Cours de l'institut Fourier

YVES COLIN DE VERDIÈRE

Chapitre VI Quantification

Cours de l'institut Fourier, tome 18 (1982-1983), p. 1-14 http://www.numdam.org/item?id=CIF_1982-1983_18_A6_0

© Institut Fourier – Université de Grenoble, 1982-1983, tous droits réservés.

L'accès aux archives de la collection « Cours de l'institut Fourier » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CHAPITRE VI

QUANTIFICATION

Bibliographie

LANDAU-LIFSCHITZ, Mécanique quantique.

- BERGER-GAUDU(HON-MAZET, Le spectre d'une variété riemannienne compacte.
- D. HEJHAL, La formule des traces de Selberg. I. (Lecture notes in Math.).
- D. HEJHAL. The Selberg Trace Formula and the Riemann zêta function. Duke Math. J. 43 (1976) pp. 441-482.
- DUISTERMAAT-GUILLEMIN, Spectrum of positiv elliptic operators and periodic geodesics. Inventiones Math. 29 (1975) pp. 39-79.

1. - PHILOSOPHIE DE LA QUANTIFICATION.

Dans la mécanique hamiltonienne, un état est un point de l'espace des phases, qui est une variété symplectique (X,ω) . Un hamiltonien est une fonction $H\in C^\infty(X;I\!R)$ et l'évolution du système est déterminée par le flot ϕ_t du champ de vecteur ξ_H , gradient symplectique de H. L'ensemble des hamiltoniens est muni d'une structure d'algèbre de Lie, grâce au crochet de Poisson.

 $\phi(t) = e^{-\frac{\pi}{N}} \phi(0)$; if la constante de Planck est une constante physique universelle qui a la dimension ET^{-1} (E = énergie, T = temps), de façon que l'argument de l'exponentielle soit sans dimension. A l'échelle macroscopique, if est très petite : la mécanique quantique est opérationnelle pour les échelles petites, i.e. microscopiques. On a une notion de crochet sur les opérateurs : $[A,B] = A \circ B - B \circ A$.

On appelle $\underline{\text{quantification}}$ toute $\underline{\text{correspondance}}$ fonctorielle du type :

$$(X,\omega)$$
 $\sim \sim \rightarrow \mathbb{R}$

variétés symplectique espace de Hilbert

 $H \in C^{\infty}(X;\mathbb{R}) \longrightarrow \hat{H}$ opérateur autoadjoint sur H

qui respecte les structures d'algèbre de Lie :

$$[\hat{H}, \hat{K}] = i \mathbb{M}\{H, K\}.$$

Remarque. La transformation H *** Ĥ n'est définie que pour

certains hamiltoniens d'une forme particulière : il n'y a pas de méthodes universelles de quantification.

Résolution de l'équation de Shrodinger.

Elle fait appel soit à des calculs explicites ou approchés utilisant la théorie des équations aux dérivées partielles, soit à la décomposition spectrale de l'opérateur H.

Le cas le plus simple est celui où H est à <u>résolvante compacte</u>, c'est-à-dire où $(H-\lambda_0)^{-1}$ est un opérateur compact de $\not\equiv \mathcal{O}$ (λ_0 étant choisi hors du spectre de H , par exemple $\lambda_0=i$). Il existe alors une base orthonormée $(\phi_n)_{n\in\mathbb{N}}$ de $\not\equiv$ et une suite $E_0 \leq E_1 \leq \ldots \leq E_n \leq \ldots$ de nombres réels avec $\lim_{n\to\infty} E_n = +\infty$ tels que $H\phi_n = E_n\phi_n$.

On a
$$\sum |a_n|^2 = 1$$
 et $|a_n|^2 = Probabilité{E(\phi) = E_n}$.

D'une manière générale, si A est un hamiltonien, la valeur probable de A dans l'état ϕ est $\langle A\phi|\phi\rangle$.

Deux principes généraux sont valables :

• le principe d'incertitude : si A,B sont 2 hamiltoniens tels que [A,B] = $c\frac{k}{i}$ Id , alors $(AB\phi|\phi)$ - $(BA\phi|\phi)$ = $c\frac{k}{i}$, $2Im(A\phi|B\phi)$ = ck . Donc : $||A\phi|| \ ||B\phi|| \ge \frac{c}{2} \ k$. Soit ϕ telle que $(A\phi|\phi)$ = α , $(B\phi|\phi)$ = β . on a : $\begin{cases} ((A-\alpha)\phi|\phi) = ((B-\beta)\phi|\phi) = 0 \\ [A-\alpha,B-\beta] = [A,B] \end{cases}$

et donc $\|(\mathbf{A}-\alpha)\varphi\| \|(\mathbf{B}-\beta)\varphi\| \ge \frac{\mathbf{c}}{2}\mathbf{h}$.

L'expression $\|(A-\alpha)\phi\|^2$ représente l'écart quadratique moyen entre ϕ et sa valeur moyenne α , qu'on peut noter ΔA^2 : on a donc :

$$\triangle A. \triangle B \ge \frac{c}{2} \not h$$
.

2 hamiltoniens dont le crochet est $\frac{c}{i}$ M Id ne peuvent simultanément être connu avec une précision absolue dans un état ϕ .

• Le principe d'exclusion : soit \hat{H} un hamiltonien et $N(E) = Card\{E_n \le E\}$ (valeurs propres de H), alors on a des majorations du type : $N(E) \le C \cdot (2\pi M)^n \text{vol}\{H \le E\}$ où X est de dimension 2n, $C \sim 1$: une particule quantique occupe une place de volume $(2\pi M)^n$; ce principe rend obligatoire la quantification : les valeurs possibles de \hat{H} ne peuvent décrire qu'un ensemble discret si $H: X \to \mathbb{R}$ est propre.

2. - QUANTIFICATION DE SCHRÖDINGER-WEYL.

Dans cet exemple de quantification $X=T^*({\rm I\!R}^n)$ muni de la structure symplectique usuelle et $\mbox{$\mathbb{R}$}=L^2({\rm I\!R}^n, dx)$ (dx étant la mesure de Lebesgue de ${\rm I\!R}^n$). On se contentera dans un premier temps de réaliser la philosophie précédente pour les hamiltoniens $\mbox{$H$}\in C^\infty(T^*({\rm I\!R}^n))$ qui sont des polynômes de degré $\mbox{$\leq 2$}$ en (x,ξ) .

On pose
$$\hat{1} = \text{Id}$$
; $\hat{x_i} = m_i$, opérateur multiplication par x_i ; $\hat{\xi}_j = \frac{\cancel{h}}{i} \frac{\partial}{\partial x_j}$; $\hat{x_i} \hat{\xi}_j = \frac{1}{2} (\hat{x}_i \circ \hat{\xi}_j + \hat{\xi}_j \circ \hat{x}_i)$; $\hat{x_i} \hat{x}_j = \hat{x}_i \circ \hat{x}_j$; $\hat{\xi_i} \hat{\xi}_j = \hat{\xi}_i \circ \hat{\xi}_j$.

On étend par linéarité à tous les polynômes de degré ≤ 2 . Par exemple :

$$\widehat{\sum_{i}^{2}}_{i} = \frac{\cancel{k}}{i} \left(x_{1} \frac{\partial}{\partial x_{1}} + \frac{1}{2} \right) ;$$

$$\widehat{\sum_{i}^{2}}_{i} = -\cancel{k}^{2} \Delta \quad \text{avec} \quad \Delta = \sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}} ;$$

$$[\widehat{x}_{\ell}, \widehat{\xi}_{j}] = i\cancel{k} \delta_{j\ell} \text{Id} \quad (\delta_{j\ell} \quad \text{symbole de Kronecher}).$$

On vérifie aisément la relation :

$$[\hat{f}, \hat{g}] = ik\{\hat{f}, g\}$$
.

On étend cette quantification aux hamiltoniens de la forme :

$$H(x,\xi) = \sum a_{ij} \xi_i \xi_j + \sum b_i(x) \xi_i + c(x) ;$$

on pose:

$$\hat{H} = - N^2 \sum a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \frac{N}{i} \sum \left(b_j(x) \frac{\partial}{\partial x_j} + \frac{1}{2} \frac{\partial b_j}{\partial x_j} \right) + c(x) .$$

Par exemple si

$$H(x,\xi) = \frac{1}{2m} \sum \xi_i^2 + V(x)$$
,

$$\hat{H} = -\frac{\kappa^2}{2m}\Delta + V(x) .$$

C'est l'opérateur de Schrödinger d'une particule de masse $\,m\,$ dans un potentiel $\,V(x)\,$.

Si
$$H(x,\xi) = \frac{1}{2m} \sum_{j=1}^{n} (\xi_j - a_j(x))^2 + V(x)$$
,

$$\hat{H} = \frac{1}{2m} \sum \left(\frac{\cancel{N}}{i} \frac{\partial}{\partial x_i} - a_j(x) \right)^2 + V(x) .$$

C'est l'opérateur de Schrödinger en présence d'un champ magnétique $B=d(\sum a_j(x)dx_j)\in \Omega^2({\rm I\!R}^n) \ \ \text{et d'un champ \'electrique} \ \ V(x) \ .$

Remarque. On ne peut pas étendre cette quantification à l'ensemble des hamiltoniens polynômiaux en (x,ξ) . Il est par exemple impossible de définir de façon cohérente $x_1\xi_1^2$ par exemple.

3. - OSCILLATEUR HARMONIQUE.

Dans ce \S , on fait = 1. A l'hamiltonien $= \frac{1}{2}(x^2 + \xi^2)$ sur $= T^*(\mathbb{R})$, on associe par la quantification de Schrödinger-Weyl l'opérateur $= \frac{1}{2}\left(-\frac{d^2}{dx^2} + x^2\right)$ sur $= L^2(\mathbb{R}, dx)$. Cet opérateur est défini sur un

domaine dense de $L^2(I\!R,dx)$, par exemple l'espace $S(I\!R)$ de Schwartz. Il est clair que H est formellement symétrique : si $f,g\in S(I\!R)$, $\int_I Hf \cdot \overline{g} \, dx = \int_I f \cdot \overline{Hg} \, dx$. On peut en fait montrer que H admet une $I\!R$ unique extension autoadjointe qui, de plus, est à résolvante compacte : $L^2(I\!R,dx)$ admet donc une base orthonormée ϕ_n formée de fonctions propres de H associées à une suite $0 \le \lambda_0 \le \lambda_1 \le \ldots$ de valeurs propres vérifiant $\lim_{n \to +\infty} \lambda_n = +\infty$, que nous allons déterminer ci-dessous.

THEOREME. -
$$\lambda_n = n + \frac{1}{2}$$
 et
$$\varphi_n = c_n \left(\frac{-d}{dx} + x\right)^n \left(e^{-x^2/2}\right) = H_n(x)e^{-x^2/2}$$
 où H_n est un polynôme de degré n ayant n zéros et la parité de n (polynômes d'Hermite) ; $c_n = \pi^{-1/4} \cdot 2^{-n/2} \cdot ((n-1)!)^{-1/2}$.

Preuve. - La factorisation $x^2+\xi^2=(x+i\xi)(x-i\xi)$ conduit à introduire les opérateurs différentiels $B_{\pm}=\pm\frac{d}{dx}+x$. On vérifie les relations :

$$B_{+} \circ B_{-} = -2H - 1$$
 ; $B_{-} \circ B_{+} = -2H + 1$; $[B_{+}, B_{-}] = -2$

Soit $\phi \neq 0$ telle que $H\phi = \lambda \phi$, on vérifie aisément que

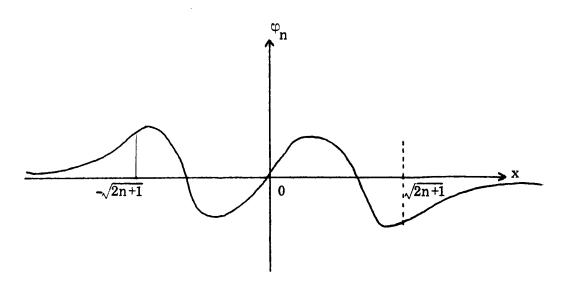
$$\begin{cases} \textbf{a} & \lambda \neq \frac{1}{2} \Rightarrow \textbf{B}_{+}\varphi \neq 0 \\ \textbf{b} & \lambda \neq -\frac{1}{2} \Rightarrow \textbf{B}_{-}\varphi \neq 0 \\ \textbf{c} & \textbf{H}(\textbf{B}_{\pm}\varphi) = (\lambda\mp1)(\textbf{B}_{\pm}\varphi) \end{cases}.$$

Donc, si λ est valeur propre de H $(\lambda \ge 0)$, $\lambda + 1$ est valeur propre de H avec la fonction propre B_ ϕ . Si λ est valeur propre de H et $\lambda \ne \frac{1}{2}$, $\lambda - 1$ est valeur propre de H avec la fonction propre B_ ϕ . Comme les valeurs propres de H sont ≥ 0 , on voit que les conditions précédentes impliquent Spectre(H) = $\{n + \frac{1}{2} \mid n \in \mathbb{N}\}$: $\lambda_n = n + \frac{1}{2}$; et de plus, on a : B_ $\phi_n = c' \cdot \phi_{n-1}$, B_ $\phi_n = c'' \phi_{n+1}$: la condition $\phi_n \in L^2$ détermine donc ϕ_{n+1} à partir de ϕ_n et ϕ_0 par B_ $\phi_0 = 0$: les espaces propres sont de multiplicité 1; $\phi_n = ce^{-x^2/2}$ et $\phi_n = c \cdot B_-^n(\phi_0)$.

La relation $(B_{\phi}|B_{\phi}) = -(B_{\phi}B_{\phi}|\phi) = +((2H+1)\phi|\phi)$ permet de calculer la norme L^2 de $B_{\phi}^n(\phi_0)$ et donc les constantes c_n de normalisation.

Localisation.

La n-ème fonction propre ϕ_n vérifie l'équation différentielle $\phi_n'' + (2n+1-x^2)\phi_n = 0 \text{ , donc le graphe admet des points d'inflexion pour } x = \pm \sqrt{2n+1} \text{ : la fonction } \phi_n \text{ est oscillante pour } x \in [-\sqrt{2n+1},\sqrt{2n+1}]$ et exponentiellement décroissante hors de cette intervalle : l'état quantique ϕ_n est donc localisé dans l'intervalle $[-\sqrt{2n+1},\sqrt{2n+1}]$. On remarque que c'est la projection sur l'axe des x de la ligne d'énergie $h(x,\xi) = n + \frac{1}{2}$ qui est le cercle de centre 0 et de rayon $\sqrt{2n+1}$.



Exercice. Dessiner avec précision les graphes de ϕ_n pour $n \le 5$. On remarque aussi que la place occupée dans $T^*\mathbb{R}$ par la particule ϕ_n qui est l'aire de la couronne $R \in [\sqrt{2n}, \sqrt{2n+2}\,]$ vaut 2π $(2\pi\,\text{N} \ \text{si} \ \text{N} \ne 1)$ ce qui concorde avec la philosophie générale.

Relation avec la transformation de Fourier.

Soit $U(t)=e^{-itH}$ la solution de l'équation de Schrödinger. On a $U(t)\phi_k=e^{-it\left(k+\frac{1}{2}\right)}\phi_k$. En particulier $U(\pi)\phi_k=-i(-1)^k\phi_k$ et en général $U(\pi)(f)=-if(-x)$; $U(2\pi)=-Id$; $U(4\pi)=Id$.

Soit
$$\mathfrak{F}f(x)=(2\pi)^{-1/2}.\int_{IR}e^{-ixy}f(y)dy$$
, on a:
$$U(\frac{\pi}{2})=e^{-i\pi/4}\mathfrak{F} \ ;$$
 en effet $\mathfrak{F}\phi_0=\phi_0$; $\mathfrak{F}B_-=-iB_-\mathfrak{F}$ et donc $\mathfrak{F}\phi_k=(-i)^k\phi_k=U(\frac{\pi}{2})e^{i\frac{\pi}{4}}\phi_k$.

Système classique.

 $\phi_t:\, T^{\bigstar}(I\!R) \to T^{\bigstar}(I\!R) \quad \text{est la rotation d'angle} \quad t \quad \text{autour de} \quad 0 \ .$ En particulier $\phi_{\overline{1}}(x,\xi) = (-\xi\,,x) \quad ; \quad \phi_{\overline{2}\overline{1}} = Id \ .$

Système quantique.

 $U(t): L^2(I\!R) \to L^2(I\!R) \; ; \quad U(\frac{\pi}{2}) = e^{-i\pi/4} \, \mathfrak{F} \; ; \quad U(2\pi) = -\operatorname{Id} \; .$ $(H-E)f = 0 \quad \text{n'est possible que si} \quad E = n + \frac{1}{2} \; : \; \text{cela correspond à une}$ famille discrète de cercles de rayon $\sqrt{2n+1} \; \text{dans} \; T^*(I\!R) \; .$

Il faut remarquer que la représentation $\mathbb{R}/2\pi\mathbb{Z}=U(1)$ — Symp $(T^*(\mathbb{R}))$ donnée par $t\mapsto \phi_t$ ne se quantifie pas en une représentation unitaire de U(1) dans $U(L^2(\mathbb{R}))$, mais du revêtement à 2 feuillets $\mathbb{R}/4\pi\mathbb{Z}$ de U(1) dans $U(L^2(\mathbb{R}))$: $t\leadsto U(t)$. C'est la source des difficultés qui conduisent à la théorie de l'indice de Maslov. Notons aussi qu'on a le même problème pour la représentation naturelle de $SL_2(\mathbb{R})$ dans $Symp(T^*(\mathbb{R}))$ qui prolonge celle de U(1): on doit passer au revêtement à 2 feuillets $MP_2(\mathbb{R})$ de $SL_2(\mathbb{R})$: c'est le groupe <u>métaplectique</u> qui joue un rôle fondamental dans les méthodes de quantification.

4. - LAPLACIEN D'UNE VARIETE RIEMANNIENNE.

Comment quantifier l'hamiltonien $\frac{1}{2}\sum_{g}i^{j}(x)\mathcal{E}_{i}\mathcal{E}_{j}$ d'une variété riemannienne (X,g) et le flot géodésique qui lui correspond. Il est naturel de choisir comme espace de Hilbert, l'espace \mathbb{H} des fonctions sur X de carré intégrable par rapport à l'élément de volume riemannien $v_{g} = \sqrt{\det g_{ij}(x)} \cdot dx_{1} \dots dx_{n} = \theta(x) dx_{1} \dots dx_{n}$.

On doit donc chercher un opérateur formellement symétrique à coefficients réels $\Delta : C_0^{\infty}(X)$ tel que :

(1)
$$\Delta = -\sum_{i} g^{ij}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{i}} + \text{opérateur d'ordre 1}$$

②
$$\int_{\mathbf{X}} \Delta \mathbf{f} \cdot \overline{\mathbf{g}} \cdot \mathbf{v}_{\mathbf{g}} = \int_{\mathbf{X}} \mathbf{f} \cdot \overline{\Delta \mathbf{g}} \cdot \mathbf{v}_{\mathbf{g}}$$
.

Si on ajoute la troisième condition:

$$\bigcirc 3) \quad \triangle.1 = 0$$

on obtient ainsi un opérateur \vartriangle_g unique appelé laplacien de (X,g) .

THEOREME. - Il existe un opérateur Δ_g unique différentiel du second ordre sur X vérifiant les conditions ①,② et ③. On a : $\int_X \Delta f. \, \bar{g} \, v_g = \int_X (df(x) \, |dg(x))_{T_g^* \, X} v_g \ .$

Preuve. - L'unicité résulte du fait qu'un opérateur du 1er ordre ne peut pas être symétrique et à coefficients réels sans être d'ordre 0 : la condition 3 détermine le terme d'ordre 0 .

Pour calculer \triangle_g on part de la formule, pour $U\subset X$ domaine de carte, $f,g\in C_0^\infty(U)$, $\int_U (\triangle f\,|\,g)\,\theta dx=\int \sum g^{ij}(x)\frac{\partial f}{\partial x_i}\,\frac{\partial g}{\partial x_j}\,\theta dx$. Par intégration par parties, il vient :

$$\Delta \mathbf{f} = -\theta^{-1} \sum \frac{\partial}{\partial \mathbf{x_i}} \left(\theta \cdot \mathbf{g^{ij}} \frac{\partial \mathbf{f}}{\partial \mathbf{x_i}} \right) .$$

Exercice. 1) X de dim 2, $g = e^{-\phi}(dx^2 + dy^2)$, prouver que $\Delta = -e^{\phi}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right).$

2)
$$g = dr^{2} + r^{2}d\theta^{2} , \qquad \Delta = -\left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2}}{\partial \theta^{2}}\right)$$

(laplacien en coordonnées polaires).

3)
$$g = dr^{2} + r^{2}d\sigma^{2} \quad \text{sur} \quad \mathbb{R}^{+} \times S^{2} ,$$

$$\Delta = -\left(\frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r}\frac{\partial}{\partial r}\right) + \frac{1}{r^{2}}\Delta_{S^{2}} .$$

4) Calculer \triangle pour $g = dt^2 + f(t)g_0(dz)$ sur $IR \times Z$.

Quelques propriétés du spectre du laplacien.

Si la variété X est compacte, le laplacien Δ est à résolvante compacte, son spectre est donc formé d'une suite de valeurs propres $\lambda_0 = 0 \le \lambda_1 \le \lambda_2 \le \dots$ avec $\lim_{n \to \infty} \lambda_n = +\infty$.

Comportement asymptotique des valeurs propres.

$$\operatorname{Card}\{\lambda_{n} \leq E\} \underset{E \to \infty}{\sim} (2\pi)^{-n} \int_{g^{*}(x,\xi) \leq E} dx_{1} \wedge ... \wedge d\xi_{d} = (2\pi)^{-n} C_{n} E^{n/2} \operatorname{vol}(X)$$

où C_n est le volume de la boule de rayon 1 dans ${\rm I\!R}^n$

Cette relation traduit la philosophie générale : chaque ϕ_n occupe une place de volume $\left(2\pi\right)^n$ dans l'espace T^*X .

Relation avec le flot géodésique.

Ces relations utilisant de puissants outils d'analyse ont été découvertes il y a une dizaine d'années.

THEOREME. - Si toutes les géodésiques sont périodiques de période T>0, le spectre de Δ s'accumule autour de la suite $\left(\frac{2\pi k}{T}+\alpha\right)^2$ (k \in N, α est une constante déterminée par la géométrie de X).

THEOREME. - Si $Z(t) = \sum\limits_{n} \exp(-it\sqrt{\lambda_n}) \in \mathcal{B}'(\mathbb{R})$, on a : Supp Sing(Z(t)) $\subset \{0\} \cup \mathcal{L}$ où \mathcal{L} est l'ensemble des géodésiques périodiques de X.

Remarque. - Des relations plus explicites étaient déjà connues pour les variétés hyperboliques H/Γ (formules de traces de Selberg) et pour les tores plats \mathbb{R}^n/Γ (formule de Poisson).

5. - ETUDE D'UN EXEMPLE : SPECTRE DE S².

Soit P un polynôme homogène de degré k et harmonique dans ${\rm I\!R}^3$, l'expression du laplacien euclidien de P en coordonnées sphériques montre que :

$$0 = \Delta_{IR}^{3}P = \frac{\partial^{2}P}{\partial r^{2}} + \frac{2}{r}\frac{\partial P}{\partial r} - \frac{1}{r^{2}}\Delta_{S^{2}}P$$

et comme $P(r,w) = r^k P(w)$ ($w \in S^2$), on obtient avec $\tilde{P}(w) = P \setminus_{S^2} :$ $\Delta_{S^2} \tilde{P} = k(k+1)\tilde{P} .$

Soit $E_k = \{P \mid_{S^2} | P \text{ homogène de degré } k \text{ et harmonique} \}$, on a : $\Delta_{S^2} \mid_{E_k} = k(k+1)Id$.

THEOREME. - Le spectre de Δ_{S^2} est formé des k(k+1), k=0,1...; l'espace propre associé à la valeur propre k(k+1) est E_k ; sa dimension est 2k+1.

Preuve. - Voir le livre de Berger-Gauduchon-Mazet sur le spectre. On peut faire une décomposition spectrale plus fine : soit A une direction vectorielle de ${\rm I\!R}^3$ et $\frac{\partial}{\partial \theta}$ le champ de vecteurs des rotations infinitésimales autour de A , si $L=\frac{1}{i}\frac{\partial}{\partial \theta}$, on a $[L,\Delta_{{\color{blue} S^2}}]=0$. Donc E_k se décompose en sous-espaces propres de L . Les valeurs propres de L sont les entiers et on a :

$$\mathbf{E}_{\mathbf{k}} = \bigoplus_{\ell=-\mathbf{k}}^{\ell=\mathbf{k}} \Omega_{\mathbf{k}, \ell} \quad \text{où} \quad \Omega_{\mathbf{k}, \ell} \quad \text{est de dimension} \quad \mathbf{1} \quad .$$

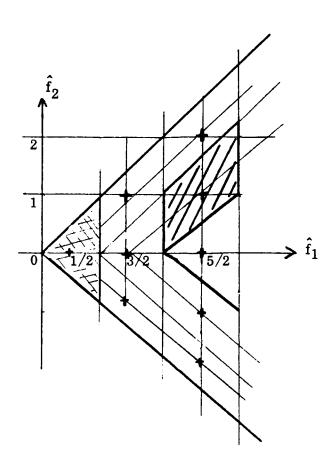
il est engendré par une fonction propre de valeur propre ℓ de L. En coordonnées sphériques d'axe A, $\Omega_{k,\,\ell}$ est engendrée par $\omega_{k,\,\ell} = F_{k,\,\ell}(\phi) e^{i\,\ell\,\theta}$. Les $F_{k,\,\ell}$ vérifient des équations différentielles ordinaires ; pour $\ell=0$ ce sont les polynômes de Legendre.

Relation avec la géométrie symplectique.

Soit g_X^* la métrique sur $T_X^*S^2$, $f_1 = \sqrt{g^*}$ et $f_2 = \alpha(\frac{\partial}{\partial \theta})$, le système f_1, f_2 est complétement intégrable $\{f_1, f_2\} = 0$, et peut

se quantifier en $\hat{f}_1 = \sqrt{\Delta + \frac{1}{4}}$, $\hat{f}_2 = L$: $[\hat{f}_1, \hat{f}_2] = 0$.

Représentons sur une figure le spectre joint $(k+\frac{1}{2}\;,\ell)$, $\left|\,\ell\,\right|\,\leq\,k\ \ de\ \ \hat{f}_1^{}\;,\hat{f}_2^{}\;\;:$



Les $\bigwedge_{k,\,\ell} = (f_1,f_2)^{-1}(k+\frac{1}{2}\,,\ell)$ forment une famille de sous-variétés lagrangiennes de T^*S^2 occupent un volume $(2\pi)^2$ conformément à la philosophie générale : prendre $(f_1,f_2)^{-1}(P_k,\ell):P_k,\ell$ = parallélogramme de surface 1 de centre $(k+\frac{1}{2}\,,\ell)$.

Application.

Soit $H = -\frac{\kappa^2}{2m} \Delta + V(r)$ l'équation de Schrödinger dans \mathbb{R}^3 pour un potentiel radial, comme H commute avec $\Delta_{\mathbb{S}^2}$, on a :

 $L^2({\rm I\!R}^3) \; = \; \in \; \sharp_{k,\,\ell} \quad , \quad \text{où} \quad \, \sharp_{k,\,\ell} \quad \text{est l'ensemble des}$ $\phi(r)\omega_{k,\,\ell}(\theta,\phi) \quad \text{et} \quad H \quad \text{se d\'ecompose en une somme d'opérateurs diffé-}$

rentiels $H_{k,\ell}$: $H_{k,\ell} \varphi = -\frac{\cancel{k}^2}{2m} (\varphi'' + \frac{2}{r} \varphi') + \left(V(r) + \frac{\cancel{k}^2}{2m} \frac{k(k+1)}{r^2}\right) \varphi .$