Cours de l'institut Fourier

YVES COLIN DE VERDIÈRE

Chapitre 1 Spectres

Cours de l'institut Fourier, tome 22 (1993-1994), p. 11-23

http://www.numdam.org/item?id=CIF_1993-1994__22__11_0

© Institut Fourier – Université de Grenoble, 1993-1994, tous droits réservés.

L'accès aux archives de la collection « Cours de l'institut Fourier » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Chapitre 1

SPECTRES

1. LAPLACIENS SUBORDONNES A UN GRAPHE. —

 $\Gamma=(V,E)$ est un graphe fini, non orienté, sans boucles, ni arêtes multiples. On considère l'espace de Hilbert \mathbf{R}^V muni de la structure hilbertienne canonique. On désigne par O_{Γ} l'ensemble des opérateurs symétriques réels A sur \mathbf{R}^V de matrice $A=(a_{i,j})$ tels que:

$$a_{i,j} \begin{cases} < 0, & \text{si } (i,j) \in E; \\ = 0, & \text{si } (i,j) \notin E \text{ et } i \neq j. \end{cases}$$

 O_{Γ} est un cône de dimension #V + #E. On dira aussi parfois que $A \in O_{\Gamma}$ est un opérateur de Schrödinger sur Γ .

Formes quadratiques: à toute matrice symétrique $A \in O_{\Gamma}$ est associée une forme quadratique $q_A(x) = \langle Ax | x \rangle$. Elle s'écrit de façon unique sous la forme:

$$q_A(x) = \sum_{(i,j)\in E} c_{i,j} (x_i - x_j)^2 + \sum_{i\in V} W_i x_i^2 ,$$

avec $c_{i,j} = -a_{i,j} > 0$ et $W_i = \sum_j a_{i,j}$.

Si A est un laplacien, cette forme quadratique s'écrit de façon unique:

$$q_A(x) = \sum_{(i,j) \in E} c_{i,j} (x_i - x_j)^2$$
,

avec $c_{i,j} = -a_{i,j} > 0$.

On peut le voir autrement: si on oriente les arêtes de Γ une fois pour toutes, on a un opérateur $d: \mathbf{R}^V \to \mathbf{R}^E$ défini par df(ij) = f(i) - f(j). La donnée de coefficients $c_{i,j} > 0$ permet de munir \mathbf{R}^E d'une structure hilbertienne $\sum c_{i,j}y_{i,j}^2$ en notant $y = (y_{i,j})$ le vecteur générique de \mathbf{R}^E . Le laplacien associé est alors donné par $A = d^*d$.

Si on avait muni \mathbf{R}^V d'une structure euclidienne $\sum_{i\in V} v_i^2 x_i^2$, l'opérateur d^*d serait dans O_{Γ} à condition de prendre comme coordonnées sur \mathbf{R}^V , $y_i = v_i x_i$. On trouve ainsi du reste toute matrice de O_{Γ} dont la plus petite valeur propre est 0 (si Γ est connexe).

Maintenant, si $A \in O_{\Gamma}$, on s'intéresse à son spectre que l'on écrit sous la forme: $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{\#V}$, répétant chaque valeur propre autant de fois que sa multiplicité l'exige. On pourra noter $\varphi_1, \cdots, \varphi_{\#V}$ une b.o. de \mathbf{R}^V formée de vecteurs propres. Il faut prendre garde que ce choix n'est pas canonique. Les objets canoniques sont les espaces propres eux-mêmes.

On est principalement intéressé à λ_1 , à $\lambda_2 - \lambda_1$ qu'on appelle le trou spectral, ainsi qu'aux multiplicités des λ_i .

2. MINIMAX. —

Soit Σ_V la sphère unité de \mathbf{R}^V . Il est classique que les points critiques de la restriction de $q_A(x) = \langle Ax | x \rangle$ à Σ_V sont les vecteurs propres de A, les valeurs propres étant les multiplicateurs de Lagrange et aussi les valeurs critiques.

On peut obtenir une caractérisation variationnelle de la façon suivante, dite principe du minimax:

soit G_k l'ensemble des sous-espaces vectoriels de dimension k de \mathbf{R}^V , on a:

$$\lambda_k = \inf_{Z \in G_k} \left(\sup_{x \in Z \cap \Sigma_V} q_A(x) \right) .$$

En particulier

$$\lambda_1 = \inf_{x \in \Sigma_V} q_A(x) .$$

On peut formuler ces égalités en n'introduisant pas Σ_V et en travaillant à l'aide des fonctions homogènes de degré 0 sur \mathbf{R}^V appellées quotient de Rayleigh et définies par

$$\rho_A(x) = \frac{q_A(x)}{\|x\|_{:}^2} .$$

Preuve. —

Si $Z \in G_k$, il existe dans Z un vecteur x orthogonal à $\mathbf{R}\varphi_1 \oplus \cdots \oplus \mathbf{R}\varphi_{k-1}$ et de norme 1. Il est clair que pour ce vecteur, on a $q_A(x) \geq \lambda_k$.

On a une formulation duale, en notant par G_k' la famille des sous-espaces de \mathbf{R}^V de codimension k:

$$\lambda_k = \sup_{Z \in G'_{k-1}} \left(\inf_{x \in Z \cap \Sigma_V} q_A(x) \right) .$$

On en déduit en particulier les principes de monotonie:

1) si $q_A \leq q_B$ (au sens inégalité comme fonctions sur \mathbf{R}^V), alors les valeurs propres satisfont les mêmes inégalités:

$$(q_A \leq q_B) \Rightarrow (\forall k, \ \lambda_k(A) \leq \lambda_k(B))$$
.

2) Si $F \subset \mathbf{R}^V$ est un sous-espace muni de la structure euclidienne induite, les valeurs propres de la restriction de q_A à F sont plus grandes que celles de q_A . C'est en particulier le cas pour le problème de Dirichlet associé à un sous-ensemble $V_o \subset V$ et qui consiste à restreindre q_A aux vecteurs dont les composantes sur V_o sont nulles.

3) On en déduit aussi un module de continuité explicite pour les valeurs propres:

$$|\lambda_k(A+\delta A)-\lambda_k(A)|\leq ||\delta A||$$
,

où $\|\delta A\|$ est la norme d'opérateurs de δA .

4) Une autre conséquence plaisante est la concavité de $A \to \lambda_1(A)$.

Cas de la dimension infinie:

si \mathcal{H} est un Hilbert de dimension infinie, A un opérateur autoadjoint continu, on peut encore appliquer le minimax avec quelques précautions.

On définit le spectre de A comme l'ensemble des $\lambda \in \mathbb{C}$ tels que $\lambda Id - A$ n'est pas inversible. On peut séparer le spectre en spectre discret et essentiel. Le spectre discret est l'ensemble des points isolés du spectre qui sont des valeurs propres de multiplicité finie. Le spectre essentiel est le complémentaire dans le spectre du spectre discret. Soit a la borne inférieure du spectre essentiel.

On a 2 possibilités:

ou bien il n'y a qu'un nombre fini de valeurs propres < a, soit

$$\lambda_1 \leq \cdots \leq \lambda_N < a$$
,

ou bien il y en a une infinité qui s'accumulent en a:

$$\lambda_1 \leq \cdots \leq \lambda_k \leq \cdots < a$$
.

Dans le deuxième cas le minimax s'applique sans problème, dans le premier, il donne les λ_k , $k \leq N$, puis a si k > N.

3. THEOREME DE COURANT. —

Le théorème de Courant classique ([C-H]) pour les modes propres du laplacien avec conditions de Dirichlet au bord dans un domaine borné D connexe de \mathbb{R}^n est le suivant: si $0 < \lambda_1 < \lambda_2 \le \cdots \le \lambda_k \le \cdots$ est le spectre du problème de Dirichlet dans D, si φ est une fonction propre non identiquement nulle de valeur propre λ_k , le nombre de composantes connexes de $D \setminus \varphi^{-1}(0)$ est $\le k$. Sa preuve nécessite de savoir que les zéros des fonctions propres ne sont pas trop sauvages, en particulier ils sont d'ordre finis.

Il faut être un peu soigneux pour généraliser ceci aux graphes.

THÉORÈME 1 (PERRON-FROBENIUS). — Si Γ est connexe et $A \in O_{\Gamma}$, $\lambda_1(A)$ est de multiplicité 1 et l'espace propre est engendré par une fonction strictement positive en tout sommet.

Il existe une formulation plus générale valable dans le cas non auto-adjoint, voir [H-V2].

THÉORÈME 2. — Supposons toujours Γ connexe et soit $\varphi \in E_k = \text{Ker}(A - \lambda_k \text{Id}) \setminus 0$, $V_+ = \{i \in V | \varphi(i) > 0\}$, $V_- = \{i \in V | \varphi(i) < 0\}$ et $V_o = \{i \in V | \varphi(i) = 0\}$. Si n_{\pm} est le nombre de composantes connexes de $V_+ \cup V_o$ (resp. $V_- \cup V_o$), alors $n_+ + n_- \leq k$.

Remarque: la généralisation plus naturelle du théorème de Courant comme majoration du nombre de composantes connexes de l'ensemble où $\varphi \neq 0$ est fausse, comme le montre l'exemple du graphe formé d'une étoile avec beaucoup de branches, avec le laplacien canonique : l'espace propre E_{λ_2} est alors formé des fonctions qui s'annulent au centre et dont la somme des valeurs aux sommets est 0.

Preuve du théorème 1.- Soit $\varphi \in E_1$ de norme 1. Alors $q_A(|\varphi|) \leq q_A(\varphi)$, alors que la norme est conservée. On en déduit que $\eta = |\varphi| \in E_1$. Soit $i \in V$ tel que $\eta(i) = 0$ et qu'il existe j voisin de i avec $\eta(j) > 0$. Soit $\eta_{\varepsilon} = \eta + \varepsilon \delta(i)$. On a:

$$\|\eta_{\varepsilon}\| = 1 + O(\varepsilon^2) ,$$

alors que

$$q_A(\eta_{\varepsilon}) = q_A(\eta) - a\varepsilon + O(\varepsilon^2)$$
,

avec a > 0. On en déduit une contradiction par la caractérisation variationnelle du λ_1 .

Maintenant, il n'est clairement pas possible qu'un sous-espace de dimension ≥ 2 de \mathbf{R}^V contienne uniquement des fonctions strictement > 0 ou < 0 ou identiquement nulles.

Preuve du théorème 2.-

1ère étape:

on considère le cas où aucune arête ne joint V_+ à V_- et V_o est formé de sommets de degré 2 au voisinage desquels φ ne s'annule pas. Dans ce cas $n_+ + n_-$ est le nombre total de composantes de $V_+ \cup V_-$. La preuve suit alors la preuve classique: par l'absurde, si $N = n_+ + n_- \ge k + 1$, soit $V_+ \cup V_- = \bigcup_{i=1}^N \Omega_i$ et ψ_i la fonction qui vaut φ sur Ω_i et 0 ailleurs. Soit F l'espace vectoriel engendré par ψ_1, \dots, ψ_k , le quotient de Rayleigh est identiquement égal à λ_k sur F et il existe donc une fonction $\psi \in F \setminus 0$ orthogonale aux k-1 premières fonctions propres de A. Cette fonction est donc fonction propre pour λ_k . Soit Ω l'ensemble des zéros de ψ . Ω est une réunion d' Ω_i (au moins 1) et de V_o . Soit j un sommet de V_o dont un voisin est dans Ω et l'autre pas: on voit facilement que c'est impossible pour ψ fonction propre.

2ème étape:

on suppose maintenant que $\varphi \in E_k \setminus 0$ est générique, c'est-à-dire que $V_o = \emptyset$. On peut bien sûr supposer $\lambda_k = 0$. On construit un nouveau graphe $\tilde{\Gamma}$ en ajoutant à Γ un sommet au milieu de chaque arête où φ change de signe. On étend alors φ en $\tilde{\varphi}$ en lui donnant la valeur 0 aux nouveaux sommets. On définit un nouvel opérateur $\tilde{A} \in O_{\tilde{\Gamma}}$ dont $\tilde{\varphi}$ est encore vecteur propre pour une valeur propre $\tilde{\lambda}_l = 0$ avec $l \leq k$. On pourra ainsi appliquer la 1ère étape.

On définit \tilde{A} par la forme quadratique associée \tilde{q} qui est obtenue de la façon suivante: soit q_o la forme quadratique sur $\mathbf{R}^{\tilde{V}}$ obtenue en composant q avec le plongement évident (prolonger par 0) de \mathbf{R}^V dans $\mathbf{R}^{\tilde{V}}$. Le spectre de q_o est celui de q augmenté de la valeur propre 0 répétée $p = \#\tilde{V} - \#V$ fois. On remplace alors dans q_o les termes $c(x_i - x_j)^2$ où (i,j) est une arête de Γ où φ changeait de signe par $c_{i,\alpha}(x_i - x_\alpha)^2 + c_{j,\alpha}(x_j - x_\alpha)^2$ où α est

le nouveau sommet inséré entre i et j, avec les relations suivantes où $\varphi(i) = a$, $\varphi(j) = b$:

$$c_{i,\alpha}a = c(a-b), c_{j,\alpha}b = c(b-a), c_{i,\alpha}a + c_{j,\alpha}b = 0.$$

On vérifie facilement que $\tilde{q} \geq q_o$, que $\tilde{q} \in O_{\tilde{\Gamma}}$ et que $\tilde{\varphi}$ est dans le noyau de \tilde{q} . De plus, par le minimax, il est clair que 0 est la l-ème valeur propre avec $l \leq k$ de \tilde{q} .

3ème étape:

on traite maintenant le cas général. On raisonne par récurrence sur le nombre de sommets où φ s'annule.

Supposons que $\varphi(0)=0$. On peut supposer $W_o=0$ et $\sum c_{i,0}=1$. On pose $c_i=c_{i,0}$ et $Q(x)=\sum_{i\neq 0}W_ix_i^2+\sum_{i,j\neq 0}c_{i,j}(x_i-x_j)^2$. Soit $L(x_i)=\sum_ic_ix_i$.

On fabrique un nouveau graphe $\Gamma_1 = (V_1, E_1)$ ainsi:

$$V_1 = V \setminus 0 ,$$

 E_1 est obtenu en supprimant les arêtes $\{i,0\}$ et en rajoutant une arête $\{i,j\}$ entre 2 sommets i,j qui sont tous 2 voisins de 0 dans Γ .

On définit une forme quadratique q_1 sur \mathbf{R}^{V_1} par

$$q_1(y) = \sum c_i(y_i - L(y))^2 + Q(y) = \sum c_i y_i^2 - L(y)^2 + Q(y) .$$

Alors, on vérifie que $q_1 \in O_{\Gamma_1}$ et on note A_1 l'opérateur associé.

On va montrer que:

- (i) Si φ_1 est la restriction de φ à V_1 , $A_1\varphi_1=\lambda_k\varphi_1$,
- (ii) Les valeurs propres λ_l^1 de A_1 vérifient $\forall 1 \leq l \leq N-1, \ \lambda_l^1 \geq \lambda_l$.

Le (i) résulte trivialement de la nullité de L sur φ . Le (ii) résulte du minimax, car on a:

$$\frac{q_1(y')}{\|y'\|^2} \ge \frac{q_1(y')}{\|y'\|^2 + L(y')^2} = \frac{q(L(y'), y')}{\|(y', L(y'))\|^2} ,$$

où y' s'annule en 0.

Donc les valeurs propres de A_1 sont plus grandes que celles de la restriction de q à un sous-espace de \mathbf{R}^V et donc a fortiori à celles de A.

On conclut alors comme dans la deuxième étape.

Dans [HT], l'auteur donne une variante intéressante du principe de Courant pour λ_2 :

Théorème 3 [HT]. — Supposons toujours Γ connexe et soit $\varphi \in E_2 = \operatorname{Ker}(A - \lambda_2 \operatorname{Id}) \setminus 0$, $V_+ = \{i \in V | \varphi(i) > 0\}$, $V_- = \{i \in V | \varphi(i) < 0\}$, supposons que $V_+ \cup V_- = \operatorname{Supp}(\varphi)$ soit minimal pour l'inclusion parmi les $\varphi \in E_2 \setminus 0$. Alors V_+ et V_- sont connexes. En particulier c'est toujours le cas si $\dim(E_2) = 1$, c'est-à-dire si la valeur propre est non dégénérée.

Preuve. —

Soit A_1, A_2 2 composantes de V_+ . Soit φ_i les restrictions de φ à A_i étendues par 0 à l'extérieur de A_i . Il existe $\psi = \sum_{i=1}^2 x_i \varphi_i$ non nulle orthogonale à l'espace propre E_{λ_1} . Il est facile de vérifier (en supposant pour simplifier $\lambda_2 = 0$) que le quotient de Rayleigh de ψ est ≤ 0 , on a en effet:

$$q(\psi) = x_1^2 < A\varphi_1|\varphi_1 > +x_2^2 < A\varphi_2|\varphi_2 >$$

car $A\varphi_1$ est nulle là où φ_2 est non nulle. Puis

$$< A\varphi_1|\varphi_1> = < A(\varphi_1-\varphi)|\varphi_1> + < A\varphi|\varphi_1>$$

et le dernier terme est nul alors que le premier est ≤ 0 , la somme portant sur les sommets de A_1 pour les voisins desquels $\varphi_1 - \varphi \geq 0$. Le même raisonnement s'applique à φ_2 . Et donc $\psi \in E_2$: son support est strictement inclus dans celui de φ , d'où la conclusion.

4. GRAPHES DE CAYLEY. —

Soit G un groupe de type fini et S une famille génératrice finie symétrique, ne contenant pas 1: tout élément de G est un mot en S et si $g \in S$, $g^{-1} \in S$. On associe à (G,S) un graphe $\Gamma = (V,E)$ appellé graphe de Cayley tel que V = G et $(g_1,g_2) \in E$ si et seulement si $g_1^{-1}g_2 \in S$. Ce graphe est connexe. La distance combinatoire dans ce graphe de e à g est le nombre minimal de lettres de S qu'il faut pour écrire g.

On peut évidemment étendre la définition à un espace X où G agit de façon transitive.

Ce graphe est de degré constant égal au nombre d'éléments de S.

L'opérateur M_{Γ} s'écrit alors:

$$L\varphi(g) = \sum_{\sigma \in S} \varphi(g\sigma) \ .$$

Soit maintenant, pour $\gamma \in G$, $\gamma \varphi(g) = \varphi(g\gamma^{-1})$, on a évidemment:

$${}^{\gamma}(M_{\Gamma}(\varphi)) = M_{\Gamma}({}^{\gamma}\varphi) .$$

Donc M_{Γ} commute aux translations à droite, qui sont des automorphismes de Γ .

Il ne commute aux translations à gauche que si S est une réunion de classe de conjugaisons.

Ces remarques permettent de simplifier le calcul du spectre de M_{Γ} car il suffit de se restreindre aux représentations irréductibles, et même dans le dernier cas aux caractères.

On peut voir un exemple de cette situation dans les molécules de carbone C_{60} appellées buckminsterfullerène [C-S] dont le graphe est un graphe de Cayley de A_5 muni de 3 générateurs.

5. CALCUL FONCTIONNEL ET MESURES SPECTRALES. —

Pour ce §, on peut consulter [R-Si 1].

Ici \mathcal{H} est un espace de Hilbert et A un opérateur linéaire continu autoadjoint sur \mathcal{H} . Le spectre de A, $\sigma(A)$ est l'ensemble des $\lambda \in \mathbb{C}$ tels que $\lambda \mathrm{Id} - A$ n'est pas inversible. $\sigma(A)$ est un compact de \mathbb{R} et $R(\lambda) = (\lambda \mathrm{Id} - A)^{-1}$, la résolvante, est holomorphe dans le complémentaire de $\sigma(A)$.

Il est important de remarquer que le spectre ne se compose pas seulement de valeurs propres, ie de λ tels que $\lambda Id - A$ ne soit pas injectif. Lorsque $\lambda Id - A$ est injectif, il peut être à image dense dans \mathcal{H} . Par contre, s'il est surjectif, l'inverse est continu par le théorème du graphe fermé.

Dans tous les cas, on a:

PROPOSITION. — λ appartient au spectre $\sigma(A)$ de A si et seulement si, $\forall \varepsilon > 0$, il existe un ε -vecteur propre x non nul de A, ie tel que $\|(\lambda Id - A)x\| \le \varepsilon \|x\|$.

Exemple: si $\mathcal{H} = L^2([0,1], \mathbb{C})$ et si A est l'opérateur de multiplication par une fonction continue a à valeurs réelles, $\sigma(A)$ est l'ensemble des valeurs prises par a, alors que μ est valeur propre de A ssi $a^{-1}(\mu)$ est de mesure > 0.

Exercice: même chose, mais avec $\mathcal{H} = L^2([0,1], \mathbb{C}^N)$ et a(t) une fonction continue à valeurs dans les matrices hermitiennes $N \times N$. Si $\lambda_1(t) \leq \cdots \leq \lambda_N(t)$ sont les valeurs propres de a(t), montrer que le spectre est la réunion des intervalles $I_i = \lambda_i([0,1])$.

DÉFINITION. — Une C^* -algèbre est une algèbre de Banach, munie d'une involution $A \to A^*$, antilinéaire et telle que

$$\forall A, B, (AB)^* = B^*A^*, ||A^*A|| = ||A||^2.$$

Les exemples les plus simples sont d'une part l'algèbre $L(\mathcal{H})$ des opérateurs linéaires continus sur un Hilbert, muni de l'adjoint et de la norme d'opérateur; d'autre part l'algèbre $C(K, \mathbb{C})$ des fonctions continues sur un compact à valeurs dans \mathbb{C} , munie de la norme L^{∞} et de la conjugaison complexe. On peut évidemment combiner ces 2 exemples en prenant $C(K, L(\mathcal{H}))$.

THÉORÈME (GELFAND). — L'application qui, à une fonction polynômiale P(z) sur $\sigma(A)$, associe P(A) se prolonge de façon unique en un homomorphisme continu injectif de la C^* -algèbre $C(\sigma(A))$ des fonctions continues sur $\sigma(A)$ dans $L(\mathcal{H})$.

L'opérateur f(A) est donc défini sans ambiguité pour f continue sur $\sigma(A)$, en fait on peut l'étendre au cas où f est borélienne bornée.

Lorsque f est holomorphe au voisinage de $\sigma(A)$, f(A) est définie par

$$f(A) = \frac{1}{2i\pi} \int_{\gamma} f(\lambda) R(\lambda) d\lambda$$

où γ est un lacet convenable entourant $\sigma(A)$.

On définit maintenant les mesures spectrales μ_{φ} où φ est un vecteur de norme 1 de \mathcal{H} ; ce sont les mesures de probabilités sur $\sigma(A)$ définies par: $\mu_{\varphi}(f) = \langle f(A)\varphi|\varphi \rangle$. Le fait que ces mesures soient positives résulte facilement de l'écriture de $f \geq 0$ comme un carré d'une fonction continue réelle g.

On a une expression de μ_{φ} en termes de la résolvante: μ_{φ} est la limite vague des mesure

$$\mu_{\varepsilon} = \frac{1}{2i\pi} < (R(\lambda - i\varepsilon) - R(\lambda + i\varepsilon))\varphi|\varphi > d\lambda$$
,

lorsque ε tend vers 0. En particulier, si les fonctions $R(\lambda)\varphi$ sont continues au voisinage d'un point λ_o de \mathbf{R} pour un ensemble dense de φ , λ_o n'est pas dans $\sigma(A)$.

6. GRAPHES INFINIS. —

On supposera pour simplifier que Γ est dénombrable, de degré borné et que les coefficients $a_{i,j}$ de $A \in O_{\Gamma}$ sont uniformément bornés. Dans ce cas, l'opérateur A est borné sur $l^2(V)$.

On définit, pour chaque $x \in V$, la mesure spectrale $\mu_x = \mu_{\varepsilon_x}$ où ε_x est la fonction caractéristique du sommet x. Il est intéressant de calculer $\mu_x(t^k)$: c'est l'élément diagonal $(A^k)_{x,x}$ de A^k qui s'écrit:

$$\mu_x(t^k) = \sum a_{x,i_1} a_{i_1,i_2} \cdots a_{i_{k-1}x}$$

où la somme porte sur les lacets d'origine x et de longueur k. Donc cette $\mu_x(t^k)$ ne dépend que des éléments de Γ situés à distance $\leq k/2$ de x.

Cette mesure est importante pour comprendre les limites de graphes dont le nombre de sommets tend vers l'infini. Soit Γ_N une suite de graphes finis tels que Γ_N soit isomorphe à Γ jusqu'à une distance $r_N \to \infty$ de x ((Γ_N, x) converge vers (Γ, x) au sens de la distance de Hausdorff pointée) et supposons que $A_N \in O_{\Gamma_N}$ soit égale à $A \in O_{\Gamma}$ dans la boule de rayon r_N de centre x. Alors les mesures spectrales $\mu_{x,N}$ convergent vers μ_x vaguement. En effet, $\mu_{x,N}(t^k) = \mu_x(t^k)$ pour k fixé et N assez grand.

En particulier, si on suppose que (Γ, A) admet un groupe d'automorphismes transitif sur V et que la condition précédente est vraie pour tout $x \in V(\Gamma_N)$, on a:

$$\lim_{N} \frac{1}{\#V(\Gamma_N)} \sum \delta(\lambda_{i,N}) = \mu_x .$$

On peut également, sous certaines conditions définir la densité d'état. On suppose par exemple qu'il existe un groupe G agissant sur (Γ, A) sans points fixes et de façon que le quotient Γ/G soit fini. On définit alors la densité d'état comme la mesure $\mu = 1/\#(\Gamma/G) \sum_{x \in \Gamma/G} \mu_x$. Cette mesure de probabilité > 0 ayant pour support le spectre $\sigma(A)$ est bien définie.

Soit alors (Γ_N, A_N) avec $A_N \in O_{\Gamma_N}$ une suite de graphes finis; soit $v_N = \#V(\Gamma_N)$ et $\mu_N = \frac{1}{v_N} \sum \delta(\lambda_{i,N})$.

On a alors le:

THÉORÈME. — Soit, $\forall k, B_N^k$ l'ensemble des $x \in V(\Gamma_N)$ tels que la boule de centre x et de rayon k de (Γ_N, A_N) soit isomorphe à une boule de rayon k de (Γ, A) . Alors, si, pour tout k, $\#B_N^k/v_N$ tend vers 1 quand N tend vers l'infini, μ_N tend vers la densité d'état μ quand N tend vers l'infini.

Ce théorème s'applique par exemple lorsque $\Gamma = \mathbf{Z}^n$ et A est périodique par rapport à un sous-réseau G d'indice fini de \mathbf{Z}^n . On peut prendre pour Γ_N les cubes $(-N,N)^n$ et pour A_N la restriction de A à ces cubes.

7. CAS D'UN ARBRE HOMOGENE DE DEGRE q+1. —

Soit A_q l'arbre homogène de degré q+1. On considère le spectre de la matrice d'adjacence M_q de A_q :

$$M_q \varphi(i) = \sum_{i \sim j} \varphi(j) ,$$

qui est relié de façon évidente à celui du laplacien canonique $\Delta_q = (q+1)\mathrm{Id} - M_q$.

Soit $\lambda \in \mathbb{C}$ tel que $\lambda \notin \operatorname{Spectre}(M_q)$, alors on peut résoudre

$$(\lambda - M_q)\varphi = \delta(0) ,$$

où 0 est un sommet marqué de A_q et $\varphi \in l^2$. S'il y a une solution, il y en a une qui est une fonction $\varphi(i) = F(|i|)$, où |i| = d(0,i) et $\sum_{t \in \mathbb{N}} F^2(t)q^t < \infty$. Ecrivons que $(\lambda - M_q)\varphi(|i|) = \delta_0$. On obtient, en posant $a_k = F(k)$:

$$\lambda a_o - (q+1)a_1 = 1 ,$$

et pour $k \geq 1$:

$$a_k - \lambda a_{k+1} + q a_{k+2} = 0$$
,

et donc on obtient une suite récurrente linéaire dont l'équation caractéristique est

$$(\star) \quad qs^2 - \lambda s + 1 = 0 \ ,$$

qui admet comme solutions:

$$s_{\pm} = \frac{\lambda \pm \sqrt{\lambda^2 - 4q}}{2q} \ .$$

Soit $I = [-2\sqrt{q}, 2\sqrt{q}]$, alors si $\lambda \in I$, la solution n'est pas dans l^2 . Donc $I \subset \operatorname{Spectre}(M_q)$.

Au contraire, si $\lambda \notin I$, il y a une solution dans l^2 , celle qui correspond à la solution la plus petite en module de l'équation caractéristique: plus précisément, si s_- est la solution de plus petit module $(|s_-| < \frac{1}{\sqrt{q}})$ de (\star) ,

$$\varphi(i) = \frac{1}{\lambda - (q+1)s_{-}} s_{-}^{|i|} ,$$

est une solution l^2 de $(\lambda - M_q)\varphi = \delta(0)$. De plus, on voit facilement que c'est l'unique solution.

Donc si on définit pour φ à support fini

$$R\varphi(i) = \frac{1}{\lambda - (q+1)s_{-}} \sum s_{-}^{d(i,j)} \varphi(j) ,$$

on a:

$$(\lambda - M_q)R\varphi = \varphi ,$$

et donc R est la résolvante pourvu qu'on réussisse à montrer une estimation

$$||R\varphi|| \le C||\varphi||.$$

En fait, il est difficile de montrer directement une telle estimation, nous aurons recours à un argument détourné. Cet argument est utilisable pour d'autres graphes infinis et nous le présentons dans un contexte plus général.

Contrôle du spectre par des formes surharmoniques.

On peut contrôler le spectre de la matrice d'adjacence d'un graphe infini de la façon suivante: soit Γ un tel graphe et supposons qu'on ait une fonction $\lambda: \vec{E} \to]0, \infty[$, où $\vec{E} = \{(i,j)\}$ est l'ensemble des arêtes orientées telle que $\lambda(\alpha^{-1}) = 1/\lambda(\alpha)$ (λ est une 1- forme différentielle) et que $\forall i \in V, \sum_{j \sim i} \lambda(j,i) \leq \nu$. Alors le spectre de M_{Γ} vérifie $-\nu \leq \sigma(M_{\Gamma}) \leq \nu$; en effet, on a:

$$2|f(i)f(j)| \le \lambda(j,i)|f(i)|^2 + \lambda(i,j)|f(j)|^2$$
,

et il suffit de sommer ces inégalités sur les arêtes pour obtenir:

$$|< M_{\Gamma} f|f>| \leq \nu ||f||^2.$$

Exemple 1: supposons qu'on puisse orienter les arêtes de façon qu'en tout sommet il y ait au plus p arêtes incidentes et au moins q arêtes sortantes (avec p+q=k), alors le spectre de la matrice d'incidence est contenu dans l'intervalle $[-2\sqrt{pq},2\sqrt{pq}]$. Dans le cas des arbres homogènes cette estimation est optimale (orienter à partir d'une racine). On obtient ainsi que $\sigma(M_q) \subset [-2\sqrt{q},2\sqrt{q}]$.

Exemple 2: on peut aussi appliquer le critère précédent si on a une fonction f > 0 sur V qui est ν -surharmonique, ie telle que $Mf \leq \nu f$: on prend $\lambda(j,i) = f(j)/f(i)$.

Ce critère marche toujours, car si $\nu > |\sigma(M_{\Gamma})|$, il existe une fonction ν -surharmonique, par exemple la résolvante donné alors par la série de Neumann > 0 et convergente:

$$(\nu - M_{\Gamma})_{i,i}^{-1} = \sum_{n=0}^{\infty} \nu^{-n-1} (M_{\Gamma})_{i,i}^{n}.$$

Densité d'état.

On peut donc calculer la densité d'état $de(\lambda)=\frac{1}{2i\pi}(R_{\lambda-i0}-R_{\lambda+i0})(x,x)d\lambda$ en posant $\lambda=2\sqrt{q}\cos\theta$, il vient:

$$de = \frac{2q(q+1)\sin^2\theta d\theta}{\pi((q+1)^2 - 4q^2\cos^2\theta)}.$$

Cette mesure de probabilité portée par I, le spectre, décrit la répartition asymptotique du spectre des graphes de degré q+1 dont le rayon d'injectivité tend vers l'infini. Si Γ_N est une telle suite, on a:

$$\lim_{N} \frac{1}{\#V(\Gamma_N)} \sum \delta(\lambda_{i,N}) = e(\lambda) d\lambda .$$

Evidemment, il peut y avoir des valeurs propres en dehors de I, il y a au moins la valeur propre q+1 correspondant aux fonctions constantes. Le gap optimal est donc lorsque le nombre de sommets tend vers l'infini $q+1-2\sqrt{q}$. Un graphe homogène de degré q+1 est dit de Ramanujan si le gap de son laplacien canonique vaut au moins $q+1-2\sqrt{q}$.

Il n'est pas du tout évident qu'il en existe avec un nombre de sommets arbitraire.

8. THEORIE DE FLOQUET ET SPECTRES DE BANDES. —

Soit Γ un graphe muni d'une action sans points fixes de $G = \mathbf{Z}^n$ ayant un nombre fini N d'orbites et soit $D \subset V$ un domaine fondamental (#D = N). Soit $A \in O_{\Gamma}$ tel que A commute avec l'action de \mathbf{Z}^n .

On peut alors décrire simplement la structure du spectre de A au moyen de la théorie de Floquet.

Soit $\Xi = \mathbf{R}^n/\mathbf{Z}^n$ le tore des caractères de \mathbf{Z}^n , ie des homomorphismes de \mathbf{Z}^n dans U(1): $\chi_{\theta}(k) = e^{2i\pi \langle k|\theta \rangle}$. En physique du solide, Ξ s'appelle zone de Brillouin.

Pour chaque $\chi \in \Xi$, on considère l'espace vectoriel de dimension N, L_{χ} des $\varphi : \Gamma \to \mathbb{C}$ (non l^2 , mais bornées) telles que

$$\forall x \in V, \ g \in G, \ \varphi(g.x) = \chi(g)\varphi(x) \ .$$

Comme A commute avec l'action de G, il opère sur L_{χ} ; il est de plus autoadjoint si on munit L_{χ} du produit scalaire

$$<\varphi|\psi> = \sum_{i\in\Gamma/\mathbb{Z}^n} \varphi(i)\bar{\psi}(i) ,$$

dont on vérifie facilement qu'il ne dépend pas du domaine fondamental. Les espaces vectoriels L_{χ} , hermitiens de dimension N, forment un fibré vectoriel hermitien sur Ξ . On note F ce fibré. F est trivial, car il admet une base orthonormée formée des sections s_{x_o} , $s_o \in D$ de support dans l'orbite de s_o et qui valent 1 au point $s_o \in D$:

$$s_{x_o}(\chi)(gx_o) = \chi(g) \ .$$

THÉORÈME. — L'espace de Hilbert $l^2(V)$ est canoniquement isomorphe à l'espace des sections L^2 du fibré vectoriel hermitien F (fibré de Floquet). Par cet isomorphisme A se transforme en un opérateur purement tensoriel qui opère comme A_{χ} sur chaque fibre.

Description de l'isomorphisme $j: l^2(V) \to L^2(F)$.

On se ramène à la théorie des séries de Fourier. $l^2(V) = \bigoplus_{x_o \in D} l^2(Gx_o)$ et

$$L^2(\Xi, F) = \bigoplus L^2(\Xi, \mathbf{C}s_{x_o})$$
.

Si $f \in l^2(V)$ est de support fini, on pose:

$$j(f)_{\chi}(x) = \sum_{g \in G} f(gx)\bar{\chi}(g) .$$

Il est clair que j respecte la décomposition orthogonale précédente. De plus sur chaque morceau, j s'identifie aux séries de Fourier: en effet

$$j:(a_{gx_o})\to (\sum a_{gx_o}\bar{\chi}(g))s_{x_o}$$
.

Il reste à vérifier que j entrelace A et l'opérateur de multiplication ponctuel par A_{χ} : il suffit de le vérifier lorsque $f = \varepsilon_{x_0}$.

Soit $\lambda_1(\chi) \leq \lambda_2(\chi) \leq \cdots \leq \lambda_N(\chi)$ le spectre de l'action de A_{χ} sur L_{χ} . Chaque valeur propre dépend continument de $\chi \in \Xi$ et on pose $B_j = \lambda_j(\Xi)$. Chaque B_j est un intervalle de \mathbb{R} et le spectre de A est la réunion de ceux-ci.

De plus la densité d'état $\sum_{x_o \in D} \mu_{x_o}$ est la somme des mesures μ_i images par λ_i de la mesure de Lebesgue de masse 1 sur Ξ . Il suffit pour s'en convaincre de calculer le spectre du quotient Γ_q de Γ par $(q\mathbf{Z})^n$ lorsque $q \to \infty$. Le spectre de A sur Γ_q se calcule alors de façon analogue, mais on doit faire intervenir seulement les caractères qui sont racine q-ème de 1. Le spectre est donc la réunion des spectres des A_χ lorsque χ est racine q-ème de 1.

Les mesures

$$\mu_q = \frac{1}{N.q^n} \sum \delta(\lambda_j)$$

convergent donc vers la somme des images des mesures $|d\theta|$ sur Ξ par les $\chi \to \lambda_i(\chi)$, à cause de l'équirépartition des racines de l'unité quand q tend vers l'infini.

9. LE CAS PERIODIQUE DE DIMENSION 1. —

On considère le cas où $\Gamma = \mathbf{Z}$ et $G = N\mathbf{Z}$ agit par translation de multiples de N. Soit $A \in O_{\Gamma}$, G— invariante. A est ce qu'on appelle une matrice de Jacobi périodique. On pose $a_i = a_{i,i}, b_i = a_{i,i+1} < 0$, les suites a_i et b_i sont évidemment périodiques de période N.

Si $Ay = \lambda y$ avec $y = (y_i)$, on a:

$$(a_i - \lambda)y_i + b_i y_{i+1} + b_{i-1} y_{i-1} = 0$$

C'est une suite récurrente linéaire d'ordre 2. On considère l'application de Poincaré P_{λ} qui à (y_0, y_1) associe (y_N, y_{N+1}) où (y_i) est une solution de $Ay = \lambda y$.

Pour 2 telles solutions, on introduit le wronskien:

$$W(y,z) = b_{i}(y_{i}z_{i+1} - z_{i}y_{i+1})$$

qui est indépendant de i. On en déduit que P_{λ} est de déterminant 1.

Donc si on veut trouver une solution y de $Ay = \lambda y$ qui vérifie $y_{i+N} = e^{2\pi i\theta}y_i$ il faut et il suffit que $e^{2\pi i\theta}$ soit valeur propre de P_{λ} . Autrement dit si $\Delta(\lambda) = Tr(P_{\lambda})$ que $|\Delta(\lambda)| \leq 2$. Le spectre de A sur $l^2(\mathbf{Z})$ est donc d'après l'analyse du §8 l'ensemble des λ tels que $|\Delta(\lambda)| \leq 2$. En fait $\Delta(\lambda)$ est un polynôme de degré N en λ .

Les solutions de $\Delta(\lambda) = 2$ (resp. - 2) sont les valeurs propres pour le problème périodique $\Gamma = \mathbb{Z}/N\mathbb{Z}$ (resp. le problème antipériodique).

Si $\lambda_1 < \lambda_2 \le \cdots \le \lambda_N$ sont les valeurs propres du problème périodique, et μ_i celles du problème antipériodique, on a:

$$\lambda_1 < \mu_1 \le \mu_2 < \lambda_2 \le \lambda_3 < \mu_3 \le \mu_4 < \cdots.$$

En effet cette relation est satisfaite lorsque $a_i = 0, b_i = -1$ et il n'est pas possible qu'un λ_i soit égal à un μ_j car alors $det(P_{\lambda_i})$ vaudrait -1. On raisonne alors par connexité de O_{Γ} et continuité des λ_i, μ_j comme fonctions de A.

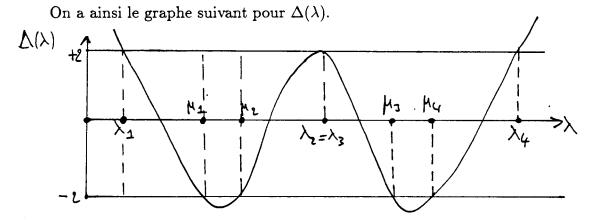


Figure: $\Delta(\lambda)$.

Exercice: relier $\Delta(\lambda)-2$ au polynôme caractéristique de A vu comme endomorphisme de $l^2({\bf Z}/N{\bf Z}).$