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On some family of contractible hypersurfaces in c*

S. KALIMAN, L. MAKAR-LIMANOYV

I. Introduction. In this paper we study a class of contractible smooth hypersurfaces
in C* which is interesting in connection with the problem of linearizing of a C*-action
on C3 and the Abhyankar-Sathaye conjecture. Some of these hypersurfaces were found
in [D], and the complete list of them was presented in [Ru]. An equivalent but less
explicit description of this class is given in [K1]). Every hypersurface from this class
admit a C*-action with one fixed point. Each of them is also diffeomorphic to RS,
but it is unknown whether there is a hypersurface in this class which is isomorphic to
C3. If such hypersurface does exist then the C*-action is non-linearizable on it [Ru],
i.e. we have a counterexample to the linearizing problem. Moreover this hypersurface
would be a counterexample to the Abhyankar-Sathaye conjecture [D], [Ru], [K2).
On the other hand P. Russell proved that if there is no C2 in this class then the
linearizing problem may be studied under some additional simplifying assumption
[Ru). To a great extend the linearizing problem with this extra assumption was
studied in [KR]. In [K1], [K2], [Ru] it was shown that some of these hypersurfaces
(but not all of them) have nonnegative Kodaira logarithmic dimension. In this paper
we shall present other algebraic obstacles for many hypersurfaces from this class to
be C3. The technique we are using here is simpler and the results are stronger than
in previous papers. But we have to pay for this by long computation. The main
result may be described as follows. The C®-action on a hypersurface X from this
class generates a linear representation of C* on the tangent space of the fixed point.
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Phis tangent representation is of form (r,y,z) = (A7, A"y, A72) where aboear
natural, A € C*, and (2,y,2) is a coordinate system on the tangent space. ot

oy = GCD(b,e), o = GCD(a,c), 03 = GCD(a,b).

Theorem A. There is no dominant morphism from C3 into X when oy > 2, o >
3, a3 > 3.

In particular none of hypersurfaces in C* from [D] is isomorphic to C3.

2. Preliminaries. In this section we recall the linearizing problem and the
construction of the hypersurfaces from [Rul].

Consider a complex algebraic variety X and a C*-action on it, (A,p) = A - p,
where A € C* and p € X. Recall thatl this action is algebraic il the map C* x X —
X.(A,p) = XA -pisa morphims of complex algebraic varieties. The simplest example
of an algebraic C*-action on C2 is a linear action on C3 given by

(7,y,2) = (A%x, Aby, Aez) (2.1)

where (7,y,z) is a coordinate system on C*, A € C*, a,b,c are integers. These
integers a,b, ¢ are called the weights of the action.

The linearizing conjecture. Every C*-action on C* is equivalent to a lincar one

up to a polynomial coordinate substitution.

A function f on an algebraic manifold X is semi-invariant (or quasi-invariant) of
weight | € Z relative to a C*-action G if for every A € C* we have foG()) = X' f. Note
that the linearizing conjecture just claims the existence of a semi-invariant. coordinate
system. This conjecture is true in all cases except for one, the answer to which is
unknown yet (see [Ru], [KR], [B] for details). Following [Ru] we call this case the
"hard-case” C*-action. This “hard-case” C*-action on a threefold X can be described

by the two following conditions.

(i) The C*-action has only one fixed point o. In this case the action generates the

tangent representation on T, X which is of form (2.1). Its weights are also called the
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weights of the C*-action.

(ii) The weights a, b, c of the C*-action are nonzero and the sign of a is different from
the signs of b and c.

In [Ru] P. Russell found an interesting connection between the “hard-case” of the
linearizing problem and the class of hypersurfaces in C* described below.

Let o', ¥, ¢’ be pairwise prime natural, let b’ > ¢/, and let w be the group of a'-roots
of unity. Consider an w-action on C? given by (&,) = (A&, AY5), where A € w,
and (@,d) is a coordinate system. Consider a polynomial f which is semi-invariant
relative to w and is satisfying two assumptions.

Assumption (a). The fiber L = {f = 0} is isomorphic to a line and L meets the
axis & = 0 normally at the origin and r — 1 other points (r > 2). Hence, without loss
of generality one may suppose that f(i,?) = o+ high order terms. In particular the
weight of f is b'. (We treat b’ here as an element of Z,).

Assumption (b). Consider the Laurent polynomial F = 5% f(5“&,5*t) where §
is a new variable. The first assumption on f implies that F' can be rewritten as a
Laurent polynomial F(w@,w™!, #,%) with @ = 5%'. Assume that the function F does
not depend on w™!, i.e. F' is a polynomial F(w,#,%) in @, &, b.

Note that F is semi-invariant of weight b’ under the C*-action (1, &, %) — (A~%'t,
2@, \¥%). Choose pairwise prime natural a;,eq,a; such that (a;,a’) = (a3,V) =
(as3,¢') = 1.

Theorem 2.1 [Ru]. The hypersurface X = {(z,y,2,t) € C* | 2°2 + F(y™,t°%,z) =
0} is smooth contractible.

Put @ = d'azas, b = bayas, ¢ = daja;. Then we have the C*-action on X
given by (z,y,2,t) = (A°2z, A7y, Az, A°t). The origin is the only fixed point. Since
(v, z,t) is a semi-invariant local coordinate system in a neighborhood of the origin, it
is again a “hard-case” C"-action.
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Example: o' =4 =c =1, f(a,5) =0+ 0+ @ Then F(w,i,d) =+ wd’ + i
and X = {(z,y,2,1) € C* | z + 22y + z°2 + 1* = 0}.

Note that, by the Abhyankar-Moh-Suzuki theorem [AM], [Su], there exists a poly-
nomial g(@,d) such that Clg,s) = C[f,3). Put v = f(@,%) and v = §(&,8). Then
#t = f(u,v) and & = g(u,v) where f, g are polynomials. Since f is semi-invariant
relative w, the polynomial § can be chosen to be also semi-invariant relative w.
In this case u, v, f, g are semi-invariants with weights 0, c’,c’,b' respectively. Put

b

F(w,w™ ' u,v) = s~ f(s*u, sv) where w = s*". Note that F does not depend on

] ’

w™' automatically since ¥’ > ¢, i.e. F is a polynomial F(w,u,v) in w,u,v. Put
X ={(z,y,2,1) € C* | 1°* + F(y,2°2,2) = 0}.

Theorem 2.2 [Ru]. The hypersurfaces X and X are isomorphic.

Definition. We say that the weak linearizing conjecture holds if every “hard-case”
C*-action on C3 is linearizable under the following additional condition: the weights
of this action are pairwise prime.

In many case the “weak” linearizing conjecture was investigated in [KR].

Theorem 2.3 [Ru). If every hypersurface X as above is not isomorphic to C3,

then the linearizing conjecture can be reduced to the “weak” linearizing conjecture.

3. Main Idea. Let an affine algebraic hypersurface X in C* is given by a
polynomial equation P(z,y,2,1) = 0 in a coordinate system (z,y,z,t). Suppose
that there exists a dominant morphism ¢ : C* = X and that ({,7,8) is coordinate
system on C3. Then z,y, z,t may be treated as polynomials in {,7,8. Consider the
Jacobi matrix of the polynomials z,y, z with respect to ¢,n,0 and denote by J({) its.
determinant. We shall use the notation J(z),J(y), and J(z) in the similar meaning.
Consider the partial derivatives P, Py, P,, P, of P with respect to z,y, z, t.

Lemma3.1. Let P;, P, P,, P, have no common zeros on X. Then J(x), J(y), J(z),
J(t) are divisible by Pr o @, P,o¢, P, 0¢, Pioy respectively.

Proof. Since P o ¢ = 0 the derivatives of P o ¢ with respect to (,n,8 must be
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identically zero. In other words J - P’ = 0 where J is the 3 x 4-matrix of partial
derivatives of z,y,2,t with respect to {,n,6, and P’ is the 4-vector function with
components P; o ¢, P,op, P, oy, P,oy. Application of Kramer’s rule to this
linear system implies J(z) - Pyop =2J(y)-P.op, J(z)- P,op=2J(y) - P o,
and J(t):- Pyo¢ = 2J(y) - Py o . Therefore J(y) is divisible by P, o ¢. The other
statements can be obtained in a similar manner.
O

Denote the degrees of z,y,z,t, Proyp, P,op, P,op, and P, o ¢ (as polynomials
in {,n,0) by d.,d,,d.,d,, D, D, D,, D, respectively. Since degJ(z) 2 d,+d.+d;—3
and the similar inequalities hold for degJ(y), degJ(z), degJ(t), we have

Corollary 3.2. If P,, P, P,, P, have no common zeros on X, then

d,+d.+d; 2D:+3
d:+d.,+d, >D,+3
d:+d,+d, 2D,+3
d:+dy+dz 2D, +3.

In particular,

3(d; +d, +d, +d) >12+ D, +D,+D,+ D,
3dy+2dx+2dt+2dz 29+Dz+Dz+Dt

4. Demonstration of the main idea. It is shown here that the algebraic varieties
given by

(a) x4+ 7% 'y + y?°2% + t¢ = 0 where d ~ 1 > @ > 1 and a is relatively prime with d
and d —1 (so a > 2) or by

(b) z 4+ 2%y + 2 +t°=0 wherea 2 2,b>3,c>3

are not the images of C*® under polynomial mappings.

It is worth mentioning that the list (a) presents the contractible hypersurfaces in C*
described in [D]. In case (a) '
D, = (d - 2)d; + d,

D,=(d-a)d, + (a-1)d;

D,=(d-1)d;

from which Corollary 3.2 implies

2d; +3d, +2d, +2d; 2 (d - 2)d: + (d —a+1)d, + (a = 1)d. + (d — 1)d, + 9.
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There are no solutions in natural d,,d,,d,,d, with our restrictions on a and d and,
thus, ¢ cannot exist.

I case (b)

D, =2d; +(a-1)d,

Df = (C— l)dz
D, = (b~ 1)d,
D, =d;+ad,

from which Corollary 3.2 implies
Nd, +dy+d, +di) 23d, +(2a = 1)d, + (b= 1)d, + (¢ = 1)d, + 12.
‘T'here are no solutions in natural d.,d,,d,,d; with our restrictions on a,b and ¢, and,

thus, ¢ cannot exist.

5. Partial derivatives of P have no common zeros. lLet f(u,v), F(w,u,v) =
s~ f(s""u, s“v) be the samc as in preliminaries (recall that w = s'). Let P(x,y,z,1) =

™ 4+ F(y°',2°2,z2) and X = {(z,y,2,1) € C*| P(z,y,2,1) = 0}.

Lemma 5.1. The partial derivatives Py, P, P, P, of P have no common zeros on

Proof. By Theorems 2.1 and 2.2, the threelold X is smooth irreducible. Since P
is not a power of another polynomial, by construction, the partial derivatives ol I’

cannot have common zeros on X.

O

6. Some corollaries of the Abhyankar-Moh-Suzuki theorem. Let h(v,v) =
¥ a;;u'v? be a polynomial and let I be the set of indices such that a;; # 0ifl (¢,5) € I.
In order to make notation shorter we shall say that h is T jje; '’ up to nonzero

coellicients.

Let f be an irreducible polynomial whose Newton polygon Ny is a right triangle.
Let fo(u,v) be the sum of monomials from f that corresponds to the hypotenuse of
Ny.

Definition. We call f; the quasi-leading part of f.
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Let the zero fiber of an irreducible polynomial f of degree > 2 be isomorphic to
C. 1t follows from the Epimorphism Theorem [AM] that the Newton polygon of f is
a right triangle and its quasi-leading part fo(u,v) is either (u + v¥)! or (u* + v) up
to nonzero coefficients.

Lemma 6.1. Let f be as above and let fo(u,v) = (u+ v*)! where k > 2. Then
there exists a polynomial automorphism A of Clu,v) such that

(1) A= An 0---0 A, where for every odd index i the automorphism A; has form
(u,v) = (u+qi(v),v) (up to nonzero coefficients), for every even i the automorphism
A; has form (u,v) = (u,v + ¢;(u)) (up to nonzero coefficients); )

(2) deg g; > 2 for all i. Moreover, if f(0,0) = 0 then ¢;(0) = 0 for each i;

(3) f(u,v) = A(u) if m is odd and f(u,v) = A(v) if m is even.

Proof. Consider the substitution & = u + v* and & = v. Then the function f on
C? coincides with a polynomial f (,0). One can see that deg; f < deg,f = kl. By the
Epimorphism Theorem, either fo(ii, #) = (& + 9F) with k < k, or fo(i,9) = (&" + )"
with r > 2 and rn = [. The rest follows by induction.

O

Definition. A function Deg on C[z,,...,z,] is called a weighted degree if the
following properties of the usual degree function hold for Deg:

(1) Degh is a nonnegative rational number for every nonzero h € Clz;,...,z.),
Degh = —oo for h = 0, and if Degh = 0 then A is a nonzero constant;

(2) if Deg hy < Deg h, then Deg (hy + h2) = Deg hy;
(3) if Deg hy = Deg h, then Deg (hy + hy) < Deg hj:
(4) Deg hyhy = Deg hy + Deg h,.

Lemma 6.2. Let f,As,....,Am, Q1,...,gm be the same as in Lemma 6.1 and let
Deg be a weighted degree. Put A® = A;o0---0A;, fi = A'(u), gi = A'(v) for all

t <m. Then gz;f.-(u,v) = f¥(u,v) + r¥(u,v), '56;9&(",”) = g¥(u,v) + p}(u,v) where
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(1) fP(u,v) = q(gi-1)qi_(fiz2) === q)(v) for every odd i 2 | and g(u,v) =
qi_(fi—2)---q(v) for odd 1 > 3;

(2) f2(u,0) = g/ 1 (gi-2)ql_p(fizs) -~ g} (v) and g = g!(fiz1)J} (u,v) for even i;

(3) Deg f > Degr} and Deg gl > Degp!.

Similarly, a—uf,'(u,v) = f¥(u,v)+r¥(u,v), Ezgi(u,v) = g¥(u,v) + p¥(u,v) where
Deg f¥ > Degry, Deggy > Degpy; for odd i 23 g} = qi_(fi-2)qi-2(gi-3) - ¢2(/1)
and fI' = qi(gi-1)g!'; foreveni >4 [ = q!_,(gi=2) - - ¢5(f1) and for eveni 2 2 g} =
qi(fi-)JE.

Proof. We shall use induction. For i = 1,2,3 the statement can be easily

checked. Assuine it is true for ¢ — 1. Since f; = fi_; for even i cons;;der the
case of odd i. Then f; = fi_; 4 qi(gi-y) and %fi = (7);./-‘-1 + 'I."(!Ii—l)%.’li—l =
fiov+risy+ailgio) g, +piy) = fP + 1) wherer} = fI, + 71 +qi(gi-1)p]_,. Note
that Deg f? > Deg ¥, since f = qi(gi-1)gi_,(fi-2)f_,. Hence Deg [ > Degry.

a . . . .
For é—gi the statement is true since g; = g;_1, and induction works. Clearly one can
)

3
5u”

a
repeal the argument for -6—f. and
u

O
Corollary 6.3. Let k be the degree of g, and let hy(u,v), hy(u,v) be polynomials on

C2?. Then Deg g—i = Deg qi(v)gi = Deg gf (k-—l)Deg v, and Deg (hla_f + h, gt{)

Deg gf + Deg hs, where hz = gj(v)hi(u, v) + ha(u,v).

Lemma 6.4. Let f1,..., fmyG1y s Gms 1y ooy Gmsy Deg , by, ho, ha be the same as in

Lemma6.1 and Corollary 6.3. Suppose that Deg hz > Degu. Then Deg (h, of; + hzaf )

v Ou
Jg; dgi . .
5 B > Degg; for i > 2. Moreover, these in-

equalities are strict if either Deg hs > Degu, or Deg f;—, > Deg [; for some odd i, or

Deg f; for i > 1 and Deg (h, L+ hy =2

Deg gi—y > Degg; for some even 1.

Proof. We use induction. For ¢ = 1 the statement follows from condition
Deg [qy(v)hi(u,v) + ha(u,v)] > Degu. Assume that i is odd. Then g; = ¢;—; and

thus Deg |h(u, v)gg (u,v) + ho(u, v)g‘tz(u,v)] > Deggi. By Lemma Deg [h, ,)f'
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af o dg; 0g: o ,
+h, EI] = Deg f? and Deg [hl—a% + hg-é%] = Deg g7 where f = q;(gi-1)gi-1(fi-2)

- qy(fi)hs and g = gy (fi-2) -~ @2(f1)hs. In particular f§ = g¢l(gi-1)9!, &F =
qi-y(fi-2)fi_; and Deg f{ = Deg gi(gi-1)+Degg? > Deg f7_, Suppose that Deg fi-y 2
Deg f;. Then Deg f? > Deg f{_, 2 Deg fi—y 2 Deg f; and we have a strict inequal-
ity. Now suppose that Deg f;-; < Deg f;. Recall that f; = fi_; + gi(gi-1) for odd
t and hence Deg f; = Deg gi(gi-1). This implies Deg f° = Deggf + Deg gi(gi-1) =
Deg g? + Deg f; — Deg gi-,. Since g¢ = gf_, we have Deg f? > Deg f; by induction.
The case of even i can be treated similarly.

O

We shall need the following simple fact which immediately follows from Lemma 6.1
and induction.

Lemma 6.5. Let q,(v) = ¢(v) + v¥ + v* up to nonzero coefficients where deg q <

lk—k+k'

k' < k. Then f(u,v) contains monomials v'* and v with nonzero coefficients.

7. Some estimate of the degrees of polynomials. We shall use later the
following

Lemma 7.1. Let u,v be algebraically independent polynomials on C". Suppose
that degu™ = degv* for some m,k > 0. Then deg(u™ — v*) > (m — 1)degu — degv.

Proof. Extend the degree function to the field of rational functions on C* (with-
out the zero function) by putting degr = degp — degq where r = -Z and p,q are

polynomials. Let r;,r; be rational functions and let r’ be a partial derivative of r
with respect to some coordinate. We may suppose that r’ # 0 when r # const. The
following properties are simple:

(1) degriry = degr;y + degr;
(2) degr’' < degr —1;
(3) deg(logr)' = degr’' when degr = 0;

(4) degr 2> —deggq.
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k
Put h = u™ — v, Then degh = degu™ + deg (l -z

um

) by (1), degh > degu™ +

k .
v ‘ v "
dcg( ) by (2). Note that the last terin has sense since — # const. 'Then
u

u™

k [ — !
degh > degu™ + deg (ﬂ#) by (3), degh > degu™ — deguv by (4), and we
are done.

O

We also need a generalization of this lemima.

Lemma 7.2. Let z,y,2z be algebraically independent polynomials on C* and
let m,k,l be naturals. Suppose that degz™y' = degz*. Then deg(z"y' — =¥) >
(m—1)degz+ (I — 1)degy — deg z.

Proof. Extend the degree function to the field of rational functions on C™ (without
the zero function) in the way it was done in Lemma 7.1. Hence properties (1) — (4)
from the proof of the previous lemma hold.

k
Put h = z™y' — zF. Then degh = degz™y' + deg (1 - -—t—yl-) by (1), degh >
zm

k

' k
deg z™y' + deg (—) by (2). Note that the last term has sense since

const.
Zmyl zmyl #

kx'zy — mxz'y — lxzy'

Then degh > deg:™y' + deg ) by (3), degh > degz™y' —

T2y
deg xzy by (4), and we are done.

O

Corollary 7.3. Let z,y,z be algebraically independent polynomials on C", let m,l
be naturals. Suppose that q is a quadratic polynomial in one variable and deg z™y' =
2deg z. Then deg(z™y' — g(z)) > (m — 1)degz + (I — 1)degy — deg x.

Proof. 1t is enough to note that g(z) = B(x + B;)* — B3 for some constants
ﬁl’ﬂ% ﬂS-
O

8. The Quasi-leading Part of f. Let f,a',V',c' be the same as in section 2.
Let fo be the quasi-leading part of f.
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Lemma 8.1. One may suppose that fo(u,v) = (u+ v*)! where k > 2.

Proof. Assume that it is not so, i.e. fo(u,v) = (v + u*)! where k > 1. Put
& = uand © = v+ u*. In these coordinates the function f can be rewritten as
a polynomial f(ﬁ,ﬁ). Recall that F = s~ f(sYu,sv) and F can be viewed as a
polynomial F(w,u,v) where w = s*. Hence s~ fo(s"'u,sclv) is a polynomial in
w, u,v, and this implies that s*'~¢' = w". Recall that our hypersurface X is given by
the equation P(z,y,z,t) = t® + F(y*,z°,z) = 0. Put F = §~¢ f(5%4,55). Again
this function is a polynomial F' (0,4,9) in = §*,4,9. Consider the hypersurface
X = {i+ F’(Q"‘,é"’,i) = 0}. It is easy to check that X is the image of X under
the automorphism of C* given by (£,9, %,{) = (z + y"*12%°2,y, z,t). Hence we can
use f instead of f. Note that, by construction and by the Abhyankar-Moh-Suzuki
theorem, either fo(ii,9) = (& + ©*) up to nonzero coefficients or fo(@t,d) = (b + @)
where r < k. The rest follows by induction.

O

9. Weighted degrees.

We need the following properties of the weighted degrees which were introduced
in section 6.

Lemma 9.1. Let ¢:C" — C™ be a dominant morphism which generates an
injective homomorphism Clzy,...,2m) = Cly1,...,yn). Let Deg be a weighted
degree on Clz;,...,zm]. For every h € Cly,,...,yn] put Degih = Degh o . Then
Deg, is a weighted degree.

Proof. Properties (2)-(4) and the first part of property (1) from the definition of
weighted degrees in section 6 are obvious. Let Degih = 0, then the polynomial ko ¢
is constant. Since ¢ is dominant this implies that h is constant.

O

Lemma 9.2. Let ¢:Clz),...,2s] = Cly1,...,¥n] is given by (z1,...,24) =
(z™,23,...,2,). Thus we may tread Cly,...,ys] as a subalgebra of C[z,,...,Zx).
Then every weighted degree Deg on Clyy,...,yn] can be extended to a weighted
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degree on Clzy,. .., x,).

Proof. Every nonzero polynomial h € Clzi,...,za] may be presented uniquely in
the form Y% zigi(y2,...,yn). Put Degh = max{Degq; + iDegy;/m | for alli with
g: # 0}. The properties (1)-(4) of weighted degrees can be easily checked.

O

I'rom now on we fix notation for the rest of the paper. Let fyu,v,s,w,a' 0, ¢! oy oy
, as, I be the same as in section 2. Put @ = s¥u, & = s“v. Then F(w,u,v) =
s f(@,d). Put y*r = w, 2°2 = u, ¢ = v, P(z,y,z,t) = t°* + F(y™,2°2,z) and
X = {(z,y,2,t) € C* | P(z,y,2,t) = 0}. Suppose ¢ : C* = X is a dominant
morphism. Then we can treat every regular function on X as a polynomial in ¢, 7,6

where ((,7,8) is a coordinate systen on C3.

We shall need some weighted degrees on polynomial rings. The degree function
on C|(, 7, 8] and the morphism ¢ generate a weighted degree on C|z,y, z], by Lenma
9.1. This weighted degree generates a weighted degree on Clv,w,u], by the same
lenina, since v = z,w = y™', and u = z%2. In its turn this weighted degree gener-
ales a weighted degree on Clv,s,u], by Lemma 9.2, since w = s*. The morphism
(v,s,u) = (4,9) is dominant. Hence the last weighted degree generates a weighted
degree on C[i,?]. By abusing notation, we denote all these weighted degrees by
the same symbol Deg. Thus degh o ¢((,7n,0) = Degh(z,y,z), Deg h(z,y°',2°?) =
Deg h(v,w,u), Deg h(v,s*,u) = Deg h(v,w,u), and Degg(ii,d) = Deg g(s*'u, sv),
where h and g are polynomials in three and two variables respectively and the vari-
ables in polynomials indicate on which polynomnial ring we should consider this Deg

function.

By Lemma 8.1, one may suppose that the quasi-leading part of [ is fo(u,v) =
(u + v*)!. Recall that the function f satisfies Lemma 6.1. Let gy,...,qn. be the
same as in Lemma 6.1. The assumption on fy implies that g;(v) = v* + g(v) where
deg g < k. We shall use u; = i+ q;(?) and v, = 9. Note that the function f(ii, %) can
be rewritten as a polynomial f!(uy,v). As above we introduced the weighted degree
on the ring Clu,,v] such that Deg f(#, ) = Deg f'(u,,v)).
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We can treat every regular function on X as a polynomial in (,n,8 where ({,n,6)
is a coordinate systen on C3. Denote by P, P,, P,, P, the partial derivatives of P.
Let d;,d,,d.,d;,D.,D,, D,, D, be the degrees of the functions z,y, 2,t, P., P,, P., P,
as polynomials in (,n, 6.

10. Estimates of D;,D,, D,, D,.
The chain rule implies.

Lemma 10.1. In the above notation D, > (a; — 1)d,, Dy > (a3 — l)d,,. D, 2
(01 - l)dy

The fact that the function F is a polynomial in w = s*,u,v and (a’,¢') = 1,
implies

Lemma 10.2. The numbers k¢’ — ¥ and (kl - 1)c’ are divisible by a’. Moreover if

kl=k+k'

f(u,v) contains a monomial v with a nonzero coefficient then k — k' is divisible

by d'.

Lemma 10.3. Let 3 be the smallest natural o such that aa’ + ¢’ — b’ > 0. Then

the difference of _3_[(&, ) and a constant is divisible by s#*+<'=*'. The difference of

ou
F(-,f)) and a constant is divisible by s® = y™.
D

Proof. Let 4™ ¢"™ be a monomial in f(i,?) such that n;+n; > 1and n; > 1. Since
f(@t,?)/s" = F(w,u,v) we have ™9™ = uMy™y°*1s¢. Hence the corresponding
monomial #™ 15" in Fr is divisible by s to the power of aa’+¢'~bV = (n;-1)b'+¢' >

u
of of

0. This implies the statement of Lemma for —=. For —= the proof is similar.

oi 0v
O

In order to obtain an estimate of D, note that P; is an element of the ring C|z, y, 2]
and thus we may apply the weighted degrees which were introduced in the previous

section.



70 S. KALIMAN, L. MAKAR-LIMANOV

()
Lemma 10.4. In the above notation D, 2 (k= V)d, A ody, and 1), > I)r_q(-,-)'{('il, )|
: i
(k= 1)Degv.

Proof. Note that Po oo = s‘c'—(?—(s"l’) op = -f):f(ﬁ.,{)) o ¢. Consider
Or v

the mapping ¢ = (4,9) : Y — C2 1t is easy to check that it is dominant (oth-

erwise the functions z,y,z on X are algebraically dependent). By Corollary 6.3,
Deg [%%(ft,f))} = Deg [g—é(&,ﬁ)] + (k — 1)Degtd . Suppose that :—;% # c?7z.st. By
Lemima 10.3, Degg-{(ﬁ,z')) > (Bd' + ¢ — V)Degs. Thus D, > (k — ])'d; + (k -

1)c'Deg s+ (a’ — b't-ll- c')Degs = (k—1)d; + (Ba' — b' + kc')Deg s. Since the number
fa' = b + kc' > 0 and divisible by o', D; > (k— 1)d; + a’'Degs = (k — 1)d, + e d,.

If 0—{ = const then f(u,?) = @ + ¢;(?). In this case the statement of Lemma is clear.
it

Corollary 10.5. In the above notation there is no dominant mapping¢ : C> - X
if one of the following condition holds:

(1) o122, a2>3, 03>3, k> 3;
(ii) 0123) 02233 Q3Z3ak23

Proof. Corollary 3.2 and Lemma 10.1 imply that
3(d; +dy+d,+d))>12+ D, + D, + D, + D, >
=124 (k- 1)d: + (21 — 1)d, + (@2 — 1)d, + (@3 — 1)d,
and

3dy +2(d: +d,+d;)>9+ D, +D,+ D, >
94 (k- 1)d; + aydy + (a2 — 1)d, + (a3 — 1)d,.

These inequalities have no solutions in natural numbers when the assumption of
Corollary holds.

O
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11. A Better Estimate of D,. In this section we shall prove some lemmas
which help to remove condition k& > 3 in Corollary 10.5 (i). The first of them is
obvious.

Lemma 11.1. Let g(u,v) be a polynomial such that g(u,v) = (u + v¥)'u™v™ +
h(u,v) and km, 4+ m, < kl+ kn, +n; for every monomial u™ v™ from h. Let Deg be
the function on Clu,v) defined in Section 9. If Degu > kDegv, then Deg g(u,v) =
Degu™*!v™2. If Degu < kDegv, then Degg(u,v) = Degu™v™*¥. If Degu =
Degv* but Degu + v* = Degv*, then Deg g(u,v) = Degu™v™*¥ = Degu™+vm.

Lemma 11.2. Suppose that either ¥’ # k or ' # 1. Then D, 2 kd; + (ey —1)d,.
IfY =k, ¢ =1 and k =2 or 3 we still have D, > 2d; + (a; — 1)d,,.

Proof. Recall that q,...,gm be the same as in Lemma 6.1. If m = 1 then the
statement of Lemma is obviously true. So suppose that m > 1 and, in particular,

—{ # const.

ou

0 _a1y°"‘6 _0153 . c+16P
Note that Gy @ °16s " ayBs’ Thus it suffices to show that Deg ( s >
0P

kd, + ayd, + ¢’ Degs. Note that Q = st — = 5% f(ﬁ,ﬁ) - ' f(i,9). Put

Os
0, .. ,-af ,_af

Ql—saf(u,v). Then @, = b'u im=(u

cases;

,0) 4+ ¢'D 3"( o). We have to consider several

(1) Deg @t > Deg t;
(2) Degtu < kDeg v;

(3) Degit = Degt*, Deg s%l:l = Deg[b't + c'tq}(?)] = Deg & where u; = i + ¢;(9);

0
(4) Degi = kDeg v, Deguy = Deg i, Deg s—%l < Deg ii;
(5) Degi = kDeg®, Degu, < Degi, Deg s—aisl- < Deg .
In the first case the Newton polygon of Q is a right triangle and DegQ = Deg @'
by Lemma 11.1. Hence, since Degt = azDegz + b'Degs > Deg¥ = kd, + kc'Deg s,
we have DegQ@ > kld; + lkc'Deg s. Lemma 10.2 yields that lk¢’ = aa’ + ¢’ for some
positive integer a. Thus DegQ > kld; + aayd, + ¢’ Deg s which implies the desired
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conclusion for D, in this case. Case (2) can be treated similarly.

In case (3) consider two situations: Degu; = Degit and Degu, < Degii. When
the last inequality holds DegQ = DegQ; = Deg%(&,ﬁ)(b’&+c’ﬁq{(f’)) > Degf(,?)

by Lemma. Thus DegQ = kDegv + l)egg—{(ﬁ,ﬁ) > kd, + kc'Degs + (Ba’ + ¢ —
u

b')Deg s = kd, + (Ba’ + kc' = ¥')Deg s + ¢'Deg s, by Lemma 10.3. Since the number

fa' + kd' = b’ > 0 and is divisible by a’, we have DegQ) > kd, + oyd, + ' Deg s.

Let Degu; = Degii. Put v; = v and rewrite f(i, %) as a polynomial f'(uy,m) in
u; and vy. The quasi-leading part of f! is (v; + u§?)"? up to non-zero coeflicients and

kyly = I. Condition m > 1 means that k; > 1. Thus f!(u;,v;) = Z uy'vy? up
k2n2+n|Sl
to coefficients and

Ju 0
Q=1ul"! (l.sﬂ - c'ul) + > uprlop (n,s—ﬂ —cuy + (n2 — l)c’v,) .
9s kanz+ny <l ds

ny#l

0
Since Deg (n,s% —cuy + (ny — l)c’v,) < Degu,, we have DegQ = degu!™!
S8

J

(sl(—;—l - c’ul) > Degul™ = k(I-1)Degd = k(I-1)d,+k(I-1)c' Deg s. If ¢(7) # o
s

up to nonzero coeflicient then f(i, %) contains monomials 5% and #5=5+* with 0 <

k' < k, by Lemma 6.5. Leinma 10.2 implies that k — k' is divisible by @', j.e. DegQ >

k(l=1)d,+ (Kl -2k + k')’ Degs+(k—k')Degs > k(l —1)d; + ¢'Deg s+ ad, which is
the desired inequality. 1f ¢;(?) = ©* then Deg (lsgl-t—l- - c’u,) > min(V', kc')Deg s and

Os
DegQ > Degul™'+ Deg (IS%L:- - c'ul) > k(l-1)d,+min(klc'+ V' —kc',klc')Deg s >
k(l=1)d:+c'Deg s+min((kl—-1)c, kld'—c'+b'—kc')Deg s > k(l—1)d,+c'Deg s+ayd,

and we are done in case (3).

In case (4)

1 1 1 1
0f duy + 2 Qﬂ:’l(uhvl)gf—'-i-cvnai-

=55 T 5 s Dy Jv;

where h(uj,vy) = b'uy + c'viqy(vy) — V'qi(vy). Since Deglgy(wi)h(uy,vy) + cvy] >
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Deg g;(uy) 2 Degu; > Deg vl > Degv;, we have that DegQ, > Degf1 Degf(1,?)
and thus

1
DegQ = DegQ, = Degg{};(uuvl) + Deg[?;(ul)h(ulavl) + dvl]

1
by Corollary 6.3. Hence DegQ, > Deggi(ul,vl) + (k2 — 1)kDegv;. Recall that
oft o8f of

vy =b=2z-5and =— = —= — =. q1(9). Consider two subcases: I3 > 1 and [; = 1.

6v1 6v 3'
Suppose that I; > 1. Then by Lemma 11.1, the monomial u; %2(12-1) has the greatest

1 1
ka(l2-

Deg among the monomials of ——(u;,v;), i.e. Deggf = Degu, NS Degvf >

ov,
Degqi(9). According to Lemma 10.3 there exists a constant v such that % —qis
1 1
divisible by s¢'#-t'+<', Thus Degg = Deg (6f 7q{(v1)) > min(a’,d'f - b +
v

¢')Deg s by Lemma 10.2. Therefore DegQ = DegQ@; > (ky—1)kd.+(k2—1)kc’Deg s+
min(a’,a'f — b + ¢')Deg s > kd; + and, + ¢’Deg s and we are done is this subcase.
Now let I, = 1. This means that m = 2 and k; = l. Suppose that q;(9) # *.
Then for 0 < k' < k the polynomial f(i,?) contains a monomial **~*+¥ with a
nonzero coefficient, by Lemma 6.5. Lemma 10.2 implies that k — k' is divisible by
a’ and thus ¢’ < k’. Hence Deg @ > Deggy(uy) = (k; — 1)kDeg vy = k(k2 — 1)d, +
((ky=1)k—=1)c'Degs+c'Degs > k(ky—1)d, + ayd, +¢'Deg s. When ¢;(%) = #* then
Deg h(uy,v1) 2 min(b,kc')Degs. Using the fact that Deg Q = Deg gy(u1)h(u;,v1)
one can repeat the argument from case (3) in order to obtain the desired inequality.
In case (5) note that the conditions Deg(i + ©*) < Degii and Deg(b'i + kc't*) <
Degu imply that ' = kc'. Since ¢’ and b' are coprime this means that ¢’ = 1 and
b = k. Consider two subcases (5') k = 3 and (5") k = 2.

(5"). Put &t = 4+9* = s*(z¥+2°?). Since Deg it; < Deg ii, we have a,d, = kd;. By

Lemma 7.1 Deg(z°? 4+ z*) > (k= 1)d, - d, = (k -1- -E-) d.. Hence Deg i > Degt

Qa3
for k = 3 and a; > 3. Put ¥ = ©. Then (4,0) is a semi-invariant (relative to the

linear action pf the group of a’-roots of unity) coordinate system on C?, the weight
of & is ¥’ = k, and the weight of ¥ is ¢ = 1. Hence one can represent the function
f(&,?) as a semi-invariant polynomial f(#,9). Denote the quasi-leading part of f by
fo(ﬁ, ). Consider three possible situations:
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)

b)!, and

(iii) fo(@, ) = (% + ) with ky > 1 and kyly = L.
7 9% af ,1.(‘i 0f

aun . .
Note that S50 = b'i = 34, sg-s-—cv_v, and @, = 35—( v) = (}u+rv%.

Now in cases (ii) and (iii) it suflices to apply Lemma 11.1, since Deg i, > Deg v;.
If (i) holds then we can just repeat the arguments from cases (1)-(4) and we do not
need to consider case (5) since b’ # 2. Thus in (5)' Dy, > 2d; + (e; — 1)d,,. -

(5)". Consider u; = 4+ q,(#) and vy = 0. Sincea’ =1, ¢ = 1, and V' = 2 we have
uy = 2"2y*™ 4 ¢ (zy™). Recall that ¢,(0) = 0, i.e. ¢;(v;) = v? + v, or ¢;(v;) = v? up
to nonzero coefficients. Suppose that ¢,(v;) = v? +v,. Since Degu, < Degu we have

2
azd, = 2d,. By Corollary 7.3 Deguy > d; + (a; — 1)d, — d, = (1 - —) dy + (a1 —
%)
1 1 .
1)d, > E(d, +ad,) = §Deg vy. If g1(v;) = v? then u; = y?*1(2°2 + z?). Application

2
of Lemma 7.1 shows that again Degu, > (1 - —) dv; > ldvl Represent f as a
Q3

polynomial f!(uy,v;). Then the quasi-leading part of f! is (u, + vy)"2 with ky > 1.
We can apply again Lemma 11.1 to show that D, > 2d; + (o; — 1)d,. Lemma is

proved.

O

12. Theorem A. Let oy > 2, a; > 3, a3 > 3. Then there is no dominant
morphism ¢ : C® = X.

Proof. By Corollary 10.4 it is enough to consider the case when k = 2 or 3. Then
D, > 2d. + (o — 1)d,. Using Lemmas we have D, + D, + D, + D, > (k+ 1)d. +
(20) = 1)dy + (az — 1)d, + (a3 — 1)d;. Thus the inequality 3(d; + d, + d, + d;) >
124 Dz + Dy+ D, + D, has no solution in natural numbers. Now Corollary 3.2 implies
the desired conclusion.
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