,00[ by the Sobolev
imbedding theorem. The nonlinearity can be written as 8,(2u2 + 1u2) + 9, (u,uy).
Let Q(&1,&) = (1 — A)EE+ & + (a — be®)E} + (2a — be?) €282 + a&;. Equation (1.2)
gives

Q(&, &)ty = —51‘3-7'—( ul + U ) — &1&2cF (uzty)

and

Q6 &)y = ~6&cF (Gul + 2ud) — EeF (uan)

The Theorem 2.2 implies that u,, u, € L-”(RQ) for all p €]1,00|. Let @ = (a1, o) €
N2, We have:

Q(§1,€2)D u = i€ (i€)” Cf( u + u )+"§2('L§) C}-(umuy)
By Theorem 2.2, D*u € LP(R?) for all p €]1,00[ if |@| = 2,3. In particular,

Uz, uy € W2P(R?) C C'NL*®(R?) and for |a| = 2, D*u € WP(R?) C C°NL*®(R?)
by the Sobolev imbedding theorem applied for a p > 2.

10



The rest of the proof follows easily by induction. Suppose that all the derivatives
of u of order 1,2,...,n — 1 are in C°N L*® N L?(R?) and the n'* order derivatives
are in LP(R?) for all p €]1,00[. Let @ € N2 with |o| = n+ 1 and 8 < a with
la — B] = 2. Then

Q(&1, &) Do = i€ (€)™ ﬁcf(Dﬂ( —ul + ;’uy))+z’§2(i§)°‘_ﬁc.7-'(Dﬂ(uxuy)).
Again by Theorem 2.2 we obtain D*u € LP(R?) for all p €]1,00[. The Sobolev
imbedding theorem gives us D*u € C° N L®(R?) if |o/| = n. This finishes the
induction and the proof of part b).

Since u, u, € LP(R?) for p €]1,00], Theorem 14.4, p. 295 of [9] yields u €
L4(R?) for all q €]2, 00[ and

DN | =
+

1 1
| wllea< Cp || Vu [z, where — = -
p q
Hence u € W*9(R?) for all £k € N and all ¢ €]2,00[. Consequently u is a C®
function, it is bounded and tends to zero at infinity.
The Theorem 2.1 is proved. O

Remark 2.3 If u € V is a nontrivial solution of (1.2), then u, and u, are not in
LY(R?).

Proof. We argue by contradiction. Suppose u; € L*(R?). Then 1, is a continuous
function. But F(3u2 + ju2) and F(usu,) are also continuous functions and

8 &
Q6,8) Q&)

For a fixed A € R we put & = A\¢; and let £ — 0 in (2.2). We obtain

(2.2) Uz (&1, &) = .7:(3u + = ) - cF (uzty) -

c 3 1 cA
» —_— - Uy dzdy .
u(0,0) = 1~c2+)\2/ (zu2 +2uy)da:dy 1_62+/\2/RZu u, dzdy

Since this is true for all A € R we deduce that
3 1
(zu2 + zu?) dzdy = Ugly dzdy =0
R2 2 2 y R2

which implies that u is constant, contrary to the assumption. The same argument
applies to u,. O
Remark 2.4 If u € V is a nontrivial solution of (1.2) and riug, r%uy € L*(R?)
where r = /z% + y? (we shall see in the next section that this is always the case),
then u cannot belong to L*(R?).

Proof. Assume u € L2(R?). Then @ € L*(R?) and

S
Q(gla 52)

i
Q(gh 62)

(2.3) (60, 6) = }'(3u + luz) e F(ugny)

11



The fact that rzu,, r2u, € L2(R?) implies that g = c¢F(3u2 + iu 2) and g, =
cF (uguy) are C* functions. The equation (2.3) can be written as

U1, &) =
i -
(24) [Q(§1,€2) (91(517622 91(070)) Q(f{ 52) (92(51752) 92(070))] +
{5@76—2)91(0’0) 0, 6)° 2(0’0)}

Since g; and g are locally Lipschitz functions, the first term in the right hand side
of (2.4) is bounded for ¢ € Bgr2(0,1). This forces

i€y i, 2
06 & 00+ o 5200 € I(Bra(0,1))

1
But ¢,(0,0) = c/ (;u + 2uy)d:zcdy > 0, so it suffices to show that
R2

afy + &y
Q(éla 62)

if a, b € R, a # 0 to obtain a contradiction.
For £ varying in a bounded set K there exists myg > 0 such that Q(§) < mg|¢[2.

¢ L*(Br2(0,1))

We make the change of variables £ = a&; + bés, &€ =&, A= 8 117 ) We have:
(ay - 0o (& g
L ¥ = det(A)|"\d
/Rz 0,1) Q(§1a€2) 5 /ABRz 0,1) Q(A—l(fi,fé))z, et( )l f
> C .(_g_i)_Qdé" —o0. O

ABg2(0,) 1€']*

We prove now that any solution u € V of (1.2) is an analytic function. The
proof relies on the Paley-Wiener theory. We borrowed the ideas developed by L1
and BONA in [26].

Let u € V be a solution of (2.1). By Theorem 2.1 we have |[£|(1 + |£[2)%7 €
L%(R?) for all m. We take m > 1 and apply thy Cauchy-Schwarz inequality to get

1

/R lellae)log < ( /R P+ Iflz)"‘lﬂ(f)I?dE)% . ( /R a+ }§|2)‘md§) oo

Hence |¢|t € L}(R?). Equation (2.3) gives us

~ ic61€] (3 I e
&) = gree (3660 (6) + S(i6) * (6D)
icka[¢| e

+Q(€17 €2) ( flu) ('LfQU)

12



from which we infer that

3clé|?
Q(fh 52)

(2:5) [€llal < (I&lfal) (€] [al)-

3 1
Let M = max sup ( clél ) . Obviously M < co. We note
=234 \ (¢1,62)#(0,0) Q(£17 é.2)

¥(&1, &) = ME|- [a(&1,&2)]. Then ¢ > 0,9 € L}(R?) and the inequality (2.5) gives
(26) v <pxy, [l <Pxy and [P <Py

For an integrable function f we define C;f = f and for n > 1, C,f(z) = (f *
(Cn=1f))(z). We have

Lemma 2.5 The function v introduced above satisfies

k
(2.7) €Fy < (5 + 1)kﬂlcz([l;-]+1)1/’

where [z] denotes the greatest integer less or equal than .

Proof. We proceed by induction on k. From (2.6) it follows that (2.7) holds for
k =1,2,3. Notice that the first of the inequalities (2.6) implies that C,9 < C 9 if
p < r. We suppose that (2.7) is valid up to order k£ and prove that it is valid for
k + 2. We have:

EF2pE) < et * ) (E) = / EfFw(E = O) - p(Q)dC
< / <|§ ¢+ IC)MPE — ©) - $(Q)dC

_ /R 2 ch € — (€ - Q) - (IC[Fp(C))dc
L 1=0

= Y G P (- )
=0

: k! . : i
where C}, = m is the binomial coefficient. Using the induction hypothesis,

the last sum is majorized by

- k— i
ch ( + 1 : 162([%] w> * (( ) '+' 1)k IC

1=0

k—
—ch 1) —5 LRI 552 Y

=0
i—1 k U —i—
(Z 3Tl 5 T b 1) Cogegzn¥-
We use a specialization of the Abel identity (see [44], p. 26)

1 -1

ZC’k zy+13) Nz + k=9 = xlb(:ﬁ + 1) (z1 + T2 + k)*

13



for z; = x5 = 2 to obtain

k . .
. -1 i— k—z —f— 7 11— i—
nY Ci(z + D7 (5= + D = g5 Y G+ T 2+ k-

1=0 1=0

k-1 k 2 k+1
_ U+ ;’2 =22+ E)k‘1 < (——+ + 1> :

Hence (2.7) holds for k£ + 2 and the Lemma is proved. O

Theorem 2.6 Let u € V be a solution of (1.2). Then there ezists o > 0 and an
holomorphic function U of two complex variables z1, zo defined in the domain

Qy = {(21,22) € C* | |Im(21)| <0, |Im(2;)| < o}

such that U(z,y) = u(z,y) for all (z,y) € R2.
Proof. It is easily seen from (2.3) that |4(¢)| < — ¢ for 0 < |¢] < 1and [T(¢)] <

€l
for [€] > 1, so T € L'(R?).
Keeping the notation introduced above and using Lemma 2.5 we infer that for
k>1,

C
[

e = el Ml fa ()I=%I£I’“‘1¢(§)

SNis

k-2
<— +1 2([k 1 +1)1/)(§)

)

¢ L(5) e
)
)

|
Sl

< L(1
s(l

(55 + D29l - [l

11122 - 1IC3l ]2

k-2

111Z2 - 1111

P =
ut ag YiX Then
ag+1 1 k—+2 e
e ol (E22) — il koo
2 [o.¢}
Let 0 = ol The series Zaksk converges absolutely for |s| < o; we denote
Lt k=1

by C(s) its sum. Fix 01 €] 0,0 [ and choose o3 € | 01,0 [. One has

oo k o
e klaE) <Y “25 | @(E)| < [@E)] + ) _ ohar = [@(E)] + C(02).

k=0 ) k=1

14



Hence
601I§I|a(§)| < e—(ag—ﬂ)l{['ﬂ(é’)'+e—(02—01)|§|0(0—2)_

It follows that eI € L'(R2) for all o; < 0. We define the function

1

U(Zl,ZQ) = %

| e, ededea

By the Paley-Wiener Theorem, U is well defined and analytic in €, and the
Plancherel’s Theorem implies that U(z,y) = u(z,y) for all (z,y) € R2 This
proves the Theorem 2.6. d

1.2.3 Decay properties

We prove in this section that all the solutions in V of (1.2) decay at infinity as
and their derivatives decay as .
From (2.3) we deduce that

= jcF L _E_l_) § 2 l 2 . _1< & )
(31) u=1cF (Q(fla 52) * (zuz + 2U’y) +cF ——Q(gl, 52) * (Uz’uy) .
(2.2) gives us
— —eF ! E% ) § 2 l 2\ _ —1< £162 )
(3.2)  uz=-—cF (Q(&,fz) * (2uz + 2uy) cF 0. 5) * (uguy)

and similarly

(3.3) wu,=-cF! (——§€L—> * (§u2 + luz) —cF! (_&3__) * (ugly)
Y Q(é.l)g?) 2" 2Y Q(§1;€2) i
As we have mentioned in Introduction, our method was inspired by the work of
DE BOUARD and SAUT [15]. This idea had already been used by BONA and L1
(see [12]). It is based on the study of the convolution equations (3.1), (3.2), (3.3).
We begin with an integral estimate.

Theorem 3.1 Letu € V be a solution of (1.2). Then

(3.4) / (% + v?)|V?ul|?dzdy < oo
R2

and

(3.5) / (22 + )| Vul2dzdy < oo .
R2

Proof. Fix a function ¢ € C*®(R) such that ¢(z) = |z| for |z| > 1, ¢(0) =0, ¢
decrease on | — 0o, 0] and increase on [0, co[. We put

Xn(z) = e#) .
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We multiply (1.2) by z%xs(z)us, and integrate over R2. Using several integrations
by parts we have

/ Xn( )iL‘ UgrUzzzs dxdy =
R?

= — [ 8,0u(0) % tstizs dady — / xo(@) 2202, didy
1 R2 R2
2 R2 R2

/ (2)2%Uggtiyy dzdy =

/ 0z (X (T) T gty dzdy + Xn(T) T UgUsy,dzdy
= / 05 (Xn ()T Ugyuy dzdy + / Xn (7)z*uZ, dzdy
R2

Il

|

NV
\

)u dxdy+/ Xn(2)z?ul, dzdy ;
2

/ Xn(x)m2u$:l:uzzyy dzdy = — / Xn(a:) Mydxdy,

R? - R2

Xn(x)a:2umuyyyy dzdy =
2

= / Xn($)$2uxwyy“yyd$dy
R?2

/R (Xn (2) 2ty gy + Xn () :z:yy dzdy

1
3 / dmdy /R 2 Xn (7)z? zyyalacdy,

/ xn(x)xzumuzuyy dzdy =
R 1

T

Il

Oz(x (m)xz)uiuyy + Xn(l')xzuiuyyz dzdy

/ Oz (Xn uzyuzuy dzdy +/ xn(x):czuf,yux dzdy .

R2
Finally we get

(3.6)
[ 0@ = i a2y + (0= W + (20— b, + i) oy
R2
7 Xn(Z)z ugyux dzdy + 2¢ / X (Z) T U Uy uy dzdy
R2 R2
- 2 n[a=b , a4, 1
= Jre Ozz (Xn(7)z%) { 5 U c Quyy-}— 3ty ] dzdy .

16



1 T
S / - _ (__
ince x,,(z) n(p -

lzX. (z)] < kxn(z)? for all z € R and n > 1. We have

)e_‘p(%), there exists a constant £ > 0 such that

|0z(Xn (:r)zz)uzyuzuyl
< 1 ()2t sty + 2 (g
< kXn(T) 2 [TUgy sty | 4+ 2Xn () |TUzyuaUy |

k+2
< 5 [xn(x):quiy + uZ] |ty -

and

2| (xn (2) 2% oo UayUy| < X (2)2? (uzg + ugy)|uy| -
Let ¢ € ]0,1[. Since u; and u, tend to 0 as r — oo, there exists R, > 0 such
that |u,(z,y)| < € and |uy(z,y)| < € if |(z,y)| > Re. Then

‘ 2
c/ 02 (Xn (%) %) Ugy gy dzdy | < C/ E;;— [xn (@) 2?3, + ul] |us| dzdy
R2

RZ
k+2
< c/ _— [Xn(x):r2uiy + u;] |ug| dzdy
B(0,Rc)

2
+2
/R 2 Xn(2)z*uZ, + ul dzdy
~s/ Xn(:c)mzuﬁy dzdy
R2
where C'(¢) is a constant depending on e. Similar estimates hold for
/ Xn(2) 7202 Uy dzdy,
R2

Xn(T) T UgzUzyu, dzdy. We take ¢ sufficiently small to obtain
R2

, xn(m)x%iyuz dzdy and
R

30/ Xn(:v)ﬁuimum dzdy + c/ az(xn(m)xQ)uzyuxuy dzdy
R? R2

+c / Xn(2) 2 Ul us dzdy + 2¢ / Xn(T) T gz Uzyuy dzdy
R? R

1
<C+ —2-/ Xn(2)2?((1 — A)u2, + uiy) dzdy .
R2
where C' is a constant.
Combining the last inequality with (3.6) we get
1
—/ xn (2)22[(1 — )u?, + uzy] dzdy
2 Jr
B+ [ 6@l b + (o b, + ol dody

a — bc? a, 1,
<C+ /R2 3% (xn(z)z?) [ 5 ul, + 2 Uyy + Euy} dzdy .

When n — oo the left hand side of (3.7) tends to

1-¢ 1
/R2 z? [ 5 uZ, + Euﬁy + (a — bP)uZ,, + (2a — bc)ul,, + auiyy} dzdy

17



by the monotone convergence theorem, while the right hand side tends to
C+/Rz(a—bc) +au +u dzdy < oo

by Lebesgue’s theorem on dominated convergence. Hence

(3.8) /m T (Ulg + Ul 4 Ulgy + Ul + udy,) dzdy < o0 .

We multiply (1.2) by x»(y)y?us: and integrate over R? to get, after several
integrations by parts,

(3.9)
L Xn(y)y2[(1 - CQ)uiz + uf:y + ( bC ) xmz (20’ - bc2) :z:zy + auzyy] d.’IId’y

2
”‘36/ Xn(y)yzuizum dzdy + c/ ay (Xn(y)y2)uxzuzuy dzdy
2 R2

xn(y)y (uiyuz + QU UgyUy) dzdy

2 — 2
/ [aTbcu + 2au? +u} dzdy

/ oy O (V)Y 02 dzdy .

As previously, there exists a constant C' > 0 such that the last three terms in
the left side of (3.9) are dominated by

1
C+3 [ Xl (( =il 42y dady.

Then we have

1

5 | Xl = i ) oy

+/ X"(y)yQ[(a - ch) Uzge T (2& - bC ) Uzzy + a’uzyy] d.’l?dy

R2

a — bc?
2

—= / vy ( )y*)uZ dzdy

Passing to the limit as n — oo in (3.10 ) and using the monotone convergence
theorem for the left side and Lebesgue’s dominated convergence theorem for the
right side one obtains:

(3.10)

2
<C+ /R2 82, (xn(v)y?) [u2 + uZ, + 2auiy] dzdy

1-¢2 1
/Rz y2 [ 2 uiz + §u2y + (a' - bCZ)uixz + (2(1 - bc2) Uzzy + auzyy dacdy

<C +/ 2u2 + (2a — bc*)u2, + daul, drdy < oo .
R2

18



Thus
(3.11) /R2 Y (uly + ul, + uly, + uly, +ul,) dody < oo

Multiplying the equation (1.2) by xn(z)z2uy, (respectively by x.(y)y®uy,), in-
tegrating by parts and proceeding as above we obtain

(3.12) /R 2 2 (ul, + ugy + uly, + ul,, +ul, ) drdy < oo

and

(3.13) /R2 v (ul, +ul, +ul,, +ul,, +ud,) dedy < oo

Theorem 3.1 follows from (3.8), (3.11), (3.12) and (3.13). O

Lemma 3.2 We have ru, € L*(R?) and ru, € L*(R?).
Proof. From (1.2) we deduce that

(3.14) QR(&1, &)Uy = 1c§1 F (3uglay + Ugliyy + 2Uylyy)

and

(3.15) . Q(&1, &)y = 1c€oF (BugUsy + Uglyy + 2Uylzy)

We note h; = F ‘1(-—&—) and g = 3uzUgzy + Uglyy + 2UylUyy,. The previous
Q(gl’ 52)

equations can be written as

ugz = ich; xg and u, =ichyxg
Then
(3.16) [ruz| < Clrha| x |g| + Clhi| * [rg| .

We claim that rg € W'P(R?) for all p € [1,2]. Indeed, Theorems 3.1 and 2.1
imply that rg € LP(R2) for all p € [1,2]. Moreover, since 7V3u € L?(R?) we have
(denoting by D one of the operators 9, or 9,):

D(rDuD?u) = (Dr)DuD*u + rD*uD?u + rDuD?u € LP(R?)

for 1 < p < 2. Thus D(rg) € L?(R?) and so rg € W'?(R?).

It is clear now that |rg| € WH?(R?).

By Lemma Al in Appendix we have rh; € L°(R?). Then h; € L%(R?) and
using the generalized Young’s theorem we deduce

|hi| % |rg| € LY(R?) if 2< g < o0

and :
| D(|hi| * |rg]) = |hi| x (D|rg]) € LY(R?) if 2<¢<oc0.
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So |h;| x |rg] € WH4(R?) for 2 < ¢ < co. The Sobolev imbedding theorem gives us

|hi| % |rg| € L®(R2). But |rh;| x|g| is also in L*(R?) because 7h; € L*(R?) and

g € L*(R?). Using (3.16) we obtain the desired conclusion. O
We note

1 & ) _ _1< &1é& ) _ _1< &2 >
=7 (Q(&@) k=7 0wa) =T \Qea))

Lemma 3.3 k; € H'(R?) for0<s<1landk; € LYR?) if1<q<2,i=1,2,3.
Proof. The proof is essentially the same as the proof of Lemma 3.4 in [15]. For

the sake of completeness, we give it here.
It is easy to verify that k; € L*(R?) and

|&1] + &2

Vki| < 0222 e LR
l ‘ Q(€1a§2) ( )
if 1 < g < 2. Hence k; belongs to the homogeneous Sobolev space W4(R2),
1 < ¢ < 2. By Theorem 6.5.1 in [8], W"(R?) C H*(R?) for s = 2(1 - 7). So
k; € H*(R?) for any s € [0,1), i = 1,2,3. Since k; € L*(R2) we have k; € H*(R?)

,se[0,1),i=1,2,3.
Let ¢ € (1,2] be given. Let * =
that sa > 2. Then we have:

% — 3, @ € (2,00]. We choose s € [0,1) such

s 1
N < 2)3 : N ——— ||ze
P R A P e
= ]a s || % a <
VBl | g I <00
Thus k; € L(R?) for all ¢ € (1,2], i =1,2,3 and the lemma is proved. O

We may state now our main result.

Theorem 3.4 Letu €V be a solution of (1.2). Then

a) 12Dy € L*(R?) for all a € N?, |a| > 1;

b) ru € L*(R?).

In view of the remarks 2.3 and 2.4, the estimates given by Theorem 3.4 for u,
Uy and u, are optimal.

Proof. We note

3 1
Y1 = '2-U2 + Eu;‘j ,

The equations (3.2) and (3.3) can be written as

P2 = UgUy .

ug = —cki x @1 — chyx 2,

uyz—ckg*cpl—ckg*cpg .

Let us prove first that 7'*%u, and r'*ou, are in L®(R?) if § € [0,1). It clearly
suffices to show that r'+o(k; x ;) € L®(R?). We have:

(3.17) [P (ki % ;)| < Clr™ ki * ;] + Clki| % | ;) .
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By Lemma A2 in Appendix (and the remark A3) we have r'*°k; € L*(R?). But
v; € L*(R?) and so
|r k| x ;] € L®(R?) .

By Lemma 3.2 and Theorem 2.1,

1
—| € L*(R?)

P05 < (1 +7)%p;) - IW

2
for all p > 5 Since k; € LI(R?) for 1 < ¢ < 2, we obtain (choosing p > %
-1

and ¢ = pT)
IIC7,| * ITH_JQO]'I € LOO(R2) .

Thus the right side of (3.17) is bounded and so r'*%u, , r'*ou, € L*(R?) for all
6€l0,1).

We have:

I"'Zki *QOjI < C,T2k2| * I(pjl + C|]€z] * |7‘2(,0j| .

Clearly, |r?k;| * |¢;| € L®(R?) because r2k; € L*(R?) by Lemma A2 and ¢; €
L'(R?).

Since |r'T®Vu| € L*(R?) one obtains r?p; € LP(R?) for all p €]1,00]. But
ki € LI(R?) for 1 < g < 2 and so |k;|x|r%p,| € L*(R?). Thus ru,, r?u, € L*(R?).

The rest of part a) follows easily by induction. Keeping the notations of Lemma
3.2 we have r%g € LP(R?) for all p €]l,00]. If @ € N? and |o| = 2, then
Q(&1, &) D2y = —c - €%g, so D%u can be written as

D% = —c-kixg
for an i € {1,2,3}. Hence |r2Du| < C(|r2k;|x|g|+|k:|x|r%g|) € L®(R?) . Suppose

now that 72D% € L®(R?) if 1 < |a| < n. Let v € N? with |y| = n+ 1. Let
BeN? §<vand|y— G| =2 Then Q(&,&)DYu= —c-£7PDPg. Hence

D' = —c - k; % (D"9g)

for an i € {1,2,3}. By hypothesis r2DPg € LP(R?) for all p €]1, c0] and we deduce
as above that r2D7g € L*(R?2).
b) We write (3.1) in the form

(3.18) u = ichy * @1 + ichy * g .

As previously we prove that rp; € W1P(R2), p €]1, 00] and so |rg;| € W'P(R?) for
p €]1,00]. ,
By Lemma Al in Appendix, h; € L2 (R?). The generalized Young’s theorem
implies
|hi| % || € LYR?) if g €]2, 00[
and :
D(|hi| % reil) = [hs] x (Dlres|) € LYR?), g €]2, 00
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hence |h;| * |ro;] € WH(R?) for ¢ €]2,00[. By the Sobolev imbedding theorem,
|hi| * |rp;| € L®(R2). Clearly |rh| * |p;] € L®(R?) because 7h; € L*(R?) and
¢; € L*(R?). Thus we have

rul < C Y~ (Irkil x|l + [hal % rgil) € L2(R?) .

i=1,2

This finishes the proof of Theorem 3.4. O

1.2.4 Some identities

We derive here some identities of Pohozaev type satisfied by the Benney-Luke
solitary waves. If u € V is a solution of (1.2), multiplying (1.2) by zu, (respectively
by yu,) and integrating over R? we obtain, after a few integrations by parts,

2\, 2 _ 2 2y, 2 2 2y, 2
/Rz(l — c*)uy — uy + 3(a — be*)ug, — auy, + (2a — be”)ug, dzdy

(4.1)
+26/ ul dzdy =0
R2
and
(4 2) /R?(l — 02)’1142 - ’Ulz + (a — bcz)uiz — 3““2;; — (20, _ bcz)uiy dzdy
+c /Rz (ud — ugul) dedy =0 .

Multiplying (1.2) by v and integrating one obtains immediately

/R2 (1 - Al +ul + (a — bP)ul, + aul, + (20 — bc®)ul, dzdy+

(3) s
= ud + u;‘;uJc dzdy =0.
2 Jge

Combining (4.1), (4.2) and (4.3) we deduce

/R2(1 — Al + ul dady = 2 /112 (a — be*)ul, + avl, + (20 — bc®)ugy dzdy .

1.2.5 Appendix

We prove here some technical facts about the Fourier transform of a special kind
of functions of two variables.

Lemma Al. Leta,b,c,d,e> 0 andlet Q(&,&) be the polynomial of two variables
Q(61, &) = a&i +b&; + €165 + de] + e .

if

(4) ¢ —4ab >0

then we have
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o7 () €

o) rF (Q(;ﬁ 52)) € L=

where r = \/z2 + y% and F~! denotes the inverse Fourier transform.

Proof. ~ We regard separately Q(1,&2) as a polynomial of second degree in &2
(respectively in &2) and calculate its discriminant in each case.

Q(&1,&) = a&f + (c& + d)&T + b&; + e&5
A1 (&) = (¢® — 4ab)&; + 2(cd — 2ae)és + d?

Q(é1,62) = b3 + (&7 + €)& + ay + dE}
Ag(&1) = (¢® — 4ab)&} + 2(ce — 2bd)E2 + €2

Remark that we always have

ce —2bd >0 ored—2ae>0.

2
Indeed, suppose that ce — 2bd < 0. Then d > % implies cd — 2ae > % -
2ae = i(c2 — 4ab) > 0 by (i¢). So we may assume without loss of generality that
ce — 2bd > 0 and b = 1. In this case Q(&1,&2) can be written as a product

Q(é1,6) = (& + A(&1)) (& + B* (&)

where A(§) and B(€) are positive and

A2(¢) = %[CEZ +e—/(P—da)f 1 2ce—20)8 + &) ,

B2(¢) = %[052 +e+ (@ _da)e 1 2(ce—20)E 1 &) .
It is easy to check that the functions A and B have the following properties:
(1) Ae C(R)NC=R\{0}), B e C*(R), A(=¢) = A(£), B(=£) = B(¢)
(2) There exist constants C1,Cy > 0 such that

C1l€] < A(€) < Colé] and
Ci(1+1€]) < B(E) < Co(1+¢]), VEER.

(3) There are Cy,Cy > 0 verifying

Ci<A()<Cy, VE>0
le S B’(é) S C?é- P V€ € [_17 1]
Ci<B()<C, Y€ [1,00[ .
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(4) There exists C' > 0 such that
C

A" ()] < AR , V¢ e R\ {0} and
1 C
|B (§)|S~(1+l§|) . VEER.

Putting h; = F! (Q(E?, fz)) we have:

— iz +iyé2 & ( L - !
(e, y) = /RZ ¢ ’ B2(&) — A%(&) \& + A%(&) &+ B%(&)

) d&1dgs .

But F1 < ! ) (z) = —%e"“!ml if Re(a) > 0 and so we obtain

€2+ a? a

hfl (.’IJ, y) =

_ [ et 3 [ 1 w1 —A(E)Iyl] d
. L mere e " )

1 sy L —A<s)|y|]
R V(2 —4a)€t + 2(ce—2d)E? + €2
By (2),
. ¢ { L -seow _ 1 e—A(om] J
V(2—4a)é* + 2(ce—2d)&2 + €2 | 2B(¢) 2A(¢)
< CeCilvllel
hence if y # 0,
C
—aillel ge = &

©) @) < C [ eobitlas — =

. : 1 :
To obtain an estimate of |h;(z,y)| in terms of — we use the following elemen-

||
tary result:
Lemma H. Let I C R be an interval (bounded or not) and let f : I — R be
an integrable and monotone function. There ezists an absolute constant C > 0 (we
may take C = 4v/2r ) such that

[e<te )d€|<— sup (6)].

To prove Lemma H one estimates / sin(z€) f(£§)d¢ and /I cos(z€) f(&)dE by

I
splitting I into intervals on which sin(z€), respectively cos(z¢) have constant sign,
which gives an alternating sum of monotone terms.
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§ —a :

Let = e 4Ok Note that is
s A(€)1/(®—4a)&* + 2(ce—2d)€% + €2 Ty

differentiable on R\ {0}. If we prove that f], has at most NV zeros where N does

not depend on y, then we can decompose R into (at most) N + 2 intervals where

f1,y is monotone. Applying Lemma H on each of these intervals we finally obtain

7 [ a6 e < & swplntel < 2

¢eR < |lz|

Let us count now the zeros of f],. For £ # 0 one obtains

'y — e~ A©l]
Falt) = AE) /(@ da)E + 2ce ) e
(¢ o)t + e EA(E) :

[(02 —4a)é* + 2(ce — 2d)E2 + €2 - A(6) —&JylA'(§)

Thus f],(§) = 0 clearly implies that £ is a solution of an equation

P(£)A*(€) + RO A'(§)A(E) + S(& lyNA'(§)A*(§) =0,

where P(£), R(§) are polynomials in & and and S(¢, |y|) is a polynomial in two
variables ¢, |y|. Multiplying this by 1/(c2—4a)&* + 2(ce—2d)€? + €2 we obtain

Pi(&) + Ri(§)/(2—4a)&* + 2(ce—2d)&2 + €2

+ (516 1y + Sa(6, ) v/(F—2a)E* + 2(ce—2d)€7 + &%) A(€) = 0,

where P;(€), R1(£) and S1(€, |y|), S2(€, |y|) are polynomials. Passing the last term
on the right and taking the squares we deduce that £ must satisfy

Py(€) + Ra(8)1/(2—4a)&* + 2(ce—2d)E2 + €2

= S3(& [yl) + Sa(&, ly) /(2 —4a)€* + 2(ce—2d)€> + €2 .

(here P,(£), Ra(£), S3(¢, |yl) and S4(€, |y|) are polynomials).
If we isolate /(c2—4a)&* + 2(ce—2d)&% + €2 and take again the squares, we find

that

(&, y)) =0,

where ®(¢, |y|) is a polynomial in two variables. Let N be the degree of ® in the
first variable. It is clear now that for a fixed y, the last equation has at most N
solutions; hence for each y, f{ , has at most IV zeros in R \ {0}.

Exactly the same argument applies to

_ § ~BOl
f24(6) B(£)/(c2—4a)&* + 2(ce—2d)&* + €2 ¢

and gives us the estimate

(8)

i€ 1%
[ enate) e < 5
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From (6), (7) and (8) we infer that

that is, rh; € L®(R2).
b) One easily checks that if Re(a) > 0 and Re(b) > 0, then

i L (pmlel _ gtlel) ) () — 3
7 (et =) O = o

or equivalently

o € == ‘ 1 —alz —blz
g <(€2+a2)(52+62>> () = gson(@)g— (€™ — ).

Consequently, we have .

hz(x,y)_—_
= / etzéitiyée & dfld&
re (& +AX&)) (& + B%(&))
] . —A@©)lyl _ ~B©)lyl
:/ Esgn(y)ele € € P
R 2 V/(2—4a)&* + 2(ce—2d)€2 + €2
Ity #0,
ha(z,y)| < C / o~ AOW _ =B g
R
(9) < C / —Clulll
N R
C

yl
If x # 0, we apply Lemma H to the functions

© e—A©l
Pwls) = V(2 —4a)é* + 2(ce—2d)€2 + €2
and
© -B(Olyl
92,y =

V(2 —4a)€* + 2(ce—2d)E2 + €2

and reason as in part a) to obtain

(10) ha(z,y) < — .



Inequalities (9) and (10) clearly give hy(z,y) < Ik which is the desired conclusion.

d
Lemma A2. Wzth the assumptions and the notations of Lemma A1, we have:
a) r2F1 ( ) € L*(R?
) 517 52 )
b) r2F 1 ( 98 ) ¢ [o(R?)
§1a 52

07 (grgy) < B

Proof. a) As in the proof of Lemma Al, we write

ki(z,y) = F~ <Q(§§2)) B

¢ 1 1
— 1z€1+iyéa 1 — d
J. N YOS I T (gvre arme) @

o1 mew_ L —A(E)Iyl>
_ / e <2B(£)6 24()°
R

V(2 —4a)€* + 2(ce—2d)&% + €2 %
ki(z,y) =T —Ta,
where )
T, — / int-BO)y 3 ,
R 2B(£)/(c®—4a)&* + 2(ce—2d)E2 + €2

2
T4 _/ iz§— A&yl . 3 .
R 2A4(8)/(c2—4a)&* + 2(ce—2d)E? + e?
Integrating by parts we get

(11) T = ™8Ol &
(iz — B'(€)|y])2B(§) V/(¢* —4a)é* +2(ce—2d)€* + €|

_ / iat-BOly] | ¢ de
- (7~ BOW)BE @ 10E + 2ce_20€ 7 &

& B"()lyl
£)1/(?—4a)€* + 2(ce—2d)€2 + €2

_ / isg~B(Oly] . de
oo (iz — B'(§)lyl)2B(

§*B'(§)
V(c2—4a)€t + 2(ce—2d)E2 + €2

iz&—B(€)|y| . d
* /_oo (iz — B'(€)[y])2B2(€) :
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izt—BE)ly] 283[(c? — 4a)&* + ce — 2d] J
i /—oo (iz — B'(§)ly))2B(£) (V/ (2~ 4a)§* + 2(ce—2d)&2 + €2)® ¢

The first term equals 0.
Suppose y # 0. If £ € [-1,1] \ {0} by (3) we have

¢ _ 1 <. 1 < 1
iw—-B@Wl| |z B |~ |BEl  ~Cll
iz —— Wl ==l
£ ¢
If¢eR\[-1,1], (3) gives us
1 1 1
iz BEW| - B~ Gyl

It is now easy to see that the absolute value of each of the four integrals above

is less than
% / e BOWge < C
-yl J- TP

Hence

(12) T < % .

Consider, for example, the first integral in (11). It can be written as

[ e £, ,(€) dE

(oo}

where

o~BOl . B'(€)¢ly| + iz

foy(§) = (22 + B'(€)?|y[2) B(€) /(> —4a)&* + 2(ce—2d) &2 + €2

We argue as in the proof of Lemma A1, part a). The number of zeros of Ef-(Re fzy(8))
d

and d_f(l m fz4(§)) is finite and does not depend on (z,y). Lemma H applies and

we deduce that for x # 0,

C C
< = : < =
< ztelglf s(©)] < p

/ & £, (€) de

-0

Using the same argument we obtain that the other three integrals in Tz are bounded

(in absolute value) by ot Hence

C
(13) ITs| < =
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Finally,
C Cly
(16) - (ka2 0) < 5 + #
By (14) we have

ko(z,y)] < C /R €](e 4@ — ¢~BON) g

(17) < C /R g[e=Crletvl g

Cl
‘:g_2 .
From (16) and (17) we deduce that

|ka(z,y)| < mm(m 4 22 __)

IA
Q
2,
=

|
l

IA

This proves b).

c) We have
o =7 () -
e Q. &))"
— iz€1+iyés | 1 . _AQ(fl) B2(§1)
B /R ’ B (&) - £(&) (f% TAE) g+ B2(§1)> At

Je~A©l _ B(g)e-BEO
\/02 40)&* + 2(ce—2d)&E2 + €2

If y # 0 then clearly

lka(z,y)| < C /_ N A(£)e= 4O 1 B(g)e~BOWI gg

(18)

IN

oo 1
Cl/ lé-le—Cl|§|~]y| dé‘ + C’/ e—C|y| df
—00 -1

CII
55' .

IN
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Integrating by parts we get

/ fisE- Bl B(©) de =
R V(2 —4a)é* + 2(ce—2d)E2 + €2

_ / % pise-BO | B¢
- (iz — B'€)|y))/(@—4a) + 2(ce—2d)E + €2
B(£)B"(§)ly]

_ / gizE-BEl] .
- (iz — B(O)[y]) /(@ —4a)E* + 2(ce—2d)€* + &2

+/ 6By . 2B(£)[(c* — 4a)&® + (ce — 2d)¢]
~o0 (iz — B'(€)|y]) (v/(*—4a)€* + 2(ce—2d)€% + €2)3

We use the same argument involving Lemma H as before and conclude that the

c C
last sum of integrals is bounded by o + %
Let us estimate the term of k3(z,y) containing A(£). Integrating by parts on
(—00,0) and on (0, c0) we have

/ GisE—A©)l] | AS) -
R V(c2—4a)&* + 2(ce—2d)E% + €2

_ 2A(0)A'(0+4)
T2+ [A(0H)]

_ / SisE-A©l] . A'€)
-0 (i — A’(§)|y|)\/(c2—4a)§4 + 2(ce—2d)€2 + €2

_ / % iat—A©] A(©)A" @)yl
—o0 (iz — A'(&)|y])2v/(c®—4a)E* + 2(ce—2d) €2 + €2

+ / Giat— Al | 2A8)[(¢® — 4a)€’ + (ce — 2d)¢] _
o0 (iz — A (€)Y (V(c®—4a)é* + 2(ce—2d)&> + €?)°

Using the same method we obtain that the last sum of integrals is bounded by

%. Finally,

jz*

c C
(19) ko) < 5 +

C
Inequalities (18) and (19) give us |k3(z,y)| < 3 Lemma A2 is proved. O
C
Remark A3. It is much easier to show that |k;(z,y)| < ot The proof is similar

C
to that of Lemma A1l and does not use integrations by parts. Hence |k;(z,y)| < a
forall @ € [1,2],i=1,2,3.
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1.3 On the existence, analyticity and decay of
solitary waves to a generalized Benjamin-Ono
equation

To appear in Nonlinear Analysis: Theory, Methods and Applications






1.3.1 Introduction

We study the solitary waves of the following generalization of the Benjamin-Ono
(BO) equation '

(1) A+ aAA, — B(=A)ZA, =0

in R?, where a,8 > 0 and (—A)z is the operator defined by F((—A)zu)(¢) =
|€]u(€). F or ~ represent the Fourier transform.

Equation (1) describes the dynamics of three-dimensional, slightly nonlinear
disturbances in boundary-layer shear flows (without the assumption of a difference
in their scales along and across the flow), see [1], [41].

The solitary waves of (1) are solutions of the form A(z,y,t) = v(z —ct,y) where
c is the speed of the solitary wave. It seems that solitary waves play an important
role in the evolution of (1). Such a solution must satisfy the equation

(2) —cvg + %(02),; — B(=A)zu, =0.

Numerical experiments ([41]) show the existence of solitary waves (solitons).
It has also been observed that the solitons decay at infinity like some power of
r= /22 +y%

Our aim is to give rigorous proofs of these facts.

We suppose throughout that the wave speed c is positive.

In the next section, we show that solitary waves exist and are smooth (analytic)
functions. Since the techniques we use are classical, we only sketch the proofs. In
the last section we prove that the solutions of some generalization of equation (2)
in R" decay at infinity as —- and this algebraic rate is nearly optimal. We hope
that our results about the decay of solutions of a quite general equation should be
useful elsewhere (see also Remark 8 below).

Our method to study analyticity and decay of solutions was inspired by the
ideas developed by BoNA and L1 in [12], [26] for one-dimensional problems.

1.3.2 Existence and regularity

In order to simplify equation (2), we integrate it once in z and make the scale
change v(z,y) = au(bz, by), where a = % and b = §- Then (2) reduces to

2

(M

(3) u+ (—A)zu=u
or, using the Fourier transform,
(4) (1+[€)a=1u?.
Let us introduce the functionals
1 Ta12 2 1 / 12
== - = —0 1 d
Ve =g [ AP+ ol = g [ (1 e

and



Clearly V and I are well defined and of class C? on the Sobolev space H %(Rz).
For u # 0, we consider the minimization problem

(P) minimize V (u) under the constraint (u) = p.

A minimizer of (P) is called a ground state. If u is such a minimizer, there
exists a Lagrange multiplier A such that

1+ (=A)?)u = 2.

It is easy to see that Au is positive (because the above equation gives 2V (u) =
3AM(u)). Then Au is a non-trivial solution of (3). Clearly Au minimizes V'(v)
subject to the constraint I(v) = I(Au).
Theorem 1. There erists minimizers of problem (P). Consequently, equation (3)
admits non-trivial solutions.
Proof. One may prove Theorem 1 by using the concentration-compactness prin-
ciple, as it was done in [2] to show the existence of solitary waves for the ILW
equation. The main difficulty is to eliminate dichotomy. To do this, one needs
to estimate the L2-norm of the commutator (Lyx — xL)u in terms of the deriva-
tives of order > 1 of x and the Hz-norm of u, where Lu = F~'((1 + |£|)2%) and
x € CP(R?). But this can be done and we obtain the existence of ground states.
We may also observe that problem (P) is exactly of the type discussed by O.
LOPES in a recent paper ([31]). The functionals V and I satisfy the assumptions
HH, —HHjg of Lopes and using the Theorems 3.1 and 3.15 in [31], we infer that any
minimizing sequence (u,) of (P) possesses a subsequence that converges strongly
in Hz(R?) (modulo translation in R2) to an element u which is a ground state. [J

We give another variational characterization of the ground states. We consider
the functionals

1 1
E(u) = 5 ) |(—A)%ul*dz — %/ uddzx

and .
Qu) == lu|?dz.
2 Jee

Proposition 2. Let u, be a minimizer of V under the constraint I(u) = p. Suppose
that u, satisfies the equation (3). Then E(u,) = 0 and u, is a solution of the problem

(P) minimize E(v) under the constraint Q(v) = Q(uy).

Proof. Multiplying (3) by u and integrating we obtain the identity

(5) / ]ulex-{—/ ](—A)%ulzdxzf uldz.
R? R? R?

For u € H7(R?) we denote u,,(z) = bu(az). Then I(ugp) = b3a=2I(u),
/ |(—A)%ua7b|2da: = b2a_1/ |(—A)?1fu|2dx and Q(uqp) = b2a72Q(u).
R? R?
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We have I(u,_ 2) = I(us) and since u, is a minimizer of the problem (P), the
function

vf(a) =V (ux« 2)=—;-a% |(=A)%u,?dz + = a_%/ |, |*dz

R?

has a minimum at a = 1. Hence f’(1) =0, that is

(6) /R (8w s = 2 /R s

Combining (5) and (6) we obtain E(u,) = 0.
Let v € H7(R?) such that Q(v) = Q(u,). We want to show that E(v) >
E(uy) = 0. This clearly holds if I(v) < 0. Suppose that I(v) > 0. For a > 0, let

uddz
b(a) = a3 (§v3d:1:) Then I(vapa)) = I(u4), hence V(vapa)) > V(u,) and this

gives

(F)'[8 [orovitarsat [ o

2/ (- )%u*|2dm+/ luy da
R2 R2

(7)

The minimum of the left side of (7) for a € (0,00) is

()" G [ i)' ( [ o)’

[vidz

( 2/ fvsd;v|2d$)%(L2 uidz)g( . |U(2dz)%

2/ (~A )4u,,|2dm+/ luy|2dz.
R2 R2

Hence

Since [, [(—A)Tu.f?dz = 2 [, |u.|?dz and [g, uddz =3 [, |u.|?dz by (5) and (6)
and [, [v]*dz = [, |u.|*dz by assumption, we obtain

5 Jge (= A)iv|2dz > 1
Jre v3dz 3’

that is E(v) > 0. O
Remark 3. The converse of Proposition 2 is valid modulo a scale change. More
precisely, let u, be as above and let v be a solution of problem (P’). Then there
exists a > 0 such that v, , is a solution of problem (P).

Indeed, Q(v,,.) = Q(v) and E(v,,) = aE(v). Since v is a minimizer of (P'),
necessarily E(v) = 0. Moreover, there exists a Lagrange multiplier A such that

Then A [g, [v[’dz = — Jg. |( (=A)iv|2dz + Jre Pz = 5 Jga |(— 4v|2da: hence
A > 0. Denote v, = v 11 Then v, satisfies (3). Multiplying this by v, and
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integrating, we find that v, also satisfies (5). But E(v,) = 0 and so we deduce that

E [(—A)iv,|dz = % vide = |v*|2d:v = / |us|*dz. Now it is clear that

2 R2 R R?
I(vy) = I(u,) and V' (vy) = V(u.), ie. V(v*) achieves the minimum of V (w) for all

w € Hz(R?) such that I(w) = I(uy).

Now we turn our attention to the regularity of solitary waves.
Theorem 4. Let u € H?(R2) be a solution of (3). Then u € W*P(R?) for all
k € N and all p € [1,00]. In particular, u is ¢ C® function and tends to zero at
infinity.
Proof. By the Sobolev imbedding theorem, Hz(R?) C L*(R?), so that u? €
L?(R?). From (4) we deduce that |¢|z € L?(R?), hence u € H'(R?). Again by
Sobolev’s imbedding we have u € LP(R?) for 2 < p < co.

It is easy to check that the functions m(¢) = ﬁﬁ—l and m;(§) = ﬁﬁ satisfy

|8°m(€)] < C|¢|71 and |82m;(€)| < CJ€|71l for || = 0,1,2 and a classical theo-
rem of Mikhlin implies that m,m; € M,(R?) for 1 < ¢ < 0o, i.e m, m; are Fourier
multipliers for L¢(R?), 1 < ¢ < co. Equation (4) gives

() = m(€)u2(€) and @y () = imy(€)u2(€)

and Mikhlin’s theorem implies that u,u,; € L?(R?) for all p €]1,00[. Hence u €
WlP(R?), Vp €]l,00[. In particular, u is continuous and tends to zero at infinity.
It follows easily by induction that u € W*?(R?) for all £ € N and p €]0, ool
Indeed, suppose that u € W™P(R?) for all p €]1,00[. If a1, € N, a1+ az =n,
we have for example
Z3!
1+ [¢]
The induction hypothesis implies that 821952(u?) € LP(R?), Vp €]1,00[. Again
by Mikhlin’s theorem we obtain 821922y € LP(R?), 1 < p < co and so u €
Wnthe(R?) for all p €]1, 0o[.
The fact that u € W*!(R?) for all k € N can be easily proved by writing (3) as
a convolution equation and using Lemma 7 below (see also the proof of Theorem
11 and Remark 12). O

Theorem 5. Let u € H2(R2) be a solution of (8). Then there exists 0 > 0 and
an holomorphic function U of two complex variables z1, zo defined in the domain

Qo ={(z1,2) € C?* | |Im(21)| <o, |Im(z)| <o}

F(og T opu) = F (05057 (u?)).

such that U(z,y) = u(z,y) for all (z,y) € R
Proof. By Theorem 4 we have (1 + |£|?)2%(€) € L*(R?) for all m > 0. We take
m > 1 and apply Cauchy-Schwarz’ inequality to get

[aedes ([ ax |5|2)mm|2<§>ds)% ([~ |§|2)‘md§)% coo.

Hence % € L'(R?). Equation (4) implies that
[a](§) < [a] x [u](£) and [£][ul(€) < [u]  [u](€) -
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We note C,|t| = |@] and for n > 1, Cp a1 [0] = (Culal) * |al.
Lemma 6. We have for all k € N

[€1°[a1() < (k +1)* " Copsny 2] (6).

The lemma follows easily by induction, using the identity
k
S CLA+GY T A+ k- j)F I = 2(2 + k)F
7=0

(which is a specialization of Abel’s identity).
Using Lemma 6, we have

EF[El(€) < (k4 1) M| Comany [Tl |z < (k4 1)F7Y| Coppa [Tl |12 - |[T]| 2
< (k4 D)FM[@ll% - (1@l .

(k+ 1) |2 - |[alf; Qk+1 . k+2)\*
Let ap = X L L:  Clearly -C;:— = |[a]|Z: - Pl
1
e||d||2: as k — co. Let 0 = ——
_E eI,

Tlfl

(o0}
If 0 < 7 < o, the series Z |(€) converges uniformly in L*®-norm (be-
k=0

cause each term is dominated by 7%a; and the series Z 7%ay, converges absolutely).
k=0
Hence e™€15(¢) € L*(R?) for 7 < 0.
We define the function

1 - ~
U1, 22) = L /R 2 1628y (£, &,)dE dés.
By the Paley-Wiener Theorem, U is well defined and analytic in €2, and by Plancherel’s
Theorem we have U(z,y) = u(z,y) for all (z,y) € R2 O

1.3.3 Decasr properties
We consider a generalization of equation (3) in R™, namely
(8) (1+ (=2)%)u = g(u)
with the following assumptions on g:
i) g: C — C is continuous and
ii) there exists v > 1 and C > 0 such that |g(z)| < C|z|", Vz € C.

The aim of this paragraph is to prove that the solutions of (8) that tend to zero
at infinity must decay (at least) as e
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Equation (8) may be written in the equivalent forms

v A 1 —
9 u=-——-g(u
) e
or
(10) u=kx*g(u),
where k = F1 (-—”) We begin with some estimates on the kernel %.
Lemma 7.
i) We have
o S F(u)
k(z :cn/ e ————————ds, where ¢, = ——2
@) 0 (|2 + 2)"% S &

i) k € C°(R"\ {0}) and there exist positive constants AT, Ay such that
Ablz|™" < k(z) < Syl if0<|z|<1,mn>2, respectively
—cietlnjz| < k(z) < —aljz|+a f0<|z|<1l,n=1 and
Azt < k(z) < culz|™ ! if [z > 1, n > 1.

ii) |z|"k(z) € L®(R™) and for 1 < p < oo we have |z|*k(z) € LP(R™) if and
only if

(11) n-l--<a<n+l-—
P P

In particular, k € LP(R") if and only if 1 <p < 25

Remark 8. From now on, we use only equation (10), the assumptions i) and ii)
on g and the estimates on k given by Lemma 7, iii). Hence our result about the
decay of solutions (Theorem 11 below) holds for any equation that can be written
in the form (10) with a kernel & that satisfies the conclusion iii) of Lemma 7.

Proof of Lemma 7. 1) For any ¢ € S (the Schwartz’ space of rapidly decreasing
functions) we have

1 1 .
, . 1z.€§
<k ¢>ss = 2" /n T 1] Jre e ¢ (z)dzd

= G / ] / —(+EDs g . / ne”‘%(x)dmdf
= /Ome‘S/nPsx¢xdz

1 A CnS
where Ps(z) = —/ et lblode = "7
= @ S R T

is the Poisson kernel

= /ncn/ }x|2+32)‘L ds ¢(z)dz .
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This proves 1i).
ii) It is obvious that £ € C*°(R™\ {0}). Using i), forn > 2 and 0 < |z| < 1 we
|
clearly have k(z) > cn/ —se”l__ds= cnf:—ll(l'—- #) m% and
0

—1
(Jz|2+s2) "2 2t

<
s = en 1
k(z) < cn/O RO Sl =

For n = 1 and 0 < |z| < 1, integrating by parts and using the elementary
inequality In(z® + s°) < In(s* + 1) < s* for s # 0 we obtain k(z) = —1c;In2? +

[e o) o0
%cl/ e *In(z?+52)ds < —c; In |x|+%c1/ e *s?ds = —c; In |z|+c; and obviously
0 0

1
k(z) > cl/ S ds = fere”(In(z? + 1) —Inz?) > —cie ! nz].
0

2-"% —L and k(z) <

|z|™

1
s B )
For |z| > 1 we get k(z) > an —ards = cp(1 - %)

@2laf2) "+
o0
se” 3 . _C
Cn/ [T ds = e
0

iii) is a direct consequence of ii). g
Lemma 9. Let | and m be two constants satisfying 0 < Il < m — n. Then there
ezxists B > 0 depending only on I, m and n such that for all € > 0 we have

a) vl dy < Bla| forallz € R*, |z| > 1 and
re (1+efy)™(1+ |z —y))m (1 +elz)m

) | TR T < el
The proof of Lemma 9 is elementary and is essentially the same as the proof of
Lemma 3.1.1 in [12], p. 383.
After this preparation, we may prove an integral estimate of the solutions of
the convolution equation (10). This is given in the next lemma.
Lemma 10. Suppose that f € L®(R™) satisfies (10), i.e. f = k* g(f) and
f(z) — 0 as |z| — oo.
Then |z|? f(z) € LIY(R™) for all q €]n, o[ and for all B € [0,1].
Proof. We remark first that k£ € L'(R™) and g(f) € L*(R"), so f is continuous.
Choose p €]1, -%5[. Then choose « such that

for allz € R™.

(12) n-"<a<n+lo2.
p P

By Lemma 7 we have k € LP(R™) and |- |*k € LP(R"). Let K,, = ||(1 +

|z])*k()] |-
Now choose | € [0,a — ﬂpp_—l){_ For 0 < ¢ < 1 we denote

Let g be the conjugate of p, i.e. 1—1, + bl- = 1. Then h, € L4(R") by the choice of
l. Since

1) = (oD@ = [ Ma =)+ o=y 2O ay,
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using Holder’s inequality we obtain

3 |f<x>|§f<a,p( /R l9(f ()17 dy)%.

w (14 |z —y[)o

The assumption ii) on the function g and the fact that f(z) — 0 as
|z| — oo imply that for every 6 > 0 there exists R; > 1 such that if |z| > Rs we

have
l9(f ()| < 6]f(z)] .
If 0 < r < g, by (13) and Holder’s inequality we obtain

Femons 1= [y, 0 (5 ) L0
</ sy @I ((1%'{7;)‘) KT ( [ Lg_(lz;(?i)yr)aq dy)% .
K </R"\B(0,Ra) Ihe‘(x)iqu> N

g [/I("\B(O,Rs) ((T‘Tli‘_'(wy ' /n (1 li(lj;(g)qu)“q dy dx} :

The last sequence of inequalities gives

l q
/ h@ds < K3, | (——L' )
R\ B(0,Rs) P Jrm\B(o,rs) \ (1 +€[Z])®

IN

(15)
l9(f ()|
: dy dz.
ST e g
(since he € LY(R™), we may divide by / |he(z)|?dx). Observe that lg <
R™\B(0,Rs)

aq — n by the choice of [. Using Fubini’s Theorem and Lemma 9 we obtain

-/R"\B(O,RJ) K(T:”I%) q ' /R" (1 Lg‘(|];(?i)z/l|q)“q dy} &

" 1

= [, suwr [/Rn\mo,m A+ el [T+ ]z =g d“’] W

Blyl
< g(fW)'———=d
/R"\B(O,R,;)I )l (1+¢lyl) v

Jz|!a 1
+[ e | - da d
B(0,s) R\ B0, (L Ele)® (1 + |z — y])os Y
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where B depends on n,l,q and a, but not on . The last integral is majorized by
a constant C' depending on f and Rs (but not on ).

Combining (15) and (16) and taking into account the fact that |g(f(y))| <
0|f(y)| on R™\ B(0, Rs), we get

(17) / Ihe(2)|%dz < KT, [354/ Ihe(z)|%dz + CJ .
R™\B(0,Rs) ’ R"\B(0,Rs)

Choosing ¢ such that K, ,B 26 < 1, from (17) we deduce that

(18) / Ihe(z)|%dz < C"
R™\B(0,R;)

where C’ is a constant that does not depend on €. We let ¢ — 0 in (18) and apply
Fatou’s Lemma to obtain

[ @ <o
R"\B(O’R6)

Hence |z|'f(z) € LY(R") for ¢ = -2

p—1’
To summarize, we proved that for any p € |1, -2;[, forany o € Jn— %, n+1-— %[

and for any [ € [0, — ﬂ%;_—l—l[ we have |z|'f(z) € L5 1.
We choose sequences (pg), (ax) and (lx) such that

px €11, 2], pr— P ask — o0
ake]n——pﬁk,ni—l—ﬁ, o — 2 as k — oo and
Ik € 0,00 — 2B=D) 51 as k —» oo.

Pk

Then g = ;P — n as k — oo and |z|** f(z) € L% for all k. This proves
the lemma. 0
We may now state our main result.

Theorem 11. Suppose that f satisfies equation (10) and
-either f € LP(R™) for a p €](y — 1)n, 00, p > v,
-or f € L*(R") and f(z) — 0 as |z| — oo.
Then |z|"*! f(z) € L (R").
Proof. First we show that we always have f € L*(R") and f(z) — 0 at infinity.

Suppose that f € LP(R™) and p > yn. Then g(f) € L~(R"). Since E>n
and k € LYR") for all ¢ € [1,-25[, it clearly follows from equation (10) that
f € L*(R"), f is continuous and tends to zero at infinity.

If f € L™(R"), then g(f) € L"(R™). Equation (10) and Young’s theorem
imply that f € LI(R") for all ¢ € [yn,o0[. Then the preceeding argument shows
that f € L*(R") and f(z) — 0 as |z| — oo.

Now suppose that p €](y — 1)n,yn[ and p > . Then g(f) € L% (R") and by
(10) and Young’s theorem we obtain f € LI(R") for all ¢ € [2, -E2[. Iterating
this argument, after a finite number of steps we get f € LP(R™) for a p > yn. As
above we obtain f € L*(R") and f(z) — 0 at infinity.
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The rest of the proof is a standard bootstrap argument. We make use of the
inequality

(19) 12’ £ < C ((12°k) % 1g(f)] + k% (1zlg(£)])) -

By Lemma 7, |z|k € LI(R™) for q €]1, -25[ if n > 3 (respectively for ¢ €]1, oo[ if
n =2 and ¢ €]1,00] if n = 1). Lemma 10 implies that g(f) € L"(R") for 7 €]%, cq],
so we get (|z|k) % |g(f)] € L*(R"). Similarly, k¥ € LYR") for ¢ € [1, %[ and
|zlg(f) € L"(R") for r €]%,00[ by Lemma 10, hence £ x (|z||g(f)]) € L®(R").
Using (19) we get |z|f(z) € L>®(R™).

Suppose that |z|*f(z) € L®(R") and ay < n + 1. Obviously |z|*|g(f)| €
L®(R™) and k € L'(R"), hence kx(|z|*"|g(f)|) € L°(R"). Observe that |g(f)(z)| <
(lJrl_il)‘*V’ so g(f) € LYR") for all ¢ verifying g > ;";, g > 1. Using Lemma 7 and
Young’s theorem, we find that (|z|*7k) x |g(f)| € L*°(R") and from (19) it follows
that |z|*"f(z) € L*°(R"). Hence |z|*f € L*°(R") and ay < n + 1 imply that
|z|*7 f € L*°(R™). This clearly leads to the conclusion of the theorem. O
Remark 12. Suppose that g is C™ and |g®|(z) < Ci|z|"™, 0 < i < m and
f satisfies the hypothesis of Theorem 11. Then |f(z)] < (—ﬁﬁi—g, in particular
f € LY(R™). Arguing as in the proof of Theorem 4 we obtain that f € W™th¢(R™)
for all ¢ € [1,00[. As in Theorem 11 it can be proved that the derivatives of f of

order < m decay at infinity at least as m},—ﬂ

Remark 13. Suppose in addition that g is differentiable and there exists >
0 such that |¢g'(z)| < Clz|’. If f € LP(R"), 1 < p < oo satisfies (10) and

9(f(z)) dz # 0, then the decay rate of f given by Theorem 11 is optimal.

Mft)re precisely, |z|f cannot belong to L!'(R™).

In particular, the solutions of equation (3) in R? decay at infinity as Txlﬁ and
this algebraic rate is optimal.

Indeed, |z|f € L'(R") would imply that z;f, ¢(f) and z;g(f) are L'-functions,
hence their Fourier transforms are continuous. But

—_—

O o FE) = L
20) —zﬂfyf(i:)‘— aéjfi(\f) = O, (1 + |€|g(f)) (€)
i)+ (—iz;9(£))(©)-

= T a9
(L + [€])?[¢]
Take {; = s and § =0 if i # j in (20). For s | 0 we get

—_F
1+ [¢]

—

~iz;(0) = —g(f)(0) + F(~iz;9(f))(0) ,

while for s 1 0 we obtain

—_— e~

—iz;£(0) = 9(£)(0) + F(—1z;9(f))(0) ,

—

Hence ¢(f)(0) =0, i. e. / g(f(z)) dz = 0, contrary to our assumption.
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Chapter 2

Stationary solutions to a
nonlinear Schrodinger equation
with potential in one dimension

Sections 1-5 of this chapter will appear in
Proceedings of the Royal Society of Edinburgh: Section A.






2.1 Introduction

We consider the 1-dimensional nonlinear Schrédinger (NLS) equation with an ex-
ternal repulsive potential U moving at velocity v > 0:

(1.1) iAj+ Agy +A—|APA-U(@z —vt)A=0, z€R,t€R.

This equation arises in many physical contexts. For example, it describes the
motion of an impurity (modelized by U) at constant velocity v in a NLS fluid
at rest at +oco. The behaviour of equation (1.1) in one dimension is similar to
that in higher dimensions, vortices being replaced by propagating localized density
depressions which are called gray solitons (see [23]). Equation (1.1) can be put into
a hydrodynamical form using Madelung’s transformation A(z,t) = \/p(z, t)e*@?,
see [37] or [45]. This change of variables leads to the system

(1.2) pt + 2(p¢z)z = 0,
pm |pz|2

4p2 —14+p+U(z —vt)=0.

(1.3) ¢+ |6al” —
Note that the Madelung transformation is singular when A = 0. Equation (1.2)
and the derivative with respect to = of (1.3) are the equation of conservation of
mass, respectively Euler’s equation for a compressible inviscid fluid of density p
and velocity 2¢,. We require that the fluid be at rest at infinity with density 1.
This gives the “boundary condition” A(z) — 1 at +oo. Taking the derivative
with respect to ¢ of (1.3) and substituting p; from (1.2) we get

04 bum208en = 20t o (10l - 22+ 2L s 0o —0) =0

For a small oscillatory motion (i.e. a sound wave), all the nonlinear terms appearing
in (1.4) except 2p¢,, may be neglected and the velocity potential ¢ essentially
obeys to the wave equation ¢y — 2p¢,, —vU’(z —vt) = 0. We see that sound waves
propagate with velocity /2p and therefore the sound velocity at infinity is v/2.
Equation (1.1) can be written in the frame of the moving impurity as

(1.5) 1Ay — AL + Agg + A — |APA - U(z)A = 0.

In this context, it describes the flow of a NLS fluid past a fixed obstacle when
a flow of constant density is injected at velocity v at infinity. The obstacle is mod-
elized by the localized potential U. This problem was considered by V. Hakim in
[23]. In the case of a Dirac potential, he proved the existence of a critical velocity
v, such that for v < v, there exist two stationary solutions of (1.5) (i.e. solutions
which do not depend on t), one of them being stable and the other unstable. Using
formal asymptotic expansions and numerical experiments, he showed that a similar
phenomenon takes place for small potentials and for slowly varying potentials (i.e.
potentials of the form U(ez), € small). In all these cases, the two solutions become
identical at critical velocity and no stationary solution exists for v > v.. The criti-
cal velocity depends on the obstacle and is less than the sound velocity. Above the
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critical velocity the characteristics of the time-dependent flow were studied numer-
ically. It wasfound that the obstacle emitted repeatedly gray solitons propagating
downstream and sound propagating upstream.

The aim of this paper is to prove rigorously that, for a general potential U,
equation (1.5) admits two stationary solutions if the velocity v is reasonably small.

Since one expects, from physical considerations, that the solutions are slowly
varying and have a modulus tending to 1 at +o00, we seek for solutions of the form
A(z) = (1 + r())e?@ with r(z) — 0 and ¢'(z) — 0 as £ —> oco. Substituting
this expression in (1.5) one finds that the real functions r and 6 must satisfy

(1.6) —ury + 21,0, + (1 + 7). =0,

(1.7) vl 47047~ (14+7)02+(1+7)—(1+7)2-Uz)(1+71)=0.

Multiplying equation (1.6) by 1 + r and integrating we find

(1.8) 6, = %(1 - (Ti—m?)

This determines 6, (half of the fluid velocity) as a function of (1 + 7)? (the local
fluid density). Introducing (1.8) in (1.7) we find that r satisfies the equation (also
derived by V. Hakim):

2

E—(l-l—r—

1 +(1+4+r)U(z) =0.

1

(L9 —re— (147)+(147)° - m)
From now on, we will focus our attention on finding solutions of (1.9). Once this
task accomplished, it is easy to determine the corresponding phase 6 from (1.8).
Then A(z) = (1 + r(z))e?@ will be a solution of (1.5).

Of course it is interesting to find solutions of (1.9) under the more general
possible assumptions on U. In what follows, we suppose that U is a positive
Borel measure with bounded total variation. A few notations are in order: by

/ f(z)U(z)dz we denote the integral of a function f with respect to the measure

U and by ||U|| the total variation of U, i.e. ||U|| = / U(z)dz. If f € L*°(R), then

fU is also a Borel measure of bounded total variaticl}n and therefore fU € D'(R).
In particular, if r € L*(R) and r # —1 a.e., all quantities appearing in (1.9) make
sense in D'(R).

We discuss now what happens if U vanishes on some interval I. It is easily
seen that equation (1.9) can be integrated explicitly on this interval. This simple
observation gives an obstruction to the existence of stationary solutions of (1.5) for
v greater than /2 (which is the sound velocity at infinity) in the case of a potential
with compact support.

Indeed, suppose that U = 0 on an interval I. On this interval equation (1.9)
becomes

2
(1.10) —rm——(1+r)+(1+r)3—vz(1+r~

(1—:7‘)3) =0
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We remark that if » > —1 is a continuous solution, then r,; is also continuous,
therefore r € C?(I). Multiplying (1.10) by 2r, and integrating, it is easy to see
that there exists a constant C' such that

(1.11) ~r2+1((1+7~)2—1)2—f(1+r———1—)2+c:o

' T2 4 147 '
If I is of the form (—o0,a) or (b,00), the condition 7 —» 0 at +oo implies C = 0,
that is

2

(1.12) 72 = %((1 #r? =12 =2 (14—

1
147

)2 = r2(r+2)2(% - 114—(1—_:?)—2)

2 4 (1+4r)?
that any solution r of (1.9) cannot take values in (—1, =1+ =)\ {0}. If v is greater
than /2, any solution of (1.9) that tends to zero at +oo must be identically zero
on I (since otherwise, by continuity it would take values sufficiently close to 0, but
different from 0, which is impossible).

If v < v/2, any solution  of (1.9) must be less than or equal to 0 on R by the
maximum principle. Indeed, the function z — 9, (z) = —(1 +z) + (1 + z)® —
943(1 + 1z — ﬁ) is strictly increasing and positive on (0,00). Suppose that r
achieves a positive maximum at zp. Then r”(zy) < 0. On the other hand, from
(1.9) we infer that r”(zq) > 1,(r(z0)) > 0, a contradiction.

Suppose that U = 0 on an interval I of the form (—oo, a) or (b,00). If v = /2,
we see from (1.12) that we have also 7 > 0 on I, and therefore r = 0 on I. If
v < /2, we must have —1+%ST§OODI.

Suppose that v > /2. In the particular case U = g6 (where § is the Dirac
measure and g > 0), one has 7 = 0 on (—o0,0) U (0, 00); consequently, if g > 0,
(1.9) does not admit solutions and if g = 0, it admits only the trivial solution. If
U has a compact support with supp(U) C (a,b) it follows that any solution r of
(1.9) that tends to zero at +oco must vanish on R\ (a,b). But this gives too many
constraints (r and its derivatives should vanish at a and b) and so we expect that
(1.9) does not possess solutions satisfying the “boundary condition” r — 0 at +oo
ifvzx/iandU;éO.

From now on, we will suppose throughout that 0 < v < v/2.

This paper is organized as follows. In the next section we give a variational
formulation of equation (1.9) and we introduce our main tools. It will be seen that
the solutions of (1.9) are the critical points of a functional £ defined on the space
H'(R). Section 3 is devoted to a detailed study of the particular case U = g4,
where the solutions are known explicitly. It is proved that there exists a positive
function ¢(v) such that if 0 < g < ¢(v), there are exactly two solutions of (1.9).
One of them minimizes F on an open set of H!(R) and the other is a critical point
of E of mountain-pass type. The two solutions are the same when g = ¢(v) and
no solution exists when g > ¢(v). In the general case, we show that an analogous
phenomenon takes place. Our main result is:

Theorem 1.1 a) There ezists a function ¢,(v) > 0 such that if ||U|| < ¢1(v), then
E admits a minimizer on an open set (which will be described later) of H'(R).

Since r%(r + 2)? (l L ) <0 forr € (~1,~1+ 7)\ {0} and 72 > 0, we see
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b) There ezists a function @y(v) > 0 such that if ||U|| < ¢2(v) and U has
compact support, E admits a second critical point (of “mountain-pass” type).

We have ¢(v) > ¢1(v) > @q(v) for any v € [0,v/2). The graphs of these
functions are given in Fig. 1 below. It is quite clear that the existence of nontrivial
solutions for (1.9) should depend also on the shape of U, not only on its total
variation. Therefore for a given potential U, we expect to have a nontrivial solution
of (1.9) for values of v slightly larger than ¢7'(||U||) and two distinct solutions for
v slightly larger than @' (||U]]).

3
28
28
24
22

2
18
16
14
12

1
08
06
04
02

0 02 04 os  os 1 12 14

Fig. 1. The graphs of functions ¢, ¢1 and ;.

The proof of part a) in Theorem 1.1 is rather classical and is given in Section
4. We prove part b) in Section 5. The main difficulty is that the Palais-Smale
sequences of F do not converge. We use a theorem of Ghoussoub and Preiss [21]
to obtain Palais-Smale sequences with a supplementary property which enables us
to deduce their convergence to a solution of (1.9). We have also to impose further
restriction on the total mass of U in order to be sure that this second solution is
different from that one obtained in Section 4.

2.2 Variational formulation

Consider the set V = {u € H'(R)| iélIl; u(s) > —1}. Clearly V is a not-empty

open subset of H!(R) (recall that H'(R) is continuously embeded in C?(R)). We
introduce the following functionals:

’02

G:V-—R, Gu)= /R ()2 + %uz(x)(u(:v) v (2~ m)dx,

H:H'R)—R, H)= /R w(z) (u(z) + 2)U(2)ds,

E:V —R, E(u) = G(u) + H(u).

It is easy to check that the functionals G and H are well defined and of class C* on
V, respectively on H'(R). A function r € V satisfies (1.9) (in the distributional
sense) if and only if r is a critical point of E.
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We want to study the behaviour of G(u) in terms of the variations of the function
u. For this purpose, we use the following simple observation:

Remark 2.1 Let f : R — R be a continuous function such that f(0) = 0. Put
F(z) = / f(s)ds. Then for any u € H*(R) and any a,b € R, a < b we have
0

(21) |F(u(b) - F(u())| = | / £ (u(s))u(s)ds| < & / |Fu(s)) + u(s) ds.

If F(u(b)) > F(u(a)), we have equality in (2.1) if and only if u/(s) = f(u(s)) a.e. on
[a,b]. If F(u(b)) < F(u(a)), equality holds if and only if ua( s) = —f(u(s)) a.e. on

[a,b]. In particular, for any a € R one has |F(u(a))| < % |f (u(s)) 2+ |u'(s)|%ds

and |F(u(a))| < %/oo |F(u(s))|? + |u'(s)|*ds. Hence

o8}

(2.2) 4 F(u(a))| < / F(u(s))? + [u/(s)Pds, Va€R.

Moreover, equality holds in (2.2) if and only if v’ = of(u) a.e. on (—oo,a) and
u' = —of(u) a.e. on (a,00), where o = sgn(F'(u(a))).
Now take f:[-1+ %,’oo) — R,

,02
(14 z)?

(2.3) f(z) = (a: +2)4/2—
T
and let F(z) = / f(s)ds. Observe that f is negative on (—1+ 5, 0) and positive
0
on (0,00), hence F' is decreasing on [—1 + 7, 0] and increasing on [0, 00), so that
F is positive on [~1 + 75, 00) \ {0}.
Let r € H!(R) be so that ig}ﬁr(x) =r(z0) = a € [-1+ J5,0]. Applying the
T
previous remark we obtain that

0 < 4F(a) = 4F (r(z0)) < G(r)

and equality holds if and only if r'(z) = f(r(z)) a.e. on (—o0,z) and r'(z) =
—f(r(z)) a.e. on (xg,0). Solving the Cauchy problem

{ r'(z) = f(r(z)) on (—o0,0]

(2.4) r(0) =a

we find the solution
(2.5)

T1a(z) = -1+ \/? +(1- 112—2)tanh2(%\/2 —v%(z +c(a))), a€[-1+ %,0)

Vo—Z—r/ 2_y2 i .
where c(a) = \/21_ — In \/z_:2+ \/;::32_:2, respectively r19 = 0 if a = 0. It is

/ —_— —
obvious that the Cauchy problem { : (E)a;);a f(r(z)) on [0, 00) has the solution
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T2,0(z) = 11,4(—2). We put

| rme(z) if <0
ra(z) = { rou(z) if z>0.

The functions (Ta)ae[_1+%’o] will be very useful in what follows. We list below
some of their basic properties.
Lemma 2.2 The following assertions hold:

i) 7, € H'(R) and the mapping a +— 1, is continuous from [~1 + 7=, 0] to
H'(R).

i) 7, 1s symmetric about 0, decreasing on (—o0,0] and increasing on [0,00) and
tends ezponentially to zero at +o0.

i) T4 is C™ on R\ {0}.

) o(=1+75) = 0 and c is strictly decreasing on [-14+7,0) with li%(r)l c(a) = —o0.
Q

v) To14 is of class C' on R with r’_1+%(0) = 0. Moreover, for each a we have

ro(z) = T4 (z + c(a)) for x < 0, respectively r,(z) = 7'_1+%(a: —c(a)) for
z > 0.

vi) G(r,)) = 4F(a) and r, is the unique solution of the minimization problem:
“minimize G(r) under the constraint r(0) = a.”

vit) If 2 < y < 0 or 0 < z <y, then for any function v € H. (R) verifying

0(z) = 10(), v(y) = ra(y) and v > ~1+ % on (z,y) we have

20) [ Ir&P+ Pra(9)ds = 2P 0w) - Fo@)] < [ WP +£(0(s)ds

The proof is obvious.
For each a € [-1 + 75, 0] define

h(a) = inf{E(u) |u € HI(R),glellf{u(x) = a}.

Lemma 2.3 The function h has the following properties:
i) h(a) > 4F (a) +a(a+2)||U||, Va € [-1+ 2,0].

i) For all k>0 and a € [~1+ 5, 0] we have
h(a) < 4F(a) + 2k f*(a) + a(a + 2)|xi-x0U|l-

) h:[-1+ Z,0] — R is continuous, h(0) =0 and
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v v v?

E) = 4F(—1 -+ ﬁ) + (‘2— - 1)HU||

Proof. 1) is clear because for any v € H*(R) such that ig}ft u(z) = a, we have

G(u) > 4F(a) and H(u) > a(a + 2)||U|| (note that the function y — y(y + 2) is
increasing on [—1, 00)).
i) Define

(2.7) h(—1+

(z+k) f z<-k
(2.8) Ug k() = a if ~k<z<k
ro(z—k) if x>k

Obviously u, x € H'(R), igfft Uap(2) = @, G(uqx) = 4F (a) +2kf?(a) and H (uy ;) <

k
/ g,k (Ut + 2) X[-k,4)(2)U(z)dz = a(a+ 2)||x[-kkU||- Since by definition h(a) <
—k
E(ua,k) == G(ua,k) + H(’U,a,k), ZZ) follows.
i41) It is clear that h(0) = 0. Because f(—1+ ) =0, i) and ii) give

AF(~1+2) + (% — DIUI| S (-1 + %)
<AF(1Y 24 (2 1) xesVl

S |

for all £ > 0. Passing to the limit as K — oo, we obtain (2.7).
Let € > 0 be arbitrary, but fixed. Take k. sufficiently large so that
X[~k kUl > [|U]| — €. Using i) and i) we get

(2.9)  4F(a) + a(a + 2)||U]| < h(a) < 4F(a) + 2k.f*(a) + a(a + 2)(||U]| — ).

Letting @ — —1 + 7 (respectively a — 0) in (2.9) we obtain

h(—1+%) <all1nhl_13/£;h( )<iilr_nliu\/L}:;h(a) gh(—1+—%) +e(1_ﬁ_),

respectively

0=~h(0) < limﬂi)nfh(a) < limsuph(a) < 0.
a at0

Since £ was arbitrary, we infer that A is continuous at 0 and —1 + %=
It remains to prove that h is continuous at any point a € (—1+ %, 0). Fix such
an a and let a, — a. All we have to do is to show that h(a,) — h(a).
Let € > 0 be arbitrary, but fixed. Consider u € H'(R) such that igll; u(z) =a
T
and E(u) < h(a) +¢e. By continuity of E, E(%2u) — E(u) as n — 00, s0
E(%»u) < h(a) + ¢ if n is sufficiently large. Since inf ‘—‘Jlu( ) = @y, it follows that
h(an) < E(%u) < h(a)+e for all n sufficiently large Thus limsuph(a,) < h(a)+e

n—oo

Now fix § € (—1+ J5,a). For each n sufficiently large (so that a, > §), choose
u, € H(R) verifying iIGIIf_;un(:ZJ) = ap, ayn < Uy, < 0 and E(u,) < h(a,) + ¢ (this is
- possible because E(—u~) < E(u), Yu € V, where v~ = —min(u,0)). Note that f
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is a Lipschitz function on [4, 0]; let L; be its Lipschitz constant. Observe that there
exists Cs > 0 such that f%(z) > Csz?, Vz € [4,0]. It follows that

/ ! [2dz + Cs / 2z < Glun) = E(un) — Hlup) < h(an) +¢ — an(an +2)||U]I
R R

It is seen from i) and #) that h is bounded on [~1+ 7, 0], hence (un) is a bounded
sequence in H'(R). Then we have

2
a—}u' [%dz — [ |ul|*dz — 0 as n — oo;
ROZ R
n

| £ = Fua)ia]
< Lg (/ | 2 up, — un|2dac /|f Lu,) + f(un)|2dalc)E

1

<L5)——1|(/ 2dx) (/2f2(—un)+2f2(un)da:) — 0 as n —» o0;

™

1/ (4 2) — i+ 2) ) Ua)da]
la —1|52+2|——1| |5|)||U|[-—>Oasn——>oo

Consequently, 11_>m (E(un) — E(un)) = 0. But 121§a;un(m) = a and so

h(a) < B(Zu,) < h(an) +€ + (E(ainun) ~ E(un) ).

n

Thus h(a) < liminf h(a,) + €. Therefore we proved that

n—»:ao0

h(a) — ¢ < liminf h(a,) < limsup h(a,) < h(a) +¢

n—>0o0 n—» oo

Since € was arbitrary, it follows that nEglm h(a,) = h(a). This proves the continuity
of hatae€ (-1+ 5,0). O

Remark 2.4 It can be proved that if U has compact support, there exists u, €
H'(R) such that zlél}f{ uq(z) = a and E(u,) = h(a) (that is, there exists a “minimizer
at level a”). We do not give here the proof because we do not make use of this
result.

If u, could be chosen in order to have a continuous map a — u, from [—1 +
T 0] into H'(R), then the proofs in Section 5 can be considerably simplified and
the results slightly strengthened. We were not able to prove that a continuous path
of “minimizers at level o” exists for a general U.

2.3 The case U =gd (g > 0)

The case U = gd (g > 0) is very simple and one can find explicitly the solutions
of (1.9) (see [23]); however, it is quite instructive and gives a good feeling of what
kind of result can be expected when U is a positive Borel measure.
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Consider the fgnctions Tey @ € [-1+ \%, 0] introduced in the previous section.
On (—00,0) we have rg = (r7)" = f(ra)" = f'(ra)rg, = f(ra)f'(ra) = 5(f?)'(ra), that
is 7 = —(1474) + (1 +76)3 — L (1474 — {iFrys)- Obviously the same is true on
(0, 00). Moreover,

limr,(z) = lim f(ro(2)) = f(a),

10
lim () = lim —£(ra(2)) = —f (a).

We obtain that r, satisfies (1.9) for U = —%“T)(S (note that —%{J%z >0).

Conversely, let » € H'(R) be a solution of (1.9) for U = g6, ¢ > 0. From
the discussion in Introduction it follows that —1 + 7 < r(z) < 0, Vz € R,
r € C*(R\ {0}) and (1.12) is true, i.e. 2 = f2(r) on (—o0,0) U (0, 00).

Observe that 0 is not a solution of (1.9) if U # 0. Let I be a maximal interval
such that 7 C R\ {0} and r # 0, r # —1 + 75 on I. Since r; is continuous on [
and f(r) # 0if r ¢ {0,—1+ J5}, we have either r, = f(r) on I or r; = —f(r) on
I

Let a=r(0). If a =0 or a = —1+ 7, it follows from (1.12) that liH(l) r'(z) =0,
hence r; may be extended by continuity at 0. Moreover, since hm r"(z) exists, the

continuous extension of r, is differentiable at z = 0 and consequently r satisfies
(1.9) for U = 0, that is we must have ¢ = 0. So if ¢ > 0, then necessarily
a=r(0) € (-1+ 7,0). Let

gy =inf{z <0|r #0,r # —1+ 7 on (z,0)} and
y1=sup{y >0|r#0,7r# -1+ J=on (0,9)}.

Clearly z; < 0, y; > 0 and the sign of 7’ does not change on (z,0) and on (0, ;).
Ifr' = f(r) orif ' = — f(r) on (z1,0) U (0, y1), then r satisfies (1.9) with U = 0 on
(z1,1), a contradiction. Ifr = —f(r) on (z1,0) and ' = f(r) on (0,y1), then r
satisfies (1.9) with U = 2f 5 and g = 2’1“) < 0, again a contradiction. It remains
that v = f(r) on (xl,O) and r" = —f(r) on (0,y1). By a standard argument we

infer that z; = —oo, y1 = oo and 7 = r,. Thus we have proved that (1.9) has no
other solutions than the functions r, introduced in Section 2. Obviously we must
have g = —2L +‘i) if r, is a solution.

Note that in the case U = 0, the problem is translation invariant. Following
the above discussion, one easily proves that the only solutions of (1.9) are 0 and
’I”_1+%(- —2), z€ R.

It is natural to ask then: for a given g > 0, how many solutions are there? The
answer is: exactly as many as the roots of the equation

2/(e)

3. = —
(3.1) g a+1

are. Let ky(a) = —%ﬂll. Obviously &, is differentiable on (1 + 75,0] and a
straightforward computation shows that &} (a) > 0 on (~1+%, a.(v)) and k] (a) < 0

on (a,(v),0), where a,(v) = —1 + /=1L Qo k, is increasing on [—1 +
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J5» 6x(v)], decreasing on [ax(v), 0], k(=14 75) = ky(0) = 0 and k, has a maximum

at a,(v). Let

(1+ VI+ 42 — 20%)/2 = 2
20V/1 + v2 + V1 + 42

Thus, if g < ¢(v), equation (3.1) has exactly two roots a; € (a.(v),0) and a3 €
(=14 J5,a4(v)). Clearly a; | a.(v) and ay 1 a.(v) as g T ¢(v). When g = p(v),
we have the double root a.(v). If g > ¢(v), (3.1) has no roots. Consequently, if
g < ¢(v) the equation (1.9) with U = gé has two solutions, namely r,, and rg,.
These solutions are “merging” when g = ¢(v). For g > ¢(v), equation (1.9) does
not admit solutions.
Note that the function ¢ is continuous and strictly decreasing on (0, /2],

lgﬁ)l ©(v) = oo and ¢(v/2) = 0. Therefore ! exists, is strictly decreasing, ¢~*(0) =

(3.2) o(v) = ky(as(v)) =

v/2 and lim ¢~ !(g) = 0. We summarize the above discussion in the following
g—ro0

Proposition 3.1 Consider the equation (1.9) with the potential U = gé.

i) For a fized velocity v € (0,v/2), the equation has ezactly two solutions if
g € (0,¢(v)), where p(v) is given by (3.2). If g = ¢(v), there exists only one
solution. If g > ¢(v), the equation does not admit solutions.

ii) Conversely, fit g > 0. Ifv < ¢~ *(g), we have ezactly two solutions of velocity
v. There is only one solution of velocity v = ¢~'(g) and there are no solutions of
velocity v > ¢~ 1(g).
Remark 3.2 It is obvious that in the case U = gé one has

h(a) = E(ry) = 4F(a) + a(a + 2)g.
So the function A is differeﬁtiable and
W(a) =4f(a) +2(a+1)g = 2(a + 1)(g — kuv(a)).

If g > ¢(v), then h is strictly increasing on [—1+%, 0] and it does not admit critical
points. If g = p(v), it is still strictly increasing, but it has one critical point a,(v).
Finally, if g < ¢(v), we see that the function A is increasing on [—1 + ol az(v)],
decreasing on [az(v), a;(v)] and increasing on [a;(v), 0], where a;(v) and as(v) are
the two roots of equation (3.1). We have already seen that the two solutions of
(1.9) are 74,() and 74,(;). Note that r,,(,) is a local minimum of E (for example,
it minimizes F on the open set {u € H!(R) | ;gli;t u(z) > az(v)}). The second
solution, 74,(y), is a critical point of mountain-pass type of E. Indeed, for each
continuous path v : [0,1] — H*(R) such that v(0) = 1+ and (1) = r4,(0),
there exists ¢ € [0,1] such that E(y(t)) > E(re,w) > max(E(r_143.), E(ra,()))
(when F is suitably extended to H!(R)).

For a general measure U, we do not know the shape of the curve a — h(a).
However, it will be shown in the next two sections that quite a similar phenomenon
takes place.
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2.4 A local minimizer of E

We keep the notation introduced previously. The main result of this section is

Theorem 4.1 Assume that U is a positive Borel measure and ||U|| is finite. Then:
i) There ezists n > 0 such that h(a) < 0 for all a € (—n,0).
i) Suppose that there exists a € [—1 + %,O) such that h(a) > 0. Let ay =

sup{a € [-1+ 75,0) | h(a) > 0}. Then E has a minimum on the open set

={ue H'([R) | 1g£u(x) > ag}.
Proof. 1) We have for any 7' > 0

h(a) < E(r,) = 4F(a) + / ra(ra + 2)U(z)ds

(4.1) R
< 4F(a) +ro(T)(ra(T) + 2)HX[—T,T]UH-

Let us denote by ¢r(a) the right hand side of the above inequality. Clearly ¢r is
differentiable and

$r(0) = 41(a) + 2(7a(T) + 1)lIxt-z1U] - (ra(T).

But 7,(T) = r-l+%(T —¢(a)) and so

(4.2) %Ta(T) = —T'_1+}( —c(a))d'(a) = f(r-1+2(T — c(a)))c (a).

Since r_1+%(c(a)) = 14(0) = a, we get 1 = 7’/ 1+%(c(a))c’(a). Remember that

c(a) < 0 and r’_1+%(b(a)) f(r- 1+_( (a))) = f(a). Therefore ¢'(a) = T Com-

.. L . f(ro14 v (T—c(a))) ]
bining this with (4.2), one obtains - (r,(T")) = ‘f(a) . After a straight-

forward computation, we get

d  —VI=T
(4.3) lﬁ?da( o(T)) =e :

Thus 1%1 dp(a) = 2¢7V2T||x_ryU||. Now fix T such that ||x;_r.yU|| > 0. Then
a
¢r is continuous, ¢r(0) = 0 and lig)l ¢(a) > 0, so there exists 7 > 0 such that

¢r(a) <0, Va € (—n,0). This clearly implies 7).
i) Obviously E is bounded from below on V; by rr[uno] h(a). Let (rn)nen be a

ao,

minimizing sequence for F on V5. We may suppose that ay < rp(s) <0, Vs € R
and E(r,) < 0. Then we have

(4.4) Glr) < — A ra(rn + 2)U(s)ds < —ao(ao + 2)||U]].

Observe that the function a — 4F(a) + a(a + 2)||U|| is increasing on an interval
(-1+ 75, —1+ 75 +4) for some § > 0. In view of Lemma 2.3 i) and 1), it follows
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that A(-1+ 7) < h(a), Va € (-1+ Z5, -1+ 5 + §). Consequently we have
a > -1+ 7 and there exists Cy > 0 such that f?(x) > Coz?, Vz € [ao,0]. From
(4.4) we infer that (r,) is bounded in H'(R). Hence there exists a subsequence
(still denoted (r,)) and r € H*(R) such that

rn — 7 weakly in H'(R) and
Tp —> T a.€. s 1 — 00.

By lower semicontinuity we have

(4.5) / |r'|2dz < lim inf/ |r! |*dz.
R n—oo R
Using Fatou’s lemma one has

(4.6) / fA(r)dz < liminf | f3*(r,)dz.

R n—oo R
Clearly |7, (5)(ra(s) +2)| < |ao|(2 + ao) for all s € R and n € N. Since ||U]| < oo,
Lebesgue’s dominated convergence theorem can be applied and gives

(47) /R r(r+2)U(2)dz = lim [ r(ra+2)U(z)dz.

n—0Q R

From (4.5), (4.6) and (4.7) we infer that

(4.8) E(r) < liminf E(r,) < 0.

n—o0

Obviously r € V; since 7, — r a.e. We cannot have inlf{ r(z) = ag because in this
zE€

case we would have F(r) > h(aq) > 0, which contradicts (4.8). Hence r € V; and
r is a minimizer of £ on Vj. [

Remark 4.2 The assumption of Theorem 4.1, part %) is clearly satisfied if, for
8F(—1+-% 8F(—14+ %
example, h(~1+ 75) > 0, that is if [|U]| < —(2;—:,.,@2 Let ¢1(v) = —%_—112—"—5—)

One can see that ¢; is smooth and positive on [0,v/2) and ¢;(0) = %ﬁ, ©1(0) = 0.
vl;% \/‘P;—E% = 2. If ||U]| < ¢1(v), then necessarily E has a critical point which is a
local minimizer.

2.5 A second critical point of £

It is proved below, under certain hypothesis on U, that the functional F has a
second critical point of “mountain-pass” type.

We suppose throughout this section that the assumptions of Theorem 4.1 are
satisfied. Moreover, we suppose that U has compact support. Let [z,y] be the
smallest closed interval containing supp(U).

We use the following mountain-pass theorem due to Ghoussoub and Preiss [21],
based on Ekeland’s variational principle:
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Theorem 5.1 ([21]) Let X be a Banach space and ® : X — R a C* functional.
Let u,v € X and consider the set Iy, of continuous paths joining u and v, i.e.

Lup = {y € C°([0,1], X) | 7(0) = », (1) = v}.

Define ¢ = é{-lf (m[gul(] ®(v(s))). Assume that there ezists a closed subset M of X
YEL w,v SE

such that M® = M N{z € X | ®(z) > ¢} separates u and v, i.e. u and v belong to
two disjoint connected components of X \ M¢. Then there ezists a sequence (Tp)neN
in X such that

i) lim dist(z,, M) =0,
n—o0

i) lim ®(z,) =c,

n—oo

e . 1 .
i) nlg{.loH(I) (zn)||x+ = 0.

A sequence satisfying zz) and 411) is called a Palais-Smale sequence. Note that
the usual mountain-pass theorem corresponds to the case M = X.
In order to apply Theorem 5.1, we extend E to H'(R). Fixd € (—1,-1+ —\/”—-)

and consider a function f: R — R such that feCYR), f=fonld oo)
is bounded on (—oo,d]. Define £ : H'(R) — R by

E(u) :/Rlu’|2+f~2(u)d:c+H(u).

Then E is a C* functional on H'(R) and E = E on a neighbourhood of V, = {u €
H'(R) | iglgu(s) > —1+ 75} We are going to find a critical point r, € V; of E.

Clearly r; will be also a critical point of E.
Set

r_1+%(s —z) if s<z
(5.1) w(s) =4 -1+ % if z<s<y
ropa(s—y) if s>y
1 4 J—— I =
so that w € H'(R), Slglgw(s) = -1+ J and E(w) = h(—1+ J5). Let

Lrw = {7 € CO([Oa 1}7H1(R)) | 7(0) = Ta’Y(l) = w}

where 7 is a minimizer of E on V; (as in Section 4), and ¢ = inf (max E(y(s))).
YELr,w SE[O 1]

We study first the convexity of f2 on [—1 + 75 0]. One has

2\ 2 vt 3?1

So (f?)" is strictly increasing on [—1 + =, 0], (f)'(-1+%) = G+ 30 -

2) <0, (f)"(0) = 2(2 - v”) > 0 and f? is concave on [-1 + 5, —1 + \/a(v)]
and convex on [—1 + /a(v),0], where a(v) is the unique root of the equation
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3y — (1+ 3’4—2)y2 — 3—’;3 = 0 in the interval [923, 1]. It is also easily seen that there
exists B(v) € (—1+ 7, -1+ v a(v)) such that (f?)’ is positive (and decreasing) on
(=1+ J5,6(v)) (hence f? is concave, increasing and positive on (—1+ J5; 8(v)))
and (f?)" is negative on (8(v),0). In other words, 8(v) is the maximum point of f2
on (—1,0].

Next, we introduce the following supplementary hypothesis:

H1 -1+ /a(v) < a (recall that ag = sup{a € [-1+ 5, 0) | A(a) > 0}).

H2 There exists € > 0 such that for any interval I C [z, y] we have / U(z)dz >
I
e|I|, where |I| is the length of I.

Proposition 5.2 Assume that H1 and H2 are satisfied. For § > 0, § small,
consider the closed subset of H'(R)

v
V2
Then there ezists 6 > 0 such that My separates v and w.

Remark 5.3 We assume that H1 holds only for technical reasons (the convexity of
f? in a neighbourhood of [igg 7(s),0] is used in proofs). Using only the assumptions

S

of Theorem 4.1, hypothesis H2 and the fact that U has compact support, the
proofs given below still work and it can be deduced, for example, that the set

Ms={ue HR)| —1+ +5§igl£u(s)§a0}.
S

{fue HR) | -1+ FH+0 < iglgu(s) < —nyn{u € H(R) | E(w) > ¢}
separates 0 and w, where ¢’ = é?f (Hl[%}l(] E(7(s))). We still get a critical point of
Yelo,w s€|(0,

E. However, we are not able to prove that this critical poiht is different from r.
In view of Lemma 2.3, 1), a sufficient (but not necessary) condition for H1 to
be satisfied is that 4F(—1 + /a(v)) + (a(v) — 1)||U|| > 0. Therefore, if U has

compact support and ||U|| < ga(v), where py(v) = ﬂ?jT— "v)a(v)), then (1.9) has a
second solution r;. Moreover, it will be seen that ian{ r1(s) < in}f{ r(s). Note that
s€ s€

(3 is continuous and positive on [0, v/2) and ¢»(0) = 2v/2 — £1/6.
The proof of Proposition 5.2 is based on the following three lemmas:
Lemma 5.4 Let u € H'(R) be such that a = iéllgu(s) > —1+ 7. There ezists a
S

continuous path 1 : [0,1] — H*(R) with the following properties:
i) $(0) = u;
i) inf $(t)(s) 2 a and B(¥(?)) < E(u), Vi €[0,1];

iii) there ezists z € [z,y] such that ¥(1)(z) = a and ¥(1)(s) < ro(s — 2) for all
s € R.

Proof. For t € [0,1] set vy = —u~ + tu™, where u™ and u~ are the positive,
respectively the negative part of u. Clearly the map ¢t — v; is continuous from

60



[0,1] to H'(R), v; = u and vg = —u~, a < vy < 0. Since the functions s — f2(s)
and s — s(s + 2) are increasing on [0, o), we have E(v;) < E(u), Vt € [0, 1].
For t € [0, 00) define

Tuo(z—t)(s—w-i—t) if s<z-—t
(5.2) u(s) = ¢ wo(s) if z—t<s<y+t

Toow+t)(s—y—1t) if s>y+t

It is easy to check that ¢ — wu; is a continuous map from [0, 00) to H!(R), a <
u(s) <0, Vs € R,Vt € [0,00) and u; — vy in H}(R) as t — oo.
By Lemma 2.2 vit) and Remark 2.1, we have for all ¢ € [0, 00)

/M /W /+t (106 (s) + £ (vo(s)))ds

—|~/ vo(vo + 2)U(s)ds

> 2P~ 1) + [ () + P

+2F (vo(y + 1)) +/ vo(vo + 2)U(s)ds = E(uy).

T

(5.3)

Since uy is decreasing on (—oo, z] and increasing on [y, 00), there exists z € [z, y]
such that ug(z) =b = iél}f1 ug(s). Clearly b > a.

If b > a, there exists z; € R\ [z, y] such that vy(z1) = a. Suppose that z; < z.
Using Remark 2.1 we have

E(vo) — / / IUO'Q + 2(v0))ds
(/ / )(,“0|2+f2(uo))d3
(5.4) / /Z1 / Ivol2 + f*(vo))ds — 2F (vy(z)) — 2F (wo(y))

> 2F (vo(21)) + 2(F (vo(21)) — F(vo(2))) + 2F (vo(y))
—2F(’Uo( ) = 2F (vo(y))
= 4F (a) — 4F (vy(z)) > 4F (a) — 4F (b).
Obviously the same is true if z; > y.

For t € [a, 0] set ut(s) = min(ug(s),r:(s — 2z)) (note that this definition is not
ambiguous for ¢ = 0). Since the mapping ¢ — r;(- — 2) is continuous from [a, 0]
to H'(R), we infer that the mapping ¢t — w; is also continuous.

Let us show that F(u:) < E(vg), Vt € [a,0]. Fix ¢t. Since a < u; < up < 0 we
have

(655 / (e + 2)U(s)ds < / oo + 2)U(s)ds = / " vo(vo + 2)U(s)ds.

z
The set O; = {s € R | ug(s) > ri(s — z)} is open, hence there exists a family at
most countable of disjoint open intervals ((z;, ¥:))ier such that O; = User(zi, vi)-
For each 7 € I we have
- either z; = —oo or ug(z;) = re(z; — 2)
- either y; = 0o or wo(y;) = re(yi — 2).
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Then

E(us) — E(uo) <Z(/ Irl(s — 2)|* + f2(re(s — 2))ds
(5.6) iel 7w
- / [y (5)? + F2(uo(s))ds )

Z;

If (z5,7;) C (—00,2) or (;,%;) C (2,00) then

i

61 [lrs =P+ s = s < [ ) + 7 (n(s))ds

by Lemma 2.2, part vi). Note that if ¢ > b, we have (z;, ;) C (=00, 2) or (z;,¥;) C
(z,00) for all i € I. If t < b, there exists exactly one iy € I such that z € (2o, yo)
and (z;,9;) C ((—00, z) U (2,00)) for all other i € I. For 5o we have

/yio ri(s = 2)* + F*(re(s — 2))ds

/ / Yiris = 2) + F(rels — 2))ds

= 2F (uo(23,))) + (2F () — 2F (uo(¥so)))
and by Remark 2.1,

/yio [ug(s)[* + f*(uo(s))ds = 2| F (uo(yso)) — F (uo(2io))]-

)
Therefore

(58) /yio ’7{‘,(3 — Z)|2 —+ f2(7‘t(8 — Z))ds _ /TJ"O |u6(3 |2 + f2(UO(S))d$

)
AP (t) — dmax(F (uo(zi,)), Fluo(y))) < 4F(t) — 4F(b).

From (5.6), (5.7), (5.8) and (5.4) we infer that E(u;) — E(uo) < 4F(t) — 4F(b) <
4F(a) — 4F(b) < E(vo) — E(uo). Hence E(u;) < E(vg) < E(u) for all ¢ € [a,0].
Finally, define ¢ : [0,1] — H'(R) by

Vi-92t if i€ [0, %]
w(t) = { U, (4t-3) if te (%,1].

2t—-1

It is easy to check that ¢ is continuous and satisfies Lemma 5.4. [J

Lemma 5.5 Suppose that the hypothesis H1 and H2 are satisfied. There exists
§ > 0 (depending on €) such that for each u € H'(R) verifying

v v
b=infu(s) e [-1+—,-14+—=+90
infu(s) € [-1+ S —1+ S 4]

there ezists a continuous path X : [0,1] — V, such that

i) A(0) =
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1) E(A(®)) < E(u), Yu € [0,1];
- ui) A(1)(s) <0, Vs € R and there ezists z € [z,y] such that A\(1)(2) = -1+ 7

Proof. Fix a € (—1+ 7, B(v)) sufficiently close to —1+ 75 so that c(a) > z—y.
(The value of a will be chosen later). Recall that 8(v) is the maximum point of f2
on (—1,0] and f2 is concave and increasing on [—1 + ol (v)].

Let u € H'(R) be such that b = ;glgu(s) €[-1+ Z,a).

Consider the path ¢ given by Lemma 5.4 and denote u; = t(1). There exists
z € [z, y] such that u;(z) = b and u;(s) < rp(s — 2), Vs € R.

Let
z, =inf{t < z | ui(s) < a on (¢, 2]},

Yo =sup{t > z | u1(s) < aon [z,t)}.
Clearly u;(za) = ©1(ya) = a. Since u1(s) < (s — z) we have z, < z — (c(b) — c(a))
and y, > z + (¢(b) — ¢(a)). For t € [a, 0] define

min(uy(s),r¢(s — z,)) if s € (—00,x,)
M(t)(s) = § wals) if 5 € (Za; Ya)
min(ui(s), (s —va) if s € [ya, 0).

Then ), is continuous from [a, 0] to H'(R), b < A;(¢)(s) < 0forallt, sand \;(0) =
u1. As in the proof of Lemma 5.4 one shows that F(A1(t)) < E(u;), Vt € [a,0].
Denote u; = Aj(a). We have uy(s) < ro(s — z,) on (—o00, 4], ua(s) = ui(s) on
(%4, Ya) and us(s) < 74(s — ya) 0N [yg, 00).

For ¢ € [0,6+ 1 — 7] define

min(us(s), re—t(s — z5)) if s € (—00,x,)
uy(s) — t ‘ if s€(ZaY)
min(uz(s),ra—¢(s — ya) if s € [y, 00).

Ao (t)(s) =

One easily checks that the map ¢t — Ay(¢) is continuous for the norm of H!(R).
As in the proof of Lemma 5.4 we obtain

‘/R\[ ]I)\z(t)'(s)P + F2(X2(t)(s))ds
< B\ [z 0] lup ()12 + f2(ua(s))ds + 4F (a — t) — 4F (a).

We have

/ No(t) a(t) + 2)U(s)ds — / (s + 2)U (s)ds < 0
R\[Za,Ya] R\[%a,Ya]

because —1 + 75 < M(t)(s) < ua(s), Vs € R. Obviously Aa(2)'(s) = ui(s) for
8 € (£4,Y,). Therefore
BQu(®) - Blw)

5o SAF- 1@+ [ () -1 - Fm(E)d

N / " (— 2t(ur(s) + 1) + ) U(s)ds.
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We have f2(ui(s) —t) — f2(u1(s)) < —2tf f'(ur(s)) < —2¢ff'(a) for s € [a, Ya] bY
the concavity of f?. Since ui(s) +1 > b+1 > 5 we obtain
E(X(t)) — E(u2) .

(5.10) < 4F(a —t) + 4F(a) — 2tf f'(a) (ya — Ta) + (t2 — V201) / U(s)ds.
Using the fact that y,—z > c(b)—c(a), z—z, > c(b)—c(a), z € [1,y], —c(a) < y—z
and hypothesis H2 (note that this is the only pomt in the proof of Proposition
5.2 where this hypothesis is needed), we get U(s)ds > e|[z,y] N [Za, Ya]| >
£(c(b) — c(a)). Hence "

E(\(t)) — E(u2) < 4F(a—t) +4F(a)
—4t(c(b) — c(a)) [ f'(a) + £(t* — V20t)(c(b) — c(a)).

Recall that f is negative and decreasing on [—1+ 5, al, so F(a—t)—F(a) < —tf(a).
For ¢t < ‘/—” we have

(5.11)

( 2(8)) — E(us)
(5.12) tf( ) — 4t(c(b) — c(a)) [ f'(a) — 2F2t(c(b) — c(a))
4(a) + 47 (@)ela) + 222 - c(a) ) — (47F(a) + 22 ).
By a straightforward computation one has
lim /(@) _ o2
a-1+2% e+ 1)2 v 2V’
c(a) _ 2
al=1+25 1 /2(a + 1)2 — 02 2 —v?’
! 1 v 2
aJ,_hff% ff'(a) = ——2(7 —-1)

Consequently, we find that

 —4f(a) +4f ' (@)c(a) + 9P cla) | Ve
(5.13) uﬂrgﬁ V2@ +1)2—o? : T T2 <0

Hence —4f(a) + 4f f'(a)c(a) + s—‘éﬁc(a) < 0if a is “sufficiently close” to —1 + 5.
Now choose a € (—1+ J5,5(v)) such that —c(a) < y — z and —4f(d) +
4f f'(a')c(a") + 5—‘12——22 rc(a’) < 0forall a' € [-1+ F5,a]. In view of (5.13), this is
possible.
Next, choose d € (0, “‘/—) such that

2 2
(5.14)  —4f(a) +4ff (a)c(a) + 6{"’c<a> — (4f (@) + Ef“)a(b) <0
for all b € [-1+ %5, —1+ 75 + d]. This is also possible because a,.L—]:ill—E% ¢(b) = 0.
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Let u € H'(R) be such that b = iélf-fcu(s) €[-1+4 %, -1+ 5 +0]. Let ¢ be
the path given by Lemma 5.4 and let u; = 9(1). Define A; as before. It is clear
that ¢t — A\ (—t), t € [0, —a] is a continuous path in V, joining u; and us = A;(a).
Next, define A; as previously for ¢ € J =[0,b+ 1 — 7] Then the estimates (5.9)

- (5.11) hold. We see that b+ 1 — 7 < ”‘2[, hence (5.12) is true for all ¢t € J.
From (5.12) and (5.14) we infer that E(As(t)) < E(uy) < E(u), Vi € J. Let
us = X(b+1— %)._It is easy to see that ;g}f{ug(s) =us(z) = -1+ Jand Ay is a
continuous path in Vj joining us and u3. It suffices to add the paths ¢, A;(~-) and
A2 to obtain a continuous path X : [0,1] — V, = {u € H'(R) | ig}f{u(s) > —1+7}
such that A(0) = u, A(1) = uz and E(A(t)) < E(u), Vt € [0,1]. This proves Lemma
5.5. 0
Lemma 5.6 Letu € H'(R) be such that —1+4+7 < u < 0 and there ezists z € [z, y]
such that u(z) = =1+ J. Then there exists a continuous path p : [0,1] — Vi
satisfying:

i) p(0) =u, u(l) = w, where w is given by (5.1);
i) p(t)(z) = -1+ F, Vi€ [0,1];
i) E(u(t)) < E(u) for allt e [0,1].

E(

Proof. Let v(s) = min(u(s), 7142 (s—z)). Fort € [0, 1— 7] define 11 (¢)(s) =
min(u(s),r—_4(s — 2)). Then y; is a continuous path joining u and v and one shows
as previously that F(u(t)) < E(u) for all .

For k € [0,00) set pi(k)(s) = min(v(s),u_l.,_%,k(s — z)), where U—142 k WaS
defined in (2.8). Then uj is continuous from [0,00) to H'(R) (because k +—
U1tk IS continuous) and p3(0) = v. As in the previous lemmas one proves
that E(u3(k)) < E(v), Vk € [0,00). Since v(s) — 0 as s —» oo, there exists
ko > 0 such that supp(U) C [z — ko,z + ko] and —1 + y/a(v) < v(s) < 0 for
all s € R\ [z — ko, z + ko]. Let v; = p3(ko). Then vi(s) = u_1+_\;_2_,ko(s —2z) if
s € I} = [z—ko+c(—1++/a(v)), z+ky—c(—1++/a(v))] and —14+/a(v) < v1(s) <
for s € R\ ;. Denote by us the restriction of u} to [0, ko], so that us is a continuous
path and it joins v and v;.

Set ps(t) = (1 — t)vr + tu_H_%,ko(- —z), t € [0,1]. Obviously p3 is continuous
and p3(t) = u_1+%,ko(- —z) on Iy, for all ¢ € [0, 1].

Since v1(s), U-142 k(s —2) € (=14 Va(v),0] if s € R\ I, by the convexity of
f2on (—1+4++/a(v), 0] we get E(us(t)) < (1—t)E(vl)+tE(u_1+%,ko(-—z)) < E(u),
for all ¢t € [0, 1] (note that E(u_1+%,k0(~ —z))=h(-1+ %) < E(u)).

For t € [z — ko, z] set

u4(t)(s)={““%“-t) . s

u 1+}k0(s—z) if s>t

Denote p4(z) by ve. Clearly p4 is a continuous path joining u_1+%,k0(- — z) and
Va.
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Finally, for t € [0,z + ko — y] let

va(8) if s<z+k—1
Ms(t)(S)Z{T_H%(s—t) if s>z+k —t.

Then s is a continuous path joining v; and w. o
Adding the paths p;, 1 <4 < 5, we obtain a continuous path p : [0,1] — Vi
satisfying Lemma 5.6. O
Proof of Proposition 5.2. For a given path y € T',,, , denote I(t) = iélfft v(t)(s).
S
The function [ is continuous, [(0) = iéllg r(s) > ao (as seen in Section 4) and [(1) =
S

-1+ 5. If Ity e [-1+ 7”—5,0] we necessarily have E(y(t)) = E(y(t)) > h(l(¢)),
therefore

B(y(t) > ia).
me BO) 2 max O

Consequently, we have ¢ > max h(a). In particular, ¢ > E(r) and using
aG[——H—%,ao]

Lemma 2.3 we infer that ¢ > E(w) = h(-1+ ).

Fix § = (¢) as given by Lemma 5.5. We show that Proposition 5.2 holds for
this choice of 4.

We reason by contradiction. Suppose that Mj does not separate r and w, i.e.
there exists a continuous path v : [0,1] — (H'(R) \ Ms) U{u € M;s | E(u) < ¢}
such that y(0) = r and (1) = w. As before, set [(t) = sig.fftfy(t)(s). Let

to = sup{t € [0,1] | /() = ao} and
ty = inf{t € [to, 1] | I() = -1+ J5 + 6}

Then 0 < to < ¢, < 1 and for ¢ € [to, 1] we have =1+ 75 +0 < I(t) < ao, hence
v(t) € M;. By our assumption, E(y(t)) < c for all t € [to,t1]. Let uo = (%),

Uy = ’)’(tl)
Using the convexity of f2 on [ag,c0) we have

E((1—t)r +tug) = E((1 — t)r +tug) < (1 —t)E(r) + tE(uo) < ¢, Vte[0,1].

Define 7, : [0,1] — H'(R), 11(t) = (1 — t)r + tuo.
We have ig}; ui(s) = -1+ 75 1+ 0. Therefore Lemma 5.5 can be applied for u;
and gives us a path A : [0,1] — V, such that sigff{/\(l)(s) = srerfin])\(l)(s) =-1+%

’

and A(1) < 0. Next, apply Lemma 5.6 to A(1) in order to obtain a continuous
path u joining A(1) and w. Adding the paths A and p we obtain a continuous path
¥y : [0,1] — V, such that 72(0) = u1, 12(1) = w and E(72(t)) < E(u1), Vt € [0,1].

We define a new path in the following way: we start from r and go to u, along
the path 7;; then we go from ug to u; along the path ¢t — (t), t € [to, t1]; finally
we go from u; to w along the path ;. It suffices to make the corresponding changes
of parameter to obtain a continuous path ~, € I';,. Since gl{gm}f} E(m(t) = E(uo)
and tl’él[g,}f] E(v2(t)) = E(uy), we have

E(v.(t) = E(y(t ,
max (7%(2)) Dax (7)) <c
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which contradicts the definition of ¢. This proves Proposition 5.2. [J

Proposition 5.7 Assume that the hypothesis H1 and H2 are satisfied. There
ezists a solution ry of equation (1.9) and z € [z,y] such that iéllgrl(s) =ri(z) €
[—1+75+0(¢), aol, where 6(c) is given by Lemma 5.5. Moreover, we have E(r,) < c.

Proof. From Proposition 5.2 and Theorem 5.1 it follows that there exists a
sequence (u,) € H'(R) such that

(5.15) nh_r)noo dist(un, Mse)) = 0;
(5.16) nh_r)noo E(u,) = ¢
(5.17) lim || B (n)|| -1y = 0.

Using (5.15) we may suppose that infu,(s) > -1+ % + 26(¢), Vn € N and so
seER V2 2

E(u,) = E(u,) and E'(u,) = E'(u,). Since there exists a constant C' > 0 such
that f2(z) > Cz* ifz € [-1+ J5 + 26(€),00), (5.16) implies that the sequence
(us) is bounded in H}(R).

Let a, = slglg un(s). For each n, fix a point 2z, € R such that u,(2,) = a,.

The sequence u,(- — z,) is bounded in H'(R). Passing to a subsequence if
necessary, we may suppose that there exists u € H'(R) such that

(5.18) Un (- — 2,) — u weakly in H'(R).

Using Arzela - Ascoli’s Theorem and passing again to a subsequence, we may
suppose that

(5.19) Un (- — 2,) — u uniformly on each compact K C R.

. . _ v
It is clear that sléllftu(s) =u(0) € [-1+ 7 + 4(¢), ag).
Let ¢ € S(R). By (5.17), we have

(5.20) E'(up)d(- + z,) — 0 as n —» oo.

/R o ()¢ (5 + 2n)ds = /R W (t = 2) ' () dt —s /R o (8)6 ()t

by (5.18) and

But

/ff Un(3))B(8 + 24 d$—>/ff ))¢(t)dt as n — oo

by (5.19) and Lebesgue’s dominated convergence theorem.
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If there exists a subsequence (z,,) which tends to +oo or to —co as k —» o0,
we would have / (tn, () +1)¢(s+ 2n, )U(s)ds — 0 as k — oo by the dominated

convergence theg:‘em‘. From (5.20) we obtain
[w@¢eds+ [ 1@ =0. v S®R)
R R

that is u satisfies (1.9) (in the distributional sense) for U = 0. On the other hand
we have inffL u(s) € [-1+ 5 + §(€),ap). We have seen in Section 3 that this is
s€

impossible. Therefore the sequence (z,) is bounded.
Passing again to a subsequence, we may suppose that lim z, = z € R. By

(5.19), up(s) — u(s+z2), Vs € R and T
/ (un(s) + 1) (s + z)U(s)ds —> / (u(t) + DO (¢ - 2)dt.
R R
From (5.20) we obtain for all ¢ € S(R)

/ W ()¢ (s)ds + / £F (u(s))d(s)ds + / (u(s) +1)8(s)U(s — 2)ds = 0.
R R R
Therefore u satisfies the equation

—u"(s) + ff'(u(s)) + (u(s) + 1)U(s —2) =0

or equivalently, r; = u(- + z) satisfies (1.9). Furthermore, r; achieves its minimum
at z and ri(z) € [-14 5 +d(¢), ao]. From the discussion in Introduction, it follows
that 7, < 0 and r; satisfies (1.12) on (—oo, z)U(y, 00). Let a = 71(z) and b = 1 (y).
By a standard argument we infer that r; = r,(- — z) on (—o0,z) and ; = (- — v)
on (y,00) so that necessarily z € [z, y].

As in the proof of Theorem 4.1 one has
(5.21) E(r)) = E(u(-+2)) < lirlging(un) =c O

In fact, hypothesis H2 is not necessary for the existence of a second solution of
equation (1.9). It can be eliminated using Proposition 5.7 and a simple approxi-
mation procedure. This will be seen in the next theorem, which is the main result
of this section.
Theorem 5.8 Let U be a positive Borel measure with supp(U) C [z,y]. Suppose
that ||U]| < @2(v), where @, is the function introduced in Remark 5.8. Then equa-
tion (1.9) admits a solution 1 with jglgrl(s) € [-1+4 J5,a0], where ag = sup{a €

[-1+4 75,0) | h(a) = 0}. Furthermore, E(r1) < c.
Proof. We have seen that if ||U|| < ¢2(v), then h(—1+ y/a(v)) > 0.

For ¢ > 0 define U, = U + €X[zy. Denote by H,, E., h. the corresponding
quantities for the measure U,. It is easily seen that h.(a) < h(a), Va € [-1+ 7, 0]

and h.(a) — h(a) ase — 0, so h.(—1+ y/a(v)) > 0 if € is sufficiently small, say,
if € € (0,&0). For € € (0,€¢), define ag, as in Theorem 4.1. Then ag, < ao and E;
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has a minimizer r, on the set V. = {u € H*(R) | inlgu(s) > ag.}. Define ¢, as
s€
before. It is obvious that ¢, < c.
Applying Proposition 5.7 for the measure U,, we get a critical point r; . of E,
and z. € [z,y] such that iglgrl,s(z) =71(2) € [-1+ % + d(¢), ag]. Furthermore,
S

we have E,(r ) < ¢. < ¢, which implies that

2
/ I} *(s)ds < Eg(rie) — / T1,e(r1e +2)Uc(s)ds < c+ (1 - U—) U
R R 2

Hence [ |r} |*(s)ds is uniformly bounded for ¢ € (0,0). Let a. = r1.(z) and

be = rl:(ty). We know that ry, = r, (- — ) on (—o0,z) and r1 = 7 (- — y) on
(y,00). Since —1 + 7= < r1(s) < 0 for s € [z,y], we infer that ;. is uniformly
bounded in L?(R), hence ri. is bounded in H*(R). Consequently, there exists
a sequence €, —> 0 and 7y € H'(R) such that r; ., — r; weakly in H'(R) as
n —> oo. Using Arzela - Ascoli’s theorem, we may suppose that 7., — 7
uniformly on [z,y]. In fact, the particular form of r;., implies that ., — 7;
uniformly on R and r; = 74(- — ) on (—o0, z), respectively r; = r3(-—y) on (y, o),
where a = r1(z) and b = r1(y). Clearly the minimum of r; on R is achieved at a
point z € [z, y]. By the uniform convergence, r1(z) € [-1 + 75, aq].
For each test function ¢ one has

y
/Rri,anﬁ’ds + /Rff’(rl,en)qﬁds + /R(l + rie,)0U(s)ds + 5n/z (1+71.,)dds = 0.

Passing to the limit as n — 0o, we obtain that r; is a solution of (1.9).
The weak convergence of r1., in H'(R) and the uniform convergence on R
imply E(r) <liminf E(ri.,) <ec. 0O
n—>=oo

Coming back to (1.8), we determine the corresponding phases § and 6, for
the solutions 7, respectively r; of (1.9). If U has compact support, §' and 6] are
integrable on R because of the particular form of r and r; outside supp(U). We
impose that 8(z) — 0, 6;(z) — 0 as z — oco. Then 0(z) — pu, 0;(z) — 1y
as £ —» —oo for some positive constants x4 and ;. Thus we obtain two solutions
A and A; of (1.5). Remark that A and A; tend exponentially to 1 at co and to e*
(respectively to e*1) at —oco. Vortices are replaced in one dimension by a density
depression around supp(U).
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2.6 Application to a Gross-Pitaevskii-Schrodinger
system

In this section we present an application of the discussion in sections 1 and 2 to
the study of a system describing the motion of an uncharged impurity in a Bose
condensate. In dimensionless variables, the system reads

0
2% = A+ S+ Bl - Dy
(6.1)
2% = —Ap+ AP - ).

Here 1 and ¢ are the wavefunctions for bosons, respectively for the impurity, 6 = +=
where 4 is the mass of impurity and M is the boson mass (§ is supposed to be
small), ¢* = ;—d, ! being the boson-impurity scattering length and d the boson
diameter, k is a dimensionless measure for the single-particle impurity energy and
e is a dimensionless constant (¢ = ({‘Aﬂ,[)%, where a is the “healing length”; in
applications, e=0.2). Assuming that we are in a frame in which the condensate is

at rest at infinity, the solutions must satisfy the “boundary conditions”
(6.2) Y —1, ¢ —0 as|z|— oo

This system (originally introduced by Clark and Gross) was studied by J.
Grant and P. H. Roberts (see [22]). Using formal asymptotic expansions and
numerical calculations, they computed the effective radius and the induced mass
of the uncharged impurity.

We consider here the system (6.1) in one space dimension and we look for
solitary waves, that is for solutions of the form

(6.3) Y(z,t) =1(z —ct), @(z,t) =Pz - ct).

This kind of solutions corresponds to the case where the only disturbance present in
the condensate is that caused by the uniform motion of the impurity with velocity
c. In view of the boundary conditions, we are looking for solutions of the form

(6.4) B(z) = (1+7(2))e?@,  @(z) = a(z)e°®

with 7(z) — 0, @(z) — 0 as |z| — oo. By an easy computation we find that
the real functions vy, g, 7, & must satisfy

1

(63 o=l )

(6.6) o = b,

(67) = 2((_1117)3 —(1+7)) + ;—2((1 +7)P— (147 + 215(1+f)ﬁ2),
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2
(6.8) " = (5—2(1 +7)2 = % — K2
From (6.6) we see that necessarily po(z) = cdz + C. Note that the system is
invariant under the transform (v, p) — (e*®), €% ), so the integration constants
in (6.5) and (6.6) are not important. Thus all we have to do is to solve the system
(6.7)-(6.8). Thereafter it will be easy to find the corresponding phases from (6.5)-
(6.6) and (6.4) will give a solitary-wave solution of (6.1).
After the scale change @(z) = Lu(%), 7(z) = r(£), we find that the functions r
and u satisfy

3) + (14 7r)u?,

" __ 3 2 2 1
(69) = (1+7) —(1+r)~cs(1+r—m—

(6.10) u" = (¢*(1 +1)% = €*(c?0? + k?))u.

Remark that equation (6.9) is exactly equation (1.9) for v = 2ce and U = 2.
Equation (6.10) is linear in u; more precisely, u must be an eigenvector of the
linear operator —, + ¢2(1 + r)? corresponding to the eigenvalue £2(c262 + k2).
According to the discussion in Introduction, we impose from now on that ce < %

Let
2 2 VI~ o2
r(v)(z) = -1+ \/% +(1- %)tanh2(— 5 Y lz|), |v] < V2.

It is clear from the discussion at the beginning of section 3 that r = r(2ce), u =0
satisfy (6.9)-(6.10). We call (r(2ce),0) a trivial solution of (6.9)-(6.10).

Observe that the system (9)-(10) has a good variational formulation: its solu-
tions are the critical points of the “energy” functional. Indeed, since 1+7 = || > 0,
it is clear that we must have ¥ > —1. Therefore we will seek for solutions r of (9)

with r > —1. Let V = {r € H'(R) | iglgr(x) > —1}. It is obvious that V

is open in H'(R) because H!(R) C C?(R) by the Sobolev imbedding. A pair
(r,u) € V x H'(R) satisfy (9)-(10) if and only if (r,u) is a critical point of the C*®
functional F: V x H}(R) — R,

E(ru) = /R;T'Pdﬂé/R((1+r)2_1)2(1-(—12%)dx

2 262 2
+/ u2(1+r)2dx+—15/ |u’12dx—€—(c——2+—/ﬁ/u2dac.
R 7 Jr q R

However, E(r,-) is quadratic in » for any fixed r, so it would be very difficult to
find critical points of E by using a classical topological argument.

In order to show the existence of nontrivial solitary waves for the system, we
follow very closely the proof of the Bifurcation from a Simple Eigenvalue Theorem
(see [19]). From now on we fix c, €, § and ¢ such that § < gv/2. Denote

H=H2,(R)={u e H}R)|u(z) = u(-z), Vz € R} and
L=12,R)={ue L*R)|u(z) =u(-1), ae z€R}.
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Clearly HN V is an open set of H. We define S : HNV)xH — L, T :
RxHxH—L,

(6.11) S(ryu)=—r"+(1+7)* - (1+7)— 0252(1 +7— ﬁ) + (14 7r)u?

(6.12) T(k,r,u) = —u" + (¢*(1 +1)* — £2(*6* + k?))u.

It is obvious that S and T' are well defined and of class C* (recall that H C L*(R)
and H is an algebra).

The linear operator A = ——di’;g + ¢?(1 + r(2c¢)) with domain D(A) = H*(R) is
self-adjoint and strictly positive on L2( ) (in fact, A > 202 2g?). Let Ao be its first
eigenvalue. It is well-known that )¢ is simple, Ay > 2c%¢%¢® and, denoting by ug a
corresponding eigenvector, that ug is symmetric. Let ky = —E’\—:,,Q — ¢26%2 > 0 anduy
be the orthogonal of uy in L?(R).

We have the following result concerning the existence of non-trivial solitary
waves:

Theorem 6.1 There ezists n > 0 and C* functions

s — (k(s),7(s),u(s)) € R x H x (uy NH)
defined on (—n,n) such that k(0) = ko, r(0) =0, u(0) =0 and
S(r(2ce) + sr(s), s(ug +u(s))) =0, T(k(s),r(2ce) + sr(s),s(uo + u(s))) = 0.
Moreover, there egzists a neighbourhood U of (ko,7(2¢£),0) in R x H x H such that
any solution of S(r,u) =0, T'(k,r,u) =0 in U is either of the form (k(s),r(2ce) +
sr(s), s(ug + u(s))) or of the form (k,r(2ce),0).
That is, r = r(2ce) + sr(s), v = s(ug + u(s)) are nontrivial solutions of (6.9)-

(6.10) for k = k(s).
In order to prove Theorem 6.1, we need the following technical lemmas:

Lemma 6.2 d,5(r(2ce),0) : H— L is invertible.
Proof. Letg:(—1,00) — R, g(z) =(1+z)*—(1+2) —c252(1+cc— (Tfé)_?')

It is esily seen that d,.S(r(2c€),0) = — x2 + ¢'(r(2ce)). The linear operator B =
— & + ¢'(r(2ce)) with domain D(B) = H(R) is self-adjoint in L?(R).

We claim that Ker(B) = Span(ir(2ce)). Indeed, we have seen at the begin-

ning of Section 3 that
d2

(6.13) El?r(Qca) 9(r(2ce)).
Differentiating with respect to z we get -r(2cc)) € Ker(B). Conversely, let h €
Ker(B). Then h" = ¢'(r(2ce))h, so that

(h'r'(2¢e))" = h"r'(2¢e)+h'r" (2ce) = hg'(r(2ce))r'(2ce)+R g(r(2ce)) = (hg(r(2ce)))’.
Hence h'r'(2ce) = hg(r(2ce)) + C on R. Taking the limits as |z] — oo, we
get C = 0, so h'r'(2ce) = hg(r(2ce)) = hr"(2ce). Since r'(2ce) # 0 on (—o0,0)
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/ 1.7 1"
and on (0,00), on each of these intervals we have (;,—(g—cs)) = AT (?:,E();c:)r)z(zcs) = 0.

Thus there exist constants C, Cy such that h(z) = Cir'(2¢ce)(z) on (—o0,0) and
h(z) = Car'(2ce)(z) on (0,00). Then A'(z) = C17"(2¢ce)(z) = C1g(r(2¢ce)(z)) on
(—00,0) and h'(z) = Car"(2¢ce)(z) = Cag(r(2ce)(z)) on (0, 00). But A’ is continuous
because h € H?(R) and therefore C; = C,, which proves our claim.

Since 7'(2ce) ¢ H, it is clear that the restriction of B to H is one-to-one and
maps H into L. It remains to prove that BH = L. It is well-known that Im(B) =
(r'(2ce))t. We have L C I'm(B) because r'(2ce) is an odd function. Let f € L.
Clearly there exists r € H?(R) such that Br = f. Let 7(z) = r(—z). It is easy
to see that BF = f, hence there exists C' such that 7 — 7 = C7'(2ce). Then
r— +Cr'(2ce) € H and B(r — ;Cr'(2ce)) = f. This completes the proof of Lemma
6.2. d
Lemma 6.3 We have:

i) KerT (ko,r(2c€), ) = Span(uo);

i) ImT (ko,7(2ce),) = ug N L.

The proof is obvious.

Proof of Theorem 6.1. Let W = {r € H|sup |r(z)| < 1} and I = (—v/2ce, v/2c¢).

z€R

Clearly W is open in H. We define F: I x Rx Hx (HNuy) — L x L,

r -i—S(r(2ce) + sr, s(ug + u))
if s # 0,
F(s,k,mu) = %T(k, r(2ce) + sr, s(ug + u))
(d,S(r(2ce),0) - .
\ < T(k,r(2c€), uo + u) ) lf.s =0

It is easily seen that F' is C'*° because
Fi(s,k,r,u) = 2 (S(r(2ce) + sr,5(uo + u)) — S(r(2ce),0))

1
_ l/ %S(T(ch) + tsr, ts(uo + u))dt
0

S

S

1
= l/ d.S(r(2ce) + tsr,ts(ug + w)) - st + dyS(r(2ce) + tsr, ts(ug +u)) - s(ug + u)dt
P

= / d,S(r(2ce) + tsr,ts(ug + u)) - 7 + dy, S(r(2ce) + tsr, ts(ug + u)) - (ug + u)dt
0

and
Fy(s,k,r,u) = 2 (T(k,r(2ce) + sr, s(ug + u)) — T(k,r(2c€),0))

S

1
= / d.T(k,r(2ce) + tsr,ts(ug +u)) - 7+ T(k, r(2ce) + tsr, ug + u)dt.
0

It is also clear that F'(0, ko,0,0) = ( 8 ) and

d(k r.a) F (0, ko, 0,0) (k, 7, @)

() (SO (1)



In view of Lemmas 6.2 and 6.3, d(xr)F (0, ko, 0, 0) is invertible. By the Implicit
Function Theorem, there exist 7 > 0 and C* functions defined on (—n,7),

s — (k(s),7(s),u(s)) € R x Hx (HNuyy)

such that k(0) = ko, 7(0) = 0, u(0) = 0 and F(s, k(s),u(s),r(s)) = (0,0). It is
obvious that if s # 0, (r(2cg) + sr(s), s(uo + u(s))) satisfy the system (6.9)-(6.10)
for k = k(s). Finally, the uniqueness part in Theorem 6.1 is proved exactly in the
same way as in the Bifurcation from a Simple Eigenvalue Theorem. a
Remark 6.4 Theorem 6.1 gives the existence of a branch of nontrivial solutions
for (6.9)-(6.10) locally near (ko,r(2ce),0). It is an open question how long this
branch of solutions exists. Note that the Global Bifurcation Theorem ([42]) and
its variants do not apply in this case because the operators involved are far from
being compact.
Remark 6.5 It is not hard to prove that in dimension N =1, 2 or 3 the Cauchy
problem for the system (6.1) is globally well-posed in (1 + H'(RY)) x H}(R"Y).
Remark 6.6 The existence of solitary waves for (6.1) in dimension greater than
1 is an open problem. It was proved by F. Bethuel and J.-C. Saut (see [11]) that
in dimension 2, the Gross-Pitaevskii equation

oY

Zigr = =M+ (W = 1)y, | — Las|z| — oo

possesses travelling-waves moving with small speed.
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Chapter 3

Existence of nonstationary
bubbles in higher dimensions

3.1 Introduction

The aim of this work is to prove the existence of travelling “bubbles” for the
nonlinear Schrodinger equation

.0 .
(1.1) za—f+Ago+F(|go[2)<p=O in RV,
where the function ¢ is complex-valued and satisfies the “boundary condition”
|| — 1o as |z] —> oo, and 7y is a positive real constant such that F(r2) = 0.
The case of the “)3 — 15" nonlinear Schrédinger equation

o
"ot

with a1, a3, 05 > 0 and & < %ﬁ < 1 fits in this framework.

Equation (1.1) (and in particular (1.1’)) appears in a large variety of physical
problems, see [3]. For example, (1.1’) describes the boson gas with 2-body attractive
and 3-body repulsive d-function interaction. These equations have applications to
superfluidity, where the “1% —1°” NLS equation arises on the level of the Ginzburg-
Landau two-liquid theory. They also occur in the description of defectons, in the
theory of one-dimensional ferromagnetic and molecular chains and in other similar
problems in condensed matter. Equation (1.1’) with N = 3 models the evolution
of a monochromatic wave complex envelope in a medium with weakly saturating
nonlinearity.

There is a special kind of solutions of (1.1), the “stationary bubbles”. These
are solutions of the form e™')(z). It was proved in [13] under general conditions
on the nonlinearity F' that the stationary bubbles exist and are unstable.

It was also proved (see [4]) that in space dimension one there exist some lo-
calized solutions travelling with velocity ¢, having the form ¢(t,z) = ®(z — ct)
and corresponding to “nonstationary bubbles”. The boundary condition is then

lilin ®(z) = roe¥™*, where p is a real number depending on ¢ and g = 0 when
T—To0
c=0.

(1.1) + Atp — oy +as|y*h — as|y|*p =0
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The travelling waves (or nonstationary bubbles) of (1.1) are solutions of the
form (¢, z1,...,2n5) = ®(z1 — ct, 23, ..., zN). In view of the boundary condition,
we will seek for solutions ® of the form ®(z) = ry — u(z) with u(z) — 0 as
|z| — co. The function v must satisfy

(1.2) icug, — Au+ F(|ro — u|?)(ro — u) =0.

Now let us describe the assumptions that we make on the nonlinearity F' (which
are essentially the same as in [13] or [28]). We assume throughout that F' €
C'(R4,R) and

(H1) F(r3)=0, F'(r3)<0.

We will need a little bit more regularity on F only in a neighbourhood of 2. We
suppose that there exists a > 0 such that |F'(r2 + s) — F'(r2)| < C|s|® for s small.
Set

(1.3) V(s) = / " Pr)dr.

In particular, condition (H1) implies |F(r2 + s)| < C|s| and V(r§ + s) < C's? for
some C,C" > 0 and s small.

We also have to impose some restrictions on the behaviour of F' at infinity. We
suppose that there exists C' > 0 such that

z 4
(H2) |[F'(s)] < C|s|z™"  for s > 1, where 0 = N_3

(Note that 2 + o is the critical exponent for the embedding of H*(RY) in some
LP(RY).) Of course this implies

(1.4) |F(s)] < C's? ifs>1 and

(15) V(s)] < C"s+1

for some positive constants C', C".
We will always make the assumption

(H3) there exists p; € [0,73) such that V(p;) < 0.

Note that assumptions (H1), (H2), (H3) are “almost” needed for the existence
of stationary bubbles (see [6] and [13]). In addition, for technical reasons we impose
the following condition:

(H4) there exists M > 0 such that F'(s) <0 for s > M.
We need (H4) only in Section 5, to prove the regularity of the nonstationary bubbles.

Let ag = sup{a > 0 | F(Jro — u|*)(ro —u) > 0, Vu € (0,a)}. In view of (H1)
and (H3), it is clear that 0 < ag < 7q.
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We define J(A\,u) = [2u — (A + 2)r0] F(Jro — ul?) — 22u(rg — u)2F'(|rg — ul?)
and we suppose that the following condition is satisfied: for any U € (ag, 7o) there
exists A(U) > 0 continuously depending on U such that

JAU),u) <0, VYuel0,U] and

(H5) JOA(U),u) >0, Yu € [U,r.

Note that assumption (H5) is the analogous of conditions (5)-(6) in [36] and we
need it only to prove an uniqueness result in section 2 (Theorem 2.6). :

A complex-valued function u = u; + fuy is a solution of equation (1.2) if and
only if its real and imaginary parts satisfy the system

(16) --C'U,g:,_,1 - Au1 + F((’I‘Q — ’lL1)2 + ’U,%)(To - ’Uq) = 0,

(1.7) cu, — Auy — F((ro — u1)? + ul)uy = 0.
In what follows, H!(RY) always denotes the space H'(RY,R) and D*?(RV) =
DY2(RV,R) = {v € L**(RY) | Vo € L(RM)}, with norm [[v][3.. = / IVo|2dz.

We shall identify a function u = wu; + fup with the pair (u;,u;) and we seek for
solutions with u; € HY(RY), uy € DM?(RY). Let H= H'(R") x D¥*(R"). On H
we consider the norm ||(u1, u2)||? = ||w1||4: + ||u2l|51.- We identify H'(RY) x {0}
with H'(RY) and {0} x D“?(RY) with D*(R¥). We introduce the following
functionals:

T(u) = T(u,uz) = / |Vu[2da::/ |Vu1|2d:r+/ |Vus|*dz,
RN RN RN

W) = I(w,uw) = / V(lro — ul?)dz = / V{(ro — w)? +u2)dz,
RN RN

Q(U) = Q(u17u2) = —Q/RN’UqUQIId.T,

E(u) = E(u,u2) = T(u)+I(u),

E.(u) = Felu,u2) = T(u)+I(u) +cQ(u) = E(u) + cQ(u).

Obviously T and @ are of class C* on H. It is easy to check that under assumptions
(H1) and (H2), I is of class C? on HY(RV) x HY(RY). It will be verified at the
beginning of Section 4 that I is well-defined and of class C? on Hif N > 4.
Therefore E and E, are of class C? on H if N > 4 and the H-solutions of (1.2)
are exactly the critical points of E., while the critical points u of E satisfy the

equation
(1.8) ~Au+ F(|rg — ul?*)(ro — u) = 0.

The following theorem gives the existence of a special solution of (1.8):
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Theorem 1.1.([13]) There ezists a real-valued function ug € H*(RY) which sat-
isfies equation (1.8) and has the following properties:
i) ug is radially symmetric, i.e uo(z) = uo(|z|) = uo(r);
i) 0 < ug(r) < ry, Vr €[0,00), ug,(0) =0 and uo,(r) <0, Vr >0 (i.e. up is
strictly decreasing in r);
ii) ug € C*(RN) and there ezist constants C,6 > 0 such that |03ug(z)| <
Ce %l vz € RN, Va € NV with |a| < 2.
i) ug 18 a solution of the minimization problem:
“minimize T'(u) under the constraint I(u) = I(uo)”;
v) equivalently, ug is a solution of the mazimization problem.:
“mazimize I(u) under the constraint T'(u) = T (ug)”.

Theorem 1.1 was proved in [13] by using a general result of H. Berestycki and
P.-L. Lions (see [6]). A solution having the properties listed in Theorem 1.1 will be
called a ground state for equation (1.8).

Note that lim ~~¢L = —1F'(r2) > 0, so V(s) is positive on an interval ((ro —

sorg (870"

n)?, (ro +n)?). Suppose that V' > 0 on [r,co0) (remark that this is the case for
the “3% — 1% nonlinearity). Then V(|ro — 2z|?) < 0 implies that z belongs to the
ball (in C) of center 7o and radius 7o — 7. Let N = {z € C | V(|ro — 2|?) < 0} C
Bg(ro, 70 — ). If u € H and E(u) < 0, we have

E(u) > /RN V(o — u[?)dz > /{ I~ V(|ro — ul?)dz
> mf]V meas({z | u(z) € N}),

(0.3

mf[O z] - mf[o,rg]

so that meas({z | u(z) € N}) > [V (o= “'2)“ > _Ew 7. On the other hand, by
the Sobolev embedding and the fact that dist(N,0) > n we have '

_2_
‘

| 1Vulda > Csllft > Csn (meas({z | uz) € N)?

so that
E(u) > Ci(meas({z | u(z) € N}))l — Comeas({z | u(z) € N})

for some positive constants C;, C,. Clearly, meas({z | u(z) € N}) does not
depend continuously on u. However, using the simple observations made above,
it is possible to find a radial function vy € H'(RY) such that E(v) < 0 and
inf sup E(y(t)) > 0, where I' = {y € C([0,1,H) | ~(0) = 0,7(1) = wo}.
7€l tefo,1)
Therefore the functional £ admits a Palais-Smale sequence (nevertheless, it is not
obvious at this stage that this sequence converges in H).

Since E.(u) — E(u) as ¢ — 0 uniformly on bounded sets of H, one should

expect that 1nf sup E.(y(t)) > 0, at least for small values of c. However, the
€T ¢e(o,1]

observations made above fail when E is replaced by E,: it is not possible to bound

E.(u) from below in terms of meas({z | u(z) € N}). There exist continuous paths

connecting vy to functions of arbitrarily low “energy” E. such that E, decreases and
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meas({z | u(z) € N}) is constant along these paths. To be more precise, for any
¢ # 0 one can find a continuous path ¥, : [0, c0) — H such that .(0) = v, F.(7)
is of the form ry — (ro —vg)e™~ (hence |ro —7.(7)(z)| = |ro —vo(z)|) and E.(.(-)) is
strictly decreasing on [0, c0) with Tl_ir+noo E.(3:(1)) = —oco. We do not know whether
it is possible or not to connect some 7.(7) for large 7 (thus for E.(7.(7)) very small)
to zero by a continuous path in H such that E, remains negative along this path.
(Of course, if such a path existed, we would be able to connect zero to vy in the
set {u € H | E,(u) < 0}, which is not possible in the set {u € H | F(u) < 0}.
Anyway, the preceeding arguments suggest that it should be extremely difficult to
find Palais-Smale sequences for E. by using a Mountain-Pass Theorem on the entire
H. Even if such a sequence is found, it should be still more difficult to prove that
it converges (in some sense) to a non-trivial solution of (1.2).

We want to prove that (1.2) admits non-trivial solutions by showing that E,
possesses non-trivial critical points. But instead of searching for a change of topol-
ogy of the level sets of F, on the entire H, we analyze what happens locally on a
small neighbourhood of g, where u is a ground state of equation (1.8) as given
by Theorem 1.1.

Remark that the system (1.6)-(1.7) is of the form ®;(c, u1, uz) = 0, P2(c, uy, ug) =

0 with
" 02, 0%, PR
Ou; Ous o0z,
(C,U0,0)—_—
0v, 00, 0
Ou; Ous axl,

where A and B are linear operators in L2(R") defined by D(A) = D(B) = H?(RV)
and

Au = —Au — [2F"((ro — u0)?)(ro — u0)* + F((ro — w)?)]u,

Bu = —Au — F((ro — ug)?)u,

up being the ground state. It is easy to see that A and B are self-adjoint. It follows
from a classical theorem of Weyl that the essential spectrum of A is 0es(A) =
[-2F'(r2)r2,00) and the essential spectrum of B is 0ess(B) = [0,00). Note that
—2F'(r2)r} > 0 by (H1) and it is not hard to see that for ¢ < —2F'(r3)r¢, the
essential spectrum of (®;, ®2)'(c, ug, 0) is [0,00). So even if restricted to the space
orthogonal to its kernel, the linear operator (®;,®)(0,uo,0) is not invertible.
Therefore we cannot solve the equation (@, ®;)(c, ui, uz) = (0,0) for ¢ near zero
and (u;,us) near (ug,0) by an argument based on the Implicit Function Theorem
(such as, for example, the Lyapunov-Schmidt method).
Our strategy is as follows: we consider the spectral decomposition

L*RM) =X @ Ker(Ad) @Y,

(1.9)

where X, Y are the subspaces corresponding to the negative part of o(A), respec-
tively to the positive part of o(A). It will be seen in the next section that X is
one-dimensional and X ¢ H'(RY). Let Y = Y N H!(R™). We consider the re-
strictions of the functionals E and E, to (X @Y) x DM?(R"). We prove in Section
4 that E(uo + u1,uz) > E(ug,0) for uy € Y, up € DMA(RY), (ug,u) # (0,0),
|| (w1, u2)| |z small and E(ug + v1,0) < E(uo, 0) for v; € X, v #0, ||v1]| g1 small.
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Therefore ug is a saddle-point for E restricted to (X & Y) x DM (RYN). We
shall prove that for ¢ sufficiently small, there exists an open neighbourhood €2, of
(0,0) in Y x DM2(RY) such that for all (u1,us) € Q, and (uq,uz) “close” to OS2
we have E.(uo + u1,u2) > E.(ug,0) and E.(ug+v,0) = E(uo +v,0) < Ec(ug,0) for
v € X, v#0, ||v|| small. By alocal Mountain-Pass type argument we infer that
for c sufficiently small, there exists a critical point (ug + u$,u$) of E, restricted to
(X8Y) x DY2(RYN) and ||(u$, us)||lg — 0 as ¢ — 0.

It remains only to prove that E.(ug + uf,u$).u = 0 for all u € Ker(A). It
is obvious that € Ker(A),i=1,...,N. It will be proved in section 2 that
Ker(A) is spanned by a’;i, i =1,...,N and we shall get the desired conclusion
thanks to the invariance of equation (1.2) by translations in RY. Our main result
is:

Theorem. Let N > 4. There ezists co > 0 such that for any ¢ € [—cy, co] there
exists a critical point u. € H of E.. Moreover, u. — ug in H as ¢ — 0 and u,
can be chosen radially symmetric in the transverse variables (z3,...,ZN).

Similar results were obtained in space dimension N = 2,3 by Zhiwu Lin in [28].
He used the hydrodynamical formulation of the nonlinear Schrodinger equation,
searching for solitary waves of (1.1) of the form ,/pe*? and he applied the Lyapunov-
Schmidt method of finite-dimensional reduction to the equations in p and ¢. He
used implicitly the fact that Ker(A) = Span gzc’, . gz@-}

This paper is organized as follows: the next section is devoted to the study of the
operator A introduced in (1.9). Its properties are essential for our proof of existence
of nonstationary bubbles. It will be shown that A has a first negative eigenvalue,
0 is its second eigenvalue and Ker(A) = Span{g—Z%, ce %9-} In Section 3 we
prove an abstract result in critical point theory (a local Saddle-Point Theorem).
This result will be applied in Section 4 to find critical points of the functional E..
Finally, Section 5 is devoted to the regularity of nonstationary bubbles.

3.2 Properties of the operator A

We have already defined the operator A in L?(R™) by formula (1.9). In this

section we study its properties and we are particularly interested in the structure

of its kernel. It turns out that the results obtained here still hold in a slightly more

general framework. Therefore, consider g € C'([0,00)) with g(0) = 0, ¢'(0) > 0
t

and |g'(s) — ¢'(0)] < C|s|* for small s and some C, a > 0. Let G(t) = / g(s)ds
0

and suppose that there exists ¢ > 0 with G(¢) < 0 (this corresponds to assumption

(H3) on F'). Suppose that the problem

(2.1) —Au+g(u)=0

admits a positive radial solution having the properties listed in Theorem 1.1, where
I is replaced by I(u) = / G(u)dz. If N > 3 and limsup =~ g( ) < 0, it follows
N

g0 ST
from a classical result of H. Berestycki and P.-L. Lions that such a solution always

exists (see Theorem 1 in [6]); it is called a ground state for (2.1). In this section,
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we denote by ug a ground state for (2.1) and we define the operator L on L?(R")
by D(L) = H*(R") and Lu = —Au + ¢'(ug)u. Note that in the particular case
g(s) = F((ro — s)?)(ro — s), (2.1) becomes (1.8) and L equals A. _
Remark that L is bounded from below. Since ¢'(ug(z)) tends exponentially to
¢'(0) as |z| — oo (at this point we use the fact that |¢'(s) —g¢'(0)| < C|s|* for small
s) it follows from a theorem of Weyl that the essential spectrum of L is the same as
the essential spectrum of —A+g/(0), that is 0ess(L) = 0ess(—A+9'(0)) = [¢'(0), o).
Hence o(L) consists precisely in o.ss(L) and a finite number of discrete eigenvalues
below ¢'(0).
Lemma 2.1. The first eigenvalue of L exists and is negative.

(Lu,u)
veH RV\(0} [[ul[72
v € HY(RY) such that (Lu,u) < 0.

Because ug(z) = uo(|z]) = uo(r) is a solution of (2.1), uy (as a function of the
real variable r) must satisfy

N -1

< 0. We will find a function

Proof. It suffices to show that

(2.2) —uy —

ug + g(ug) =0  on (0,00).

This implies that ug € C3(0, 00); differentiating (2.2) we get

N-1 N -1
(23) —’U,g’ - T’U,g + g’(UO)U6 + TU6 = 0.
Let v(z) = uo(|z|). In view of Theorem 1.1 iii), v € H!(R") and from (2.3) we see
2
that v satisfies Lv + 25 v = 0. Therefore (Lv,v) = —(N — 1)/ ,—UI%E%Lda: < 0.
RN

This proves Lemma, 2.1.

We denote by —\; the first eigenvalue of L. It is known that —); is simple and
the corresponding eigenvector is radially symmetric, has constant sign and tends
exponentially to zero at infinity. Denote by e; an eigenvector corresponding to —\;
with ||e1]|z2 = 1.

Differentiating equation (2.1) with respect to z;, we get g—!’;; € Ker(L). There-
fore 0 is an eigenvalue of L. Using the fact that uo minimizes 7T'(u) = / |Vu|®dz

RN
subject to the constraint I(u) = I(ug), where I(u) = / G(u)dz, we obtain:
RN

Lemma 2.2. 0 is the second eigenvalue of L.

Proof. Since —)\; < 0 and 0 is an eigenvalue, it is clear that the second eigenvalue
of L exists and is < 0. In order to show that the second eigenvalue of L is > 0, we
will find a function fy € H'(R") such that L is positive on fi- N H'(R") and we
use the Min-Max Principle. We claim that for any v € H!(R") such that

(2.4) I'(ug)w = /RN g(ug)vdz =0

we have (Lv,v) > 0. Indeed, fix v € H*(R") such that I'(up).v = 0. Since
I'(ug) # 0, there exists w € H'(R") such that

(2.5) I"(w).(v,v) + I'(ug).w = 0.
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Using the Implicit Function Theorem, it is not hard to see that there exists >0
and a C2-curve v : (—6,8) —» H'(R") such that

(2.6) $(0) =up, ¥(0)=0v, ¥'(0)=w and I(%(t))=I(uo).

Recall that we have assumed that ug satisfies the conditions of Theorem 1.1, in par-
ticular uo minimizes T'(u) under the constraint I(u) = I(u). The Euler-Lagrange
equation of ug is exactly equation (2.1), that is 1T"(uo) + I'(uo) = 0. Moreover,
the real function ¢ — T(+(t)) achieves a local minimum at ¢t = 0, therefore
LT (4h(t)) |s=o= 0 and T (4(t)) |s=0> 0. This gives T"(uo).v =0 and

T" (ug).(v,v) + T"(ug).w > 0.

Using the Euler-Lagrange equation and (2.5) we get

1 1

-2—T”(u0).(v,v) > —§TI(U0)'w = I'(w).w = —I"(up).(v,v),

i.e. 3T"(uo)(v,v) + I"(ug)(v,v) > 0, which is exactly (Lv,v) > 0. Our claim is
thus proved.

It is clear that g(uo) € H'(RY). By the Min-Max Principle (see, for exam-
ple, [43], vol. IV, Theorem XIIL1 p. 76 and Theorem XIII.2 p. 78) the second
eigenvalue of L is exactly .

(Lu,u)

L
(2.7) inf -—5—= sup inf ( u,2u)
weel\(0} |[ullZe e @mywert\or [lullzs

> 0.

Therefore 0 is the second eigenvalue of L. O
Corollary 2.3. i) For anyv € H'(RY) Nei we have (Lv,v) > 0.

i) For any v € H*(RY) N ¢'(u)* we have (Lv,v) > 0.

Corollary 2.3 follows directly from the proof of Lemma 2.2.

Because 0es5(L) = [¢'(0),00) and 0 is a discrete eigenvalue, we have § =
inf(o(L) N (0,00)) > 0. Consider the functional calculus associated to the self-
adjoint operator L. Let Ly = X(0,00)(L) and Y = Im(L;). Then we have the
orthogonal decomposition L*(RY) = Re, ® Ker(L) ® Y. Let Y = Y n H'(RY).
We have

(Lu,u) > Bllu||2:, Yu€Y.

Lemma 2.4. There ezists a > 0 such that
(2.8) (Lu,u) > ol|lu|[3p, Yu €Y.

Proof. For any u € Y we have

(Lu,u) = /RN |Vu|? + ¢'(wo) |ul*dz > Bl|ul|?: > —ﬁ5/ g (uo) |u|*dz,
RN

where § = m. It follows that /RN |Vu|?dz + (1 + 89) /RN g’ (wo)|u|?dz > 0

(or equivalently 135 / |Vul*dz + / ¢ (u)|ul*dz > 0), which gives (Lu,u) >
RV RV

_Bo_ 2

wwr /RN |Vu|*dz. 4 O
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Now we focus our attention on the kernel of L. First we have to introduce some
notation. Let H be the space of spherlcal harmomcs of degree k with dim Hy =
=C¥ 41— Cr.% 5 Foreach k let. {Y Y;k } be an orthonormal basis of

Hr. Let P, be the space of linear combinations of the form Z fi(lz]) Y(k) ( z ')
i=1

with f; € L%((0,00),7V"'dr). Then P, C L*(RY), the spaces P} are mutually

orthogonal and invariant under the Fourier transform. More precisely, if Y € H;,

f € L*(0,00),7N"dr) then f(f(la:]) (lzl)) €) = g(|¢))Y (IEI) for some g €

L?((0,00),rV=1dr). Moreover, Z’Pk = L*(R"), that is any function u € L*(R")
k=0

el (),

has an unique expansion

(2.9) Z Z Cr il

where ¢ i(|z]) = / u(|z]0)Y; ( )df. Let pr; be the projection pg;(u) =
SN-—-

cri(|z)) Y, (Iml) Then py; is bounded (has norm 1) as an operator from H*(RY)

to H*(R"), s > 0 and commutes with A.
After this preparation, we may prove

Theorem 2.5. Ker(L) is spanned by {g—zf, : ,g:" } U (Ker(L) N HZ ,(RY)),
where H2 ,(RN) = {u € H*(RY) | wu is radially symmetric }.

Proof.  The proof was inspired by an idea of M. Weinstein (see the proof of
Proposition 2.8 b), p. 483 in [49]). Let u € Ker(L) and consider its decomposition
given by (2.9). Since u € H*(RY), we have py;(u) € H*(R"). Because g'(uo) is
a radial function, it is clear that pg ;(g'(uo)u) = ¢'(wo)pki(u). Therefore we have
L(pki(u)) = pri(Lu) = 0. This implies that cx;(r) satisfies

Akck,i =0on (0, OO),

where Ay = — &5~ N=1d 4 g1(y0 (1)) 4 EEHNZD) Pytting uy 4(z) = cx,i(|z]) we obtain
Lyug; = 0, in particular (Lyug,, ur,;) = 0, where Ly = —A + g'(uo) + Jﬁﬁg—z on
RY. Taking v(z) = ug(|z|) (as in the proof of Lemma 2.1), we see that Lyv = 0,
that is v is an eigenvector of L; corresponding to the eigenvalue 0. Moreover, v is
radially symmetric and has constant sign. But it is known that L; possesses a first
eigenvalue and the corresponding eigenvector (i.e. the ground state of L,) is radial,
does not change sign and any other eigenvector of L; changes sign (because it is
orthogonal to the ground state). We infer that v must be the ground state of L,

0 its first eigenvalue and therefore L; > 0. Since Lju;; = 0, we have necessarily

uy; = ¢v for some constants c;, so that c“(]zl)Y(l) (Iml) = Czuo(|$')|z| c; ‘3’;
For k > 2 we have Ly = ﬁk—l—)—l—kpli, so that (Lxug;s, ugz) = 0 1mphes
ug; = 0, that is ¢x; = 0. Thus u = po;1(u) + Zpl‘,i(u) = po,(u) + Z

—
pO,l (U) S Hfad(RN) n KGT'(L) O
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Let ap = sup{a > 0 | g(s) > 0, Vs € (0,a)}. It is clear that G > 0 on

(0,a] and (2.1) implies that uy satisfies the Pohozaev’s identity G(uo(z))dz =
RN

2 / |Vug|?dz < 0, thus necessarily u(0) > ag. We define
RN

I(u, \) = dug'(uw) — (A +2)g(u).

In the remainder of this section we will make the following assumption: there exists
a continuous function A : (ag, uo(0)] — (0, c0) such that for any U € (ao, uo(0)]
we have

0, Yu€[0,U]and
0,

<

! —
(H5) >0, Vu e [U,u(0)]

Note that in the particular case g(u) = F((ro — u)?)(ro — u), we have I(u,\) =

J(u, A) and the condition (H5’) is in fact assumption (H5).

Theorem 2.6. Under assumption (H5’), we have Ker(L) N H2,,(RY) = {0}.
Consequently, Ker(L) = Span{ g—l‘f, e %‘i— }.

Proof.  An easy boot-strap argument shows that any u € Ker(L) belongs to
W2P(RYN), Vp € [2,00), so that u € CH*(RY) Va € [0,1) and u as well as 2%,
i=1,...,N are bounded and tend to zero at infinity. Let u(z) = 5(|z]) = o(r) €
Ker(L) N H2 ,(RY). Because u is C', necessarily ¢'(0) = 0 so § must satisfy

-1
(2.10) 5" — N—T—a' + ()5 =0 on (0,00)

together with the boundary conditions

(2.11) §'(0) =0, lim §(r) = 0.
T—00
Since & € C'([0,00)), (2.10) implies that in fact § € C3(0,00).

It is clear that the linear equation (2.10) with the condition §'(0) = 0 admits
a global solution ¢ defined on [0, 00] and any other such solution is a multiple of
d. We may suppose without loss of generality that §(0) = 1. In order to prove
Theorem 2.6, it suffices to show that the function u;(z) = d(|z|) does not belong
to H2(RN).

Suppose by contradiction that u; € H2,,(RY). This implies that ¢ and ¢’ tend
to zero as r — oo. First, we prove that § has exactly one zero in (0,00). Since
u; € L2(RY), necessarily 6 € L2((0,00),7V"1dr). Let wy(r) = r = 6(r). Then
w; € L?(0,00) and satisfies

(2.12) Muw, =0,

where M = _dl:? + ¢'(ug) + (N—'Z)T%Vﬁ. Remark that Mw = Aw if and only if

w(z) = |z|~ "= w(|z|) satisfies Lu = Au. Using Lemmas 2.1 and 2.2 we infer that 0
is the second eigenvalue of M, the first being —\; (with corresponding eigenvector

r*% e, (r)). Since w, satisfies (2.12), a well-known result (see, for example, Theorem
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XIIL.8, p. 90 in [43], vol. IV) implies that the number of zeroes of w,; in (0, cc)
is exactly the number of eigenvalues of M below 0, that is one. It is obvious that
d(r) = 0 for r € (0, 00) if and only if wy(r) = 0, thus J has exactly one zero, say, ;.
Because § and ¢’ cannot vanish simultaneously, 6 must change sign at ;. Therefore
d>0o0n[0,r),d <0on (ry,oco0) and necessarily ¢'(r;) < 0.

The rest of the proof was inspired by the ideas developed by K. McLeod in [36].

We show that ug(r1) > ao. Suppose that ug(r;) < ap. Then ug(r) < ap and
9(uo(r)) > 0 on (r1,00). Remark that equations (2.2) and (2.10) can be written as

(2.13) (r¥tup(r) = g (uo(r)),
respectively
(2.14) (r¥=(r) =V g (uo(r))S(r).

We obtain from (2.13) and (2.14)

[ () (28 ()] = (Vi)' () + N () (7Y )

= P 2[g uo(r))8 (r) + g/ (o) up(r)O)] = 2V ~2[g uo(r)3(r).

Integrating this equality from r; to co and then integrating by parts we get, taking
into account that ug, uy and g¢'(ug) tend exponentially to zero and 6, " tend to zero
as r —» 00,

—riNPug(ry) 8 (1) = /Oo N2 [g(uo(r))d(r)) dr

= r2V=2g(uy(r))é(r) : — (2N -2) /oo r2N=3g(ug(r))d(r)dr
=—N=2) [ ()

T1
T1

o0

But r2¥ =24/ (r)é'(r;) > 0 and r2¥=3g(uo(r))d(r)dr < 0 because g(ug) > 0 and

T1

d < 0 on that interval, so we obtain a contradiction which proves that ug(r1) > ao.
We need the following oscillation result which appears as Lemma 5 in [36] and
is a special case of the Sturm comparison theorem:

Lemma 2.7.([36]) LetY and Z be nontrivial solutions of
" N-1 / .
(2.15) -Y" — —T—Y + H(r)Y =0, respectively

N -1
T

(2.16) 7 Z' ¥ h(r)Z =0
on some interval (u,v) C (0,00), where H and h are continuous on (u,v), H > h
on (u,v) and H # h. If either

a) u>0andY(u) =Y(v) =0, or

b) u=0,Y and Z are continuous at 0, Y'(0) = Z'(0) =0 and Y (v) =0,
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then Z has at least one zero on (u,v). The same conclusion holds if H = h on
(p,v), provided Y and Z are linearly independent.

Suppose that (2.15) has at least one solution which does not vanish in some
neighbourhood of co. We define

p = inf{r € (0,00) | there exists a solution of (2.15) with no zeroes in (0, c0)}.

The interval (p, o) is called the disconjugacy interval of (2.15). It is not hard to
see that any solution of (2.15) has at least one zero in [p, 00) ; in fact, it has exactly
one by Lemma 2.7,a). The following result holds (for the proof, the reader may

consult [36]) :
Lemma 2.8.([36]) Assume that H is continuous on (0,00) and H(r) > 0 for
large v. Let the disconjugacy inteval of (2.15) be (p,00) with p > 0 and suppose
that (2.15) has a solution Yy with li_)m Yo(r) = 0. Then:

a) Yo(p) = 0 and if Y is a nontrivial solution of (2.15) such that Y (p) = 0,

there exists ¢ such that Y = cYj.
b) If Y is a nontrivial solution of (2.15) with a zero in (p,0), then Y (r) —

+00 as T — 0.
We will also make use of the following well-known result about the ground state
ug (for a proof, see [40]) : -
!
Lemma 2.9.([40]) We have lim ZOE:; = —+/¢'(0) <0.
T—>00 0
Now let us show how assumption (H5’) implies the conclusion of Theorem 2.6.
For A > 0, define

(2.17) va(r) = rug(r) + Aug(r).

A simple calculation using (2.2) shows that v, satisfies

(2.18) —vx— ke lv'ﬁg'(Uo)vA = Ag'(uo(r))uo(r) — (A+2)g(uo(r)) = I(uo(r), A).

Equivalently, v, is a solution of

(2.19) —o — Nr_ lu; + <g'(u0) - ———I(“"i:)’ M) vy =0

on any interval which does not contain any zero of v,.

Let A\, = A(u(r1)) and Ay = A(u(0)), where A(U) is given by assumption (H5’).
Then I(u(r), A1) > 0 on [0,71] and I(u(r), A1) < 0 on [ry,00), while I(u(r), A2) <0
for all r € [0,00). By (2.10), (2.19) and Lemma 2.7, vy, oscillates faster than ¢
on any subinterval of [0,7;] on which vy, > 0. Since vy, (0) = Auo(0) > 0 and
(6(ry)) = 0, it follows that the first zero of vy, occurs in (0,71]. Similarly, vy,
oscillates slower than ¢ as long as vy, > 0, hence the first zero of v,, occurs in
[r1, 00).

Lemma 2.10.  Assume that for a certain A > 0 we have I(uo(r),A) < 0 on
[r1,00) and there ezists Ta > 1 such that vy(r2) < 0. Then vy <0 on [ry, 00).
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Proof. Suppose by contradiction that there exists » > r, such that vy(r) = 0. Let
r3 = inf{r > 7o | vA(r) = 0}. Obviously vx(r3) = 0 and v}(rs) > 0.

We claim that v}(rs) > 0. Indeed, if v}(r3) = 0, (2.18) would imply v¥(r3) =
—I(ug(r3),A) > 0. Since vy < 0 on (rq,73), 73 cannot be a local minimum of
vy; so necessarily v{(rs) = 0 and I(ug(r3),\) = 0. From the equalities vy(r3) =
vi(rs) = vi(r3) = 0, I(uo(rs), A) = 0 it can be easily deduced that ugy(rsz) = 0, a
- contradiction. Thus v}(r3) > 0.

It follows that vy > 0 on an interval (73,73 + ). On the other hand, it follows
from (2.17) and Lemma 2.9 that vy(r) is negative for large r, therefore vy must
vanish after 73. Let 74 = inf{r > r3 | vx(r) = 0}. Then vy > 0 on (r3,74) and
comparing (2.10) and (2.19) we infer that § oscillates faster than vy on (r3,74), thus
§ must vanish on [rs, 74], contradicting the fact that 7, is the unique zero of §. This
proves the lemma. a

Coming back to the proof of Theorem 2.6, we show that the first zero of vy,
occurs in (0,71). Suppose by contradiction that it occurs exactly at r;. Then we
have vy, (r1) = §(r1) = 0, vy, — 0 exponentially and 4,6’ — 0 as 7 —> oco. Using
(2.14) and (2.19) and integrating by parts we get

o0

/ rN‘lg’(uo)év,\ldrzf (rN'lé’)’v,\ldr:-/ rV718' dr

T1 T1

= /OO(TN‘IUQI)'(S(r)dr = /oo N7 g (wo)un, — I(uo(r), \1)](r)dr.

T1

[ o]

Thus N7 (ug(r), A1)d(r)dr = 0. But I(ug(r),\;) <0 and § < 0 on (ry,00),

S0) necesgarily I(ug(r), A1) = 0 on [ry,00), that is \jug'(u) — (A + 2)g(u) = 0 for

u € (0,up(ry)], which implies g(u) = Au'S" on (0, ug(ry1)] for some constant A,
contradicting the fact that ¢’(0) > 0. Hence the first zero of vy, occurs in (0, 7).

It is clear that vy, — vy, = (A1 — A2)up has the same sign as A; — A2 on [0, 00).
Since the first zero of vy, occurs before the first zero of v),, we must have A; < Aq.

We infer that there exists Ay € (A1, Ao] such that the first zero of vy, occurs
exactly at 7;. Choose Ag € (A1, A) such that the first zero of vy, occurs before 7,
and vy, (r;) < 0. Let r§ be the last zero of vy, before r;. Since A\; = A(uo(r1)),
X2 = M(uo(0)) and 7 — A(u(r)) is continuous, there exists 7o € (0,71) such that
Ao = AMuo(7o)). Let ro = max(rj, 7)) < r1. Then I(ug(r), Ao) < 0, V7 € [rg,00)
and vy,(r;) < 0. By Lemma 2.10 we have v,, < 0 on [ry,00), hence vy, < 0 on
(ro,00).

Consider the solution dq of (2.10) with do(r9) = 0, d5(ro) = 1. Then J, cannot
have any zero in (rg,00) since if do(r4) = 0 for some r4 € (7o, 00) we would infer
from (2.10), (2.19) and Lemma 2.7 that v,, has a zero in (7o, r4), which is absurd.
Consequently (rg, 00) is contained in the disconjugacy interval of (2.10). But J is a
solution of (2.10) which vanishes at 7, and r; is an interior point of the disconjugacy
interval of (2.10). Using lemma 2.8b) we infer that §(r) — —oco as 7 — oo, which
contradicts the assumption u,(z) = §(|z|) € H?(RY). This finishes the proof of
Theorem 2.6. O
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3.3 A local variant of the Saddle-Point Theorem

In this section we present a general abstract result in critical point theory which
generalizes the classical Saddle-Point Theorem. The proof is based on a sharp
deformation result (the Quantitative Deformation Lemma) due to M. Willem.

Theorem 3.1. Let E be a Banach space and ¢ : E — R a C*-functional. Let F
be a finite-dimensional subspace and G a closed subspace of E such that F+G = FE
and FNG = {0}. Suppose that there ezist 7 > 0 and an open set QQ C G containing
0 with the following properties:

i) o(z) <0 if z € Bp(0,7);

i) oz +y) < <0ifz e F,r <||z|| <r for somer; <r andy € Q;

i) p(y) > > po if y €

iv) there ezists 0 < &y < dist(0,09) and a continuous function h : Q(d) = {y €
Q | dist(y,00) < 8o} — [0,7) such that for all z € F with ||z|| = r and for all
y € Q(8), the function t — (tx + y) is not increasing on [h—f’z, 1};

v) p(z +y) >0 ify € Q) and ||z]| < h(y).
Then there ezists ¢ € [u1,0] and a sequence z, € Br(0,7) + 2 such that:

a) o(z,) — ¢ and

b) ¢'(z,) — 0 as n — 0.
Remark 3.2. A sequence satisfying a) and b) is called a Palais-Smale sequence for
. The functional ¢ is said to have the Palais-Smale property if any Palais-Smale
sequence contains a convergent subsequence. Thus if ¢ satisfies the assumptions of
Theorem 3.1 and has the Palais-Smale property, it has a critical point in Br(0,7) +
Q.
Remark 3.3. If ¢/ is bounded on bounded sets of F, we may replace assumption
ii) by p(z +y) < po <0ifx € F, ||z|]| =7 and y € Q.
Proof of Theorem 3.1 We denote ¢ = ¢~!((—00,d]) and for a given subset S C E
and p > 0 we denote S, = {u € E | dist(u,S) < p}. We shall make use of the
following Quantitative Deformation Lemma of M. Willem:
Lemma 3.4.([50]) Let X be a Banach space, ¢ € C'(X,R), S C X, ¢ € R,
£,0 > 0 such that :

(3.1) e @ > 5, Ve g (e - 26, ¢ + 26 N Sas).

Then there ezists n € C([0,1] x X, X) such that
i) n(t,u) =uift =0 orifu ¢ ¢ ([c— 2¢,c+ 2] N Sas),
i) n(L, ¢ N S) C ¢°,
i1) 1(t, ) is an homeomorphism of X, Vt € [0, 1],
iv) lIn(t,w) —ul| <6, Vue X, Vie 1]
v) o(n(-,u)) is non-increasing on [0,1], Vu € X,
vi) p(n(t,u)) <ec, Yu€ ¢°nSs Vite (0,1].
Let T' = {y € C(Br(0,7), Br(0,7) + Q) | YoBp(,) = id} and

3.2 = inf .
(3:2) c=inf max o(v(z))
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Taking vy = idpps) € T, it follows from assumption i) in Theorem 3.1 that

¢ < 0. We claim that ¢ > y,. Indeed, let pr be the canonical projection from F

onto F. For any v € I, pr 0 7y is a continuous mapping of Br(0,r) into itself and

PF © Y|aBp(0r) = 1d, so that there exists z, € Br(0,7) such that pg o y(z,) = 0,

that is y(z,) € Q (at this point we use the fact that F' is finite-dimensional). From

assumption iii) we have ¢(v(z,)) > p1, so obviously ema(x )cp('y(:r)) > 11, which
z

r(0,r
proves the claim.

If ¢ = 0, the infimum in (3.2) is achieved for vy = idp, (o). We claim that in
this case there exists a critical point of ¢ in S = {z € Bp(0,7) | ¢(z) = 0}.
Indeed, suppose that this is false. Since S is compact and S C Int(Br(0,7) + ),
there exists €9 > 0 such that

(3.3) ll¢'(z)|| > 16e9, Vz € S, and dist(S,d(Br(0,7) + Q)) > 2¢,.

We may apply Lemma 3.4 to ¢, S, ¢ = 0, § = 3¢0 and € = €5 and we obtain a
continuous mapping 7 : [0,1] x E — E with properties i)-vi) in that Lemma.
Define v, : Br(0,7) — E by v1(z) = n(1,z). By (3.3) and Lemma 3.4 i) and iii)
it follows that 7; € " and from Lemma 3.4 ii) and v) we infer that v;(z) < —¢,
Vz € S, so merllilf(}g ) ©(711(z)) <0, contrary to the assumption that ¢ = 0.

Hence Theorem 3.1 is proved in the case ¢ = 0. From now on we may assume
that ¢ < 0. Let S ={z+y | z € Bp(0,m),y € Q,dist(y,00) > 2}. Let
0 < 6 < Ldist(S,0(Br(0,7) + )). To prove Theorem 3.1, it suffices to show that
for any € > 0 such that ¢+ 2¢ < 0 and ¢ — 2¢ > py, there exists z; € S,; such that

8
(3.4) c—2%<plz)<c+2 and ||¢'(z) < —6‘3

Suppose that this thesis is false. Consider A and &y as given by assumption iv).
Define hg : Q(d) — [0, 7] by

b () — T if dist(y,00) < &
o) =\ 2(n(y) —r) - dist(y, 02) +2r — h(y) it & < dist(y, 6Q) < b,

It is clear that hg is continuous and ho(y) > h(y). Let

W = (Bp(0,r) + Q) \{z+y | y€Q(d), ||z]| <h(y)} and
Wo = (Br(0,7) + Q) \{z+y | vy €Q(d), |lz]] < ho(y)}

Observe that z € Wy and ¢(z) > ¢ — 2¢ implies z € S. Define ¢y : W — Wy by

ho(y) ey +v  ify € Q and A(y) < [z]| < ho(y)

&
T4y otherwise.

¢(fc+y)={

It is easy to see that ¢ is continuous and in view of assumption iv) we have ¢(z) >
o(Y(2)), Vz e W.
If € is such that gy < ¢ — 2¢ and ¢ + 2¢ < 0, consider v € I' such that

‘;}3‘(’5 )(p(’y(:r)) <c+e. Since p(z+y) >0>c+eify € Q) and ||z|| < h(y),
zeBr(0,r
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we have necessarily y(z) € W, Vz € Br(0,r). Let 7o = ¢ o~y. Then v, € I" and

< ax < .
jJmax o(12(z)) < I w(v(w)) ct+e

We apply Lemma 3.4 for the functional ¢, the set S, c, € and é and we get 7 €
C([0,1] x E, E) with properties i)-vi) in that Lemma. Let y3(z) = 1(1,72(z)), = €
Br(0,7). Since ¢~ !([c —2¢,c+ 2¢]) N2(Br(0,7)) C ¢ H[c—26,c+2])NWy C S
and dist(S, 8(Br(0,7) +Q)) > 26, we infer from Lemma 3.4 i) and iv) that y3(z) €
Br(0,7) +Q,Vz € Br(0,7) and g355,(0,-) = %d, hence 73 € I'. From Lemma 3.4,

ii) it follows that 1;1&(}5 )go(’yg(x)) < ¢ — ¢, contrary to (3.2). This contradiction
z€Bp(0,r

proves Theorem 3.1. O

3.4 Application to the functional F,

We have already introduced the functionals £ and E, in Introduction. In this
section we study the behaviour of the functional E. near the ground state uy of
(1.8) given by Theorem 1.1 and we prove that E, admits a nontrivial critical point
if c is sufficiently small. Let us verify first that F and E, are well-defined on H and
of class C? if N > 4. It is clear that the mapping (u;,us) — V((ro — u1)®* 4+ ul) is
of class C?(R?). We have 0 = > < 2 because N > 4. Taking into account that
for a > B, |u|* < C|ul? for |u| small, respectively |ulf < C|u|® for |u| large, the
following estimates hold:
IV((TO - u1)2 + u%)l < Cl — 2rou; + U’% + u%|2X{u%+u%§4r§}
+C|’U€ + u%|%+1X{u'{’+u§>4r§}
< C,(lull2 + |u1|2+0' + |U2|2+U),

5 |
|%IV((TO —w)? +u3)| = [2F((ro — w1)® +u3)(ro — w1)|
< Cl — 2rou; + u% + u%JX{u%+u§§4r§}
+C((7‘0 - u1)2 —t u%)'i |T0 : ul'X{u%+u§>4r§}
< C'(Jua] + [ua |7 + Jue]'*2) 4+ C'(Jua [F7 + Jug| '),
0
|8—u2V((7’0 —u)?+u3)] = | —2F((ro —w1)® + ud)usl
< C| = 2roug +uf + 3] - [ua|X(u2 4uz<ard
+C((T0 2— u1)2 + u%)i 'u2|X{uf+u§>4rg}
< C'(Jur]2#7 + |ua]” + |ug|?)|uel,
82 2 2
5V (ro = w) +ud)] = | = 4F"((ro — u1)? + u)(ro — wr)? = 2F((ro — wr)? + )
1
< CX{uf+u§§4r§} + C(((TO - u1)2 + u§)§X{uf+u§>4r§}
< CO'(1+ fur|” + [ugl?)
62 2 2
|8ulau2v((ro —u)®+uy)| = [4F'((ro —u1)? +ud)(ro — u)uel

< CluQ‘X{u%-{'-u%Sflrg} 3
+C((T£ - U1)2 + U’%)_l-l_ilro - ul'l”QlX{u%+u§>4’r§}
< Clug|? + C'(Jua]” + ua]?),
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62

—V((ro — u1)? + u3)] | = 4F'((ro — w1)? + ud)uj — 2F ((ro — w1)? + u3)|

Cllual* + | = 2rour + uf + u3|)Xquz ruz<ard)
+C((T0 - u1)2 + u%)JX{u%+u%>4r§}

C'(Juzl” + u]) + C'(Jur|” + |uz|7)

C"(Jur |37 + [w]” + Jus]).

Il

IN

IAIA

From these estimates it follows that I is a C2-functional from (L? N L**(RY)) x
L2*9(RY) to R. In view of the Sobolev embedding, I is of class C? on H =
H'(RN) x DY3(RYN) and consequently so are E and E..

In order to apply Theorem 3.1 to the functional E, near ug, we are interested
in the geometry of the level sets of E and E, in a neighbourhood of uy. We can get
some basic information about the behaviour of E and E, near uy by studying the
differential E'(uy,0).

We have already seen that ug is a critical point of E, that is d,, F(uo,0) = 0 and
dy, E(u,0) = 0. An easy calculation gives d2 . E(uo,0).(v,v) = 2(Av,v), where
A is the operator introduced in (1.9), and d2 ., E(uo,0) = 0. We have:

v (%)
To — Up

Proof. In view of Theorem 1.1, the linear mapping v — (1o —uo)v is a continuous
isomorphism of D*?(R") and its inverse is w +— *—-. Using equation (1.8)
satisfied by uy and integrating by parts we get

2
dz.

Lemma 4.1. d2, ,, E(uo,0).(v,v) =2 /RN(TO — ug)?

/RN F((ro — u0)?)(ro — wo)*v’dz = / (Aug)(ro — up)vdz

RN

= — N(T’o - UQ)A(T‘O - UO)'UZdiE
R

= / |V (ro — uo)|*v?dz + 2/ (ro — up)vV(ro — o).V dz,
RN RV
so we obtain
d?. . E(ug,0).((ro — wo)v, (ro — uo)v)

u2,u2

= 2/ IV ((ro — uo)v)|?dz + / —78‘93 (V((ro —w1)?+ u%))| B _O.(ro — ug)?vidz
RN RN 2 U1=UQ,U2=

—9 / V(o — uo)v)Pd — 2 / F((ro — uo)?)(ro — uo)?vds
RN RN

iy / (ro — uo)?|Vods.
RN

This proves Lemma 4.1. O
Let H(v) = / (ro — u)*|V ( v ) |?dz. Note that H(v)? defines a norm
RN

on DY2(RY) equivalent to the usual norm ||v||piz = </ |VU|2d:v> :
RN

To — Ug
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Because we have not good estimates of E(uq + u1,0) = E(uo) for u; € Ker(A),
we work for the moment only on the space (Re; +Y) x DV2(RY) and we show
that the restriction of E, to this space admits a critical point near u, for ¢ small.
It will be seen later that this is in fact a critical point of E, on the whole H.

Since E is of class C? and E'(ug,0) = 0, d2, ,, E(uo,0) = 0, using the Taylor
expansion we may write for u; € Y, uy € D12(RN) with ||(u1,u2)HH small and
t € R, t small

(4.1) E(uo+u;+ter, us) = E(ug, 0)+(A(ur+ter), (ur+ter)) + H(ug)+h(t, u, us2)

and

dulE(Uo + u; + tey, ’11,2) = dzl ulE(’U,O, 0) (’Uq + tey, )
(42) +d121,1 U2 (u’07 0)(" '1112) + L(ta Uy, U2)
= 2A(U1 + tel) + L(t, Uy, Ug)

where h : R x Y x DY?(RY) — R, L : R x Y x D?(RY) — H}(RV),
|h(t,ur,uz)] = o([t]* + [|(ur, uo)|lf) and [|L(¢,u1,u2) = o([t] + [[(u1, u2)|lm) as
(t)ul,U'?) — (O,an)

For each € > 0 consider t., r. > 0 such that

|1(t, us, u2)| < €[t + [ (u1, u2)[[f)  and
(4.3)
1L (8w, u2)|| < e([t] + [|(ur, uz)|lmr)
if |t| < t. and ||(u1,u2)||lg < 7. For [t| < t. we have
(44) E(’U,o + tey, O) - E(’LLQ, 0) = t2(A€1, 61) + h(t, O, 0) < —A1t2 + €t2.

If u; € Y and uy € DYA(RY), it follows from Lemmas 2.4 and 4.1 that there exist
two positive constants 7;, 2 such that

(4.5) Yl (i, ) |3 < (Aug, ur) + H(ua) < vol|(ur, uo) |-

Next, we show that E is “small” in a cone {te; + u; + tus € (Re; +Y) %
DY2RN) | ||(ug, u2)|lua < kt, t € [—1, T } and is “large” in a cone {te; +u; +iug €
(Re; +Y) x DV2(RN) | ¢ < 1| (ur, u2)||m, ||(u1,us)||m < 7 }, where k and [ do not
depend on €.

Let € < min(1, 3L, 2). Let k = ,/4(1+7 y- If [t] < min(t,, %) and [|(uy, ue)|lu <
k|t|, by (4.1) and (4.3) we have

E(Uo + Ui + t€1, Uz) — E(Uo, 0)
(4.6) < =Mt? + | (ur, ua) |1 + € + || (w1, u2) | [31)
< —Mit? + 1k +e(1 + k%)t < — 32

Let I = 31/ I [|(w1, u2)|la < min(re, %) and [t] < I]|(u1, uz)|lu we have

E(’LL() -+ (5] + tel,’U,g) - E(UQ, 0)

> =it 4+ 7| [(ur, ug) || — (8 + || (u1, u2)|[3)
> [ (u1, u2) i (m — MI? — el —¢)

> T (w1, uo) |-

(4.7)
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From now on, we consider throughout that 0 < € < min(1,2L, 2, 321 ) The
)4 el

next lemma says that assumption iv) in Theorem 3.1 is satisfied.

Lemma 4.2. There ezists cg > 0 such that for any ¢ € [—co,co] and any
(u1,u3) € Y x DVY3(RYN) with ||(u1, uz)||g < min(r., &) the function

t— EC(UO + u; + teq, ’LLQ)

is increasing on [—te, —l||(u1, u2)||u] and decreasing on [I||(u1, u2)||m, te]-
Proof. Using (4.2), (4.3) and the identities (Auj,e;) = 0, (Ae,e;) = —A{, we
obtain on [—t., —I||(u1, u2)||u]:

4B (ug + uy + tey, ug) = dy, E(ug + u1 + tey, uz).e; — 20/

= €12y, dT
RN

= 2(A(uy + tey), e1) + L(t, u1, uz)e; — 2c/ €1Usz, dT
RN

> =2t — e([t] + || (u1, u2)|[m)|ler] | — 2] - |Jug||pre
> (2M1 — &) |t] — (eller||ar + 2|el)||(u1, u2) | |m

> [(2A\1 — &)l — (elleallm + 2[e])] - [[ (w1, u2)| |

Taking ¢y = “71, since £ < min(%, 4I:I32|1IH)’ it is clear that the last quantity is
positive for |c| < ¢o. A similar estimate holds on [I||(u1, u2)||m, te]- O

Theorem 4.3. There ezists ¢; > 0 such that for all ¢ € [—c1,c1], the functional

©e(u1, ug) = Eo(ug + u1,us) — E.(uo, 0) restricted to (Re; &Y) x DV2(RYN) admits

a critical point (Ui, Usc). Moreover, (U1, usc) — (0,0) as ¢ — 0.

Proof.  Let to = min(t, %). Let ro = min(re, %, ktg). Now fix t € (0,o] and

let r(t) = min(ro, kt). If c is sufficiently small, we show that the assumptions of

Theorem 3.1 are satisfied for F' = Re;, G = Y x DY?(RY), %:(0, r) = [—t, t]es,
r(t

Q= Byxpl,z(RN)(O,T(t)), Ho = —‘\4—1t2, H1 = —/\‘Tlt2, (50 = 5 and h(ul,uz) -

(w1, u2)| |-
If 7 € [—t,t], using (4.4) we have

(4.8) we(Te1,0) = Ee(ug + Te1,0) — Ec(ug, 0)
' = E(ug + 7e1,0) — E(ug, 0) < (=X +€)72.

Because 0 < € < 4%, assumption i) is satisfied.
Since Q is bounded on bounded sets of H, there exists c(t) € (0, co] such that
for any ¢ with |c| < ¢(?),

A
(4.9)  |eQ(ug + up £ ter, ug)| < —41752 for (u1,uz) € Byxpra@mm(0,7(t)) and
. >\1 2 §4! 2
(4.10) | |cQ(uo + uy + ey, uz)| < min(—t%, —=7(t)*)

8 16
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fOI‘ (U]_,UQ) € Byxpl,z(RN)(O,T(t)) and |’TI S l]|(u1,uQ)||H
If |c| < c(t) and (u1,up) € Byxprz@mny(0,7(t)), by (4.6), the choice of r(¢) and
(4.9) we have

wo(Fter + u1, ug) = E(ug + uy £ teg, ug) — E(uo, 0)

(411) +Q(ug + w1 £ ter, up) < —3* + P = — 412,

Since ¢, is bounded on bounded sets of H, assumption ii) is verified (see also

Remark 3.3).
Using (4.7) and (4.10) we get for (u1,us) € Byxpi2@mn)(0,7(t))

@e(u1,u2) = E(up + u1, us) — E(ug, 0) + cQ(uo + u1, us)
>

4.12
(412) 1| (un, o)z — 282 > — A2,

thus assumption iii) holds. It follows from Lemma 4.2 that hypothesis iv) is verified.
Also, for |c| < e(t), if (u1,u2) € Y x DH2(RY) are such that i(z—tl < |[(ug,u)|la <
r(¢) and |7| < ||(u1,u2)||m, we have by (4.7) and (4.10)

@e(Ter + U1, ug) = Ec(ug + uy + Te1, ug) — Ec(uo,0)

4.13
(4.13) > 2| u, ua) [y — Br(t)? > Br(e)?

so that assumption v) is satisfied. Hence we may apply Theorem 3.1 and we obtain
a Palais-Smale sequence (u},,u3 ) for the functional ¢, restricted to (Re; @ Y') x
DY2(RYN). Moreover, (u},,u3,) € [=t,tler + Byypr2@n)(0,7(t)) for any n. Since
(uf,), (u3,) are bounded in H'(RY), respectively in D**(R"), we may extract a
subsequence (still denoted (u} ), (u5.)) such that

uf, —=u. weakly in H'(R")
uf, — u1. a.e. andin Lj,,
uj, — ug. weakly in DM2(RYN)

uj, — Uz, a.e. and in Ij

(4.14) Vp € [1,2+0)

Vpe[1,2+0).

loc?

It is clear that ||ui || < t+7(t) and ||ugc||pre < 7(t). Let (v1,v2) € (Re1®Y) X
DL2(RYN). By weak convergence it is obvious that

(4.15) T'(uo + uf e, uy o). (v1,v2) — T'(ug + U1, Uac)-(v1,v2) @8 n — 00,

(4.16) Q' (uo +ul o, u3 ). (v1,v2) — Q' (o + Ui e, Uz,c).(v1,V2) a5 . — 0.

On the other hand, it follows from the estimates at the beginning of this section
that

F((ro —uo — ul,)? + (uf )*)(ro — uo — u},) is bounded in L? + L7 (RY) and
F((ro — ug — uf,)? + (u3.)*)uf . is bounded in L%}Z(RN ).

Passing again to a subsequence, we may assume that
F((ro —uo — u’f,c)2 + (u3,)?)(ro — up — ut,) = fi weakly in L? + L%(RN)

F((ro —uo — ufo)? + (u3,)?)uf, = fo weakly in L1 (RY).
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In view of the estimates at the beginning of Section 4 and of the convergence
ul, —> Ure, Uy, —F U i LfOC(RN), 1 <p<2+o0, we have F((rg — ug —
u? )? + (uf.)?)(ro — uo — ul,) — F((ro — uo — u1,e)® + u3 ) (o =~ uo — 1) and
F((ro — uo — uf o) + (u3.)?)ug, — F((ro — uo — u1,)® + uj Jug, in LT (RY),
1 <g¢g< f—ﬁ— By the uniqueness of the limit in D'(RY) we infer that f; =
F((ro — uo — u1,e)® +u3 ) (ro — uo — 1) and fo = F((ro — uo — u1,c)* + u3 s
Now the weak convergence implies that

(4.17) I'(uo+uf,, uy,)-(v1,v2) —> 2 § fivr — fovedz = I'(wo+u e, ua ). (v1, v2).
R

Since ILm E(w+uf,,uy,).(v1,v2) = 0, from (4.15), (4.16) and (4.17) we infer that

(4.18) E'(up +ure Use)-(v1,v2) =0 for all (vy,v2) € (Re; ®Y) x DY*(RY).

In conclusion, we have proved that for any ¢ € (0,%o] there exists ¢(¢) > 0 such
that for |c| < c(t), the restriction of ¢, to the space (Re; @ Y) x DV?(RY) admits
a critical point (u1c,Us.c) and ||uy ||l < t+7(2), ||ugel|lpr2 < 7(t). The proof of
Theorem 4.3 is completed. a
Theorem 4.4. There ezists ¢, > 0 such that for |c| < ¢k, E. admits a nontrivial
critical point u, € H. Moreover, u, — ug as ¢ — 0.

Proof. Let u, = (ug + Uye, Upe) = Up + Ur,c + GUsc Where (uyc, ug.) is given by
Theorem 4.3. It follows from (4.18) that E’(u,) = 0 on (Re; ®Y) x D*(RY), that
is dy, Ee(uo+ U1 e, uze) = 0 on DM2(RYN) and dy, Eo(ug+ U1, z,ec) =0 on Re; @Y =
(Ker(A))*NH'(RY). All we have to do is to show that dy, E¢(uo+u1,c, u2c) = 0 on
Ker(A). For small ¢, this will be done thanks to the invariance of E, by translations
in RM. (Note also that %%}, t=1,...,N are in the kernel of A just because E is
translation invariant).

It will be seen in the next section that u; . and us . are in H?(RY), respectively
in D2 N D?*?*(RYN), where D**(RV) = {v € D'(RY) |VZ € L*(R") }. Then for
each i € {1,..., N}, the mapping t — u.(z1,...,2; +t,...,2n) is C' from R to
H and

(4.19) Ec(ue(z1, ...,z +1,...,25)) = Ec(u:), VteER.

Differentiating (4.19) at t = 0 we get

Ou,

=0.
8:51-

(4.20) E'(u).

Because dy, E.(u.) = 0, (4.20) gives dy, E.(uc). (%1;—3 + -g%;) = 0. By Theorem 2.6
we have H!(RY) = Re; +Y+Span{g—‘£, i=1,..., N}, the sum being orthogonal
in L2(R"). Note that %%?, i=1,..., N are orthogonal in L?(R") and -ag—;f — 0in
L2(RM) as ¢ — 0. It follows that for c sufficiently small we also have H'(R") =
Re; +Y + Span{(g—’;% %’2—;“) , i =1,...,N} and from (4.20) we deduce that

dy, Ec(uc) = 0 on H'(RY), as we need. Thus Theorem 4.4 is proved. O
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Remark 4.5. Both the functional E, and equation (1.2) are invariant by rotations
in the (z,...,zx)-variables. Therefore instead of working on H, we could work on
Hi 0 = {u € H | wuisradially symmetric in (z3,...,2zy)}. Our proofs remain
valid without changes and we obtain a critical point @, of E, on Hj ;44 for || < c,.
Of course that in this case we know d priori that E.(d.).v = 0 only for v €
H; 04 Because the group G of rotations in (25, ...,2y) acts isometrically on H
and Fiz(G) = Hj ,q44, from the Principle of Symmetric Criticality (see [38] or [50])
we obtain that in fact 4. is a critical point of £, on H. Therefore we have the
following:

Corollary 4.6. If |c| < c., there exists a solution @, € H of (1.2) which is
radially symmetric in the transverse variables (za,...,zy). Moreover, 4, — ug
imnH asc— 0.

3.5 Regularity

In this section we show that the critical points obtained in Theorem 4.3 are in
H?(RY) x D?2(R") (thus completing the proof of Theorem 4.4) and we obtain
some other regularity properties of the solutions of equation (1.2). We begin with
the following simple lemma:

Lemma 5.1. Let (u;,us) € H satisfy E.(u1,uz).(v1,v2) = 0, V(v1,v2) € (Rex &
Y) x D¥2?(RY). Then

dy, Ec(u1,u3) € Ker(A) and  dy,E.(u1,u3) =0.

Proof. It is obvious that d,,E.(u;,us) = 0. Let p;, po be the orthogonal pro-
jections of L2(R™) onto Ker(A), respectively onto Re; @ Y. It is clear that
o, Ec(u1,u3).pov = 0 for all v € HY(RY). Hence for any v € H'(R") we have

[(du, Ee(u1, U2)1PIU>H—1,H1 l

Cllp1v]|

C'||p1v||z2  because Ker(A) is finite-dimensional
C'||v]| .

|<du1Ec(u1, U2), U)H—I,Hl |

ININIA

By density of H}(R"Y) in L*(R") we infer that d,, F.(u;,us) has an unique ex-
tension as a bounded linear functional on L2(RY), hence d,, F,(u;,us) € L2(RY).
Observe that Re;®Y = H'(RY)NIm(A) is dense in Im(A) and Im(A)* = Ker(A)
because A is self-adjoint. Since (dy, E.(u1,uz),v) =0, Vv € Re; @Y = H}(RN) N
Im(A), by density we infer that d,, F.(u;,us) € Ker(A). O
Lemma 5.2. Suppose that N > 4 and F € C'([0,00)) satisfies

i) F(r3) =0 and

i) F(z) <0 and |F(z)| < 2% for large .

Let u = uy + tup with u; € HY(RYN) and uy € DV2(RYN) be a solution of the
equation

(5.1) icUg, — Au+ F(|rg — ul?)(ro — u) = f1 +ifa.

We have:
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a) If f1, fo € LARN)NL*T(RY), thenu; € HA(RY) and uy € DV2ND22(RNY).
b) If f1, fo € LY(RYN),Vq € [2,00), then u; € W2I(RY), uy € DN D24(RN)
Vg € [2,00) and uy € W>I(RY), Vg > 2+ 0.

Proof. Equation (5.1) is equivalent to the system
(52) -—C’U,Q_,‘L.1 - A’Uq + F((T‘Q — ﬂ1)2 + Ug)(T‘O - Ul) = f1

(53) culml — A’UQ — F((’I‘o — Ul) + ’LLZ)’UQ f2

We show first that u; € L#(RY) and u; € L%(RY) with g;,g0 > 2 + 20. This
step was inspired by the proof of Theorem 2.3 in [17]. For i = 1,2 and n € N, let

—n if wui(z) <-n
ul(z) =< ui(z) if —-n<u(z)<n
n if wui(z)>n.
It is clear that u? € HY(RM) N L®(RY), u? € DY?(RY) N L®°(R"N) and Vu? =
X{-n<ui<n} VUi, 1 = 1,2. Let hy(s) = [s|P™2s, p > 2. Then hy(u}) € H'(R") and
hy(u3) € DY(RYN). Multiplying (5.3) by h,(u?) and integrating we get

-0 [ VP = [ g
RN RV

+/ -~ F((ro — u1)? + ud) |ug|Pdz
(5.4) —n<u;<n}
+ F((ro — u1)? + ud) |ug|nP dx
{u2a<—n}U{uz>n}
—c Urg, |ub P 2uldz.
RN

Denoting by Fre: = rr[lax) F(z), we have:
0,00 R

/ F((T‘Q —U1)2+U§)|UQ,pdiE _<_ Fmaz/ l’LLQ’deI;
{-n<u;<n} RN

/ : F((ro — u1)?* + u3)|ug|nPdz < 0 if n is sufficiently large,
{ua<—n}u{uz>n}
f umltum*’*usdw! |- eto-1) [ wlipr g,
RN RN
— |70 [ wahgEag o (u3lF) o

2
2(p—1) 21, |p—2
<2t [ (gt )ldw+c<p)/RN1uli [uz?~?da.

4 2 .
Using the identity / |Vul|?|uP~2dz = ~2/ ‘V (]ul‘;) ' dz, (5.4) gives
p” Jrv

4(p— 1)/ |V|u

0 2
e L 2|, |P—2
v [ 10 (uglt) [t 00 [P

/ fallusP "4z + Finas / Pl
RN N

(5.5) N
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Note that the right hand side of (5.5) may be infinite. Since f, € L>**(R") and
uy,up € L**°(RN) by the Sobolev embedding, taking p =2+ o in (5.5) we get

(556) 22D [ e

p2

where K does not depend on n. Passing to the limit as n — oo in (5.6) and using
Lebesgue’s dominated convergence theorem we infer that V (qulqu) € LX(RN).
(RY).

(2 +cr)

By the Sobolev embedding we obtain |ug|*3* € L2+ (RN), thatisuy € L
Multiplying (5.2) by h,(u}) and integrating we get

(b—1) / VP P2 = / fil P2z
RN RN
+/ F((ro— u1)2 + u%)luﬂ”dm

—n<ui1<n}
+f F((ro — u1)? + ud)|uy|n?~'dz
{

Ul <—n}U{u1 >n}

—ro/ F((ro — uy)? + ud)|ul P 2uldz + c/ Uy, [uT P 2uldz.
RN RN

(5.7)

We have |F((ro — 21)2 + 22)| < C| — 2ro21 + 2% + 23| for 22 + 23 < 4r§ and |F((ro —
22+ 22)| < C((ro — 21)2 + 22)% < C'(|21]|° + |22]%) for 22 + 22 > 4rf.

If o <1 (that is, N > 6), then |F((ro — 21)2 + 22)| < C(|z1] + |22]) for all 21, 2
and proceeding as above we infer that

2
e R VAT S R ey e
RN RN RN

(5.8) e /R N(|u1| + Jug)) [

2(p—1) 2 , -

Of course, the rlght side of (5.8) may be infinite. Because u; € L2N L***(R") and
up € L7 N LY (RN ), it is easy to see that

/ Iull”da:<ooand/ |filluiP~tdz < co for 2 < p < 2+,
RN RN
AN|u2||u1|p‘1dw<wfor2+Qi <p<2+0+37%,

/ |ug|?|uq P~ 2da:<oofor2+ <p<2+0+2+a
R -

Taking p = 2 + o in (5.8) we obtain

(5.9) YN\
.

p2
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where K does not depend on n. Passing to the limit as n — oo in (5.9) and
using again Lebesgue’s dominated convergence theorem we get that V ( |u1|2+a) €

L*(R") and therefore u; € L (R") by the Sobolev embedding.
If 2> 0 > 1, we have |F((ro — 21)2 + 22)| < C(|z1] + |21|7 + |22]7) for all 21, 2z
(note that o < 2 because N > 4) so that (5.7) gives

4(’;1/ ‘Vlu

G10) O [ (fual+ ul” + el P
R

2(p—1)
2220 /R )

Since u; € L2 N L**(RY) and uy € L2+

+a)

< / | FullualP2ds + P / lurPda
RN N

R

2
2 p—2
5o (10118) [do+C0) [l

e+)® SN
(RY), it is clear that

/ |u1|”dz<ooand/ [fillui]Ptdz < co for 2 < p < 2+,
RN RV

/ |up [P 1dz < 0o for 3— 0 < p < 3,

RN

/R |ug||u1[P~ldz < 0o for 2+ 22 <p < 2+0 + 377,

/R uz)?|u1[P~2dz < oo for 2 + 2 <p<2+0+2+0

Therefore for p € [2 + 52Z, 3] we obtain

2+a ’

(5.11) 3(—1-’_—1)/RN }vm1 5

p2

with K independent of n. As previously we get that V (Iullg) € L*(RY) and
u; € L (RY) by the Sobolev embedding. In particular, for p = 3 we obtain
u, € L2+ (RYN). Thus we have proved that u; € L%(RY) and u, € L2(RY)

with ¢1, g2 > 2 + 20.
From the above estimates it follows that

|F((ro — u1)? + u3) (ro — w1)|
< C(luli + |U2| )X{u2 u3<4r?} + C(|ulld + |U2| )(lull + |u2|)X{u2+u2>4r§}
< C'(Jua[*Jua" 2) X uz ruz<arzy + C'(Jua]"F7 + |ua| ') € L*(RY)

and similarly F((ro — u1)? + uf)us € L*(R"). From (5.2) and (5.3) we infer now

that Au; € L2(RYN) and Au, € L*(RY), which imply that u; € H*(R") and
uy € D*2(RYN). This proves a). ‘
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b) Suppose now that fi, fo € LY(RY) for all ¢ € [2,00). Let r > M ifo <1,

respectively r > 2(2+0) if o > 1 and s > (2+”) be such that u; € L2 N LT(RN )
and up € L2 N LS(RN )-
It is easily seen that / lut|?|uglP~2dz < 00 if 2+ 0 < p < 2+ s(1 — 2).Let
RV

p1 = min(s,2 + s(1 — 2)). From (5.5) it follows that V (|u2| 2 ) € L*RY), thus
up € L*5*P(RY). We also have

/|’U,1’p+a—1d.'13<OOfOI'3—0’SpSr+1__O-,

RN

/ qul [u1|p ldx < oo for 2+ <p< 1+r(1 s),
RN

/N|u2||u1|”"ldm<oofor2+%%o <p<l+r(l-13)
R

/ ua|?|u [P~ 2dz<oofor2+2+o <p<247r(l— 2)
RY

In the case o < 1, we obtain from (5.8) that V (Ju|?) € L*(R") if 2 + 2 <
p < pp = min(r,1 + (1 — 1),2+ (1 — 2)), while in the case 0 > 1 we obtam
from (5.10) that V (jus|?) € L2(RN) if 2+ 2= < p < ph = min(r,1 + (1 -
2),24+7(1—2),r + 1 — o). By the Sobolev embedding, u € L5 P (RN) if 0 < 1,

respectlvely uy € L*5P (RM) if o > 1. Thus we obtained that u; € L™ (R") and
U € L¥(RY), where 7' = Z2p, if o < 1, respectively r' = Zf2p} if 0 > 1 and
s' = Z%p,. Repeating this argument it follows that u; € LP (RN ) for all p € [2, 00)
and u; € LY(RYN) for all ¢ € [2+ 0,00). Consequently F((ro — u1)* + u3)(ro —
u1), F((ro — u1)? + ud)uy € LP(RY) for all p € [2, 00).

Since u; € H2(RY) and uy € DV2 N D*?(RY), we have ui,,, us,, € H'(RY) C
L2 N L**°(RYN). Using (5.2) and (5.3) we infer that Au,, Au, € LP(RY) for all
p € [2,2+ 0], therefore u; € W2P(RV), Vp € [2,2+0], us € D*ND*?(RN), Vp €
[2,2 + o] and u, € W227(RY). Iterating this argument we obtain the conclusion
in Lemma 5.2, b). O
Remark 5.3. From Lemma 5.3 b) it follows in particular that u;, u; € C*(RY)
for all @ € [0,1), u1, ug are bounded and tend to zero at infinity.

Finally, suppose that F is C* and fi, fo € WF4(RY) for all ¢ € [2, 00). Differen-
tiating equation (5.2), respectively (5.3), we obtain u; € W**24(RY), Vg € [2,00),
uy € DN DF29IRY), 2< g<2+0 and up € WH2I(RY), 2+ 0 < ¢ < 0.
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b) Suppose now that fi, f» € LY(R") for all g € [2,00). Let r > —Qi‘i ifo<1,

respectively r > 2(2+0) if o > 1 and s > (2+”) be such that u; € L2 N LT(RN )
and 1, € L2+7 0 L*(RY).
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/|u1]p+""1da:<oofor3—or§p§r+1~a,

RN

/ qul |u1|p ldx < oo for 2+ <p< 1+r(1 s),
RN

/N|u2||u1|”"ldm<oofor2+%%o <p<l+r(l-13)
R

/ |ug|?|ui P~ 2dz<oofor2+2+d <p<2+r(l-2).
RN
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p € [2,2+ 0], therefore u; € W2P(RV), Vp € [2,2+0], us € D*ND*?(RN), Vp €
[2,2 + o] and uy € W29 (RY). Iterating this argument we obtain the conclusion
in Lemma 5.2, b). O
Remark 5.3. From Lemma 5.3 b) it follows in particular that u;, u; € C*(RY)
for all @ € [0,1), u1, us are bounded and tend to zero at infinity.

Finally, suppose that F is C* and fi, fo € WF4(RY) for all ¢ € [2, 00). Differen-
tiating equation (5.2), respectively (5.3), we obtain u; € W**24(RY), Vg € [2,00),
uy € DN DF29RN), 2<g<2+0 and up € WH2I(RY), 2+ 0 < ¢ < 0.
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