Cours de Jean-Pierre Serre

JEAN-PIERRE SERRE R. ROUQUIER (réd.)

Représentations linéaires sur des anneaux locaux, d'après Carayol

Cours de Jean-Pierre Serre, tome 14 (1993)

http://www.numdam.org/item?id=CJPS_1993__14_>

© Bibliothèque de l'IHP, 2015, tous droits réservés.

L'accès aux archives de la collection « Cours de Jean-Pierre Serre » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

REPRÉSENTATIONS LINÉAIRES SUR DES ANNEAUX LOCAUX, D'APRÈS CARAYOL

EXPOSÉ DE JEAN-PIERRE SERRE, LE 8 OCTOBRE 1993

Rédaction de R. Rouquier

Soit A un anneau commutatif local, d'idéal maximal \mathfrak{m} et de corps résiduel $k = A/\mathfrak{m}$.

Soit R une A-algèbre (associative, à élément unité). Soit n un entier positif. On note $M_n(A)$ la A-algèbre des matrices à n lignes et n colonnes à coefficients dans A.

1. CARACTÉRISATION D'UNE REPRÉSENTATION PAR SON CARACTÈRE

Soit ρ une représentation A-linéaire de R dans $M_n(A)$. Soit $\tilde{\rho}$ la représentation résiduelle :

$$R \xrightarrow{\rho} M_n(A)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad M_n(k)$$

On fait l'hypothèse que $\tilde{\rho}$ est absolument irréductible, c'est-à-dire que $\tilde{\rho}$ est surjective [1, Chapitre VIII, §13, n° 4], ou encore, en utilisant le lemme de Nakayama, que ρ est surjective.

Théorème 1. Soit ρ' une représentation de R dans $M_n(A)$. Si ρ et ρ' ont même caractère, alors ρ et ρ' sont isomorphes.

Preuve. Montrons tout d'abord le résultat pour A = k.

- On sait que $\operatorname{Tr} \rho = \operatorname{Tr} \rho'$ donc $\operatorname{Tr} \rho = \operatorname{Tr} \rho'_{ss}$ où ρ'_{ss} est la semi-simplifiée de ρ' . Si la caractéristique de k est nulle, alors deux représentations semi-simples de même caractère sont isomorphes, donc ρ est isomorphe à ρ'_{ss} . Puisque ρ est absolument irréductible, ρ'_{ss} l'est aussi, donc $\rho' \simeq \rho'_{ss} \simeq \rho$.
- Supposons k de caractéristique p>0. Soit $\bar{\rho}'_{ss}$ la semi-simplifiée de l'extension $\bar{\rho}'$ de la représentation ρ' à une clôture algébrique \bar{k} de k. Si ψ et ψ' sont deux représentations semi-simples sur \bar{k} de même caractère, alors pour toute représentation irréductible θ sur \bar{k} , on a $m_{\theta,\psi} \equiv m_{\theta,\psi'} \mod p$ (on désigne par $m_{\theta,\psi}$ la multiplicité de θ dans ψ). Ici, on obtient $m_{\bar{\rho},\bar{\rho}'_{ss}} \equiv 1 \mod p$, d'où $m_{\bar{\rho},\bar{\rho}'_{ss}} \geq 1$ et finalement $\bar{\rho}'_{ss} \simeq \bar{\rho}$ puisque ces deux représentations ont même dimension. Comme précédemment, on conclut donc que $\bar{\rho}' \simeq \bar{\rho}$ et donc que $\rho' \simeq \rho$.

• On suppose maintenant A quelconque. On sait par ce qui précède que $\tilde{\rho} \simeq \tilde{\rho}'$ et quitte à remplacer ρ' par une représentation isomorphe, on peut supposer $\tilde{\rho} = \tilde{\rho}'$.

Soit $f: R \xrightarrow{(\rho,\rho')} \Sigma \times \Sigma'$ où $\Sigma = \Sigma' = M_n(A)$ et soit S = f(R). Les deux projections de S sur Σ et Σ' sont surjectives.

Le «lemme de Goursat» permet d'identifier un tel S (cf. le lemme 6 en appendice). D'après ce lemme, à S sont associés un idéal bilatère N de Σ , un idéal bilatère N' de Σ' et un A-isomorphisme $\varphi: \Sigma/N \to \Sigma'/N'$, dont S est le «graphe», c'est-à-dire,

$$S = \{(x, x') \in \Sigma \times \Sigma' \mid \varphi(xN) = x'N'\}.$$

Si B est un anneau, les idéaux bilatères de $M_n(B)$ sont de la forme $\mathfrak{A}M_n(B)$ pour \mathfrak{A} idéal de B (cf. par exemple [1, Chapitre VIII, §5, exercice 7]). Ainsi, il existe \mathfrak{A} et \mathfrak{A}' idéaux de A tels que $N=\mathfrak{A}M_n(A)$ et $N'=\mathfrak{A}'M_n(A)$. Par conséquent, $\Sigma/N=M_n(A/\mathfrak{A})$ et $\Sigma'/N'=M_n(A/\mathfrak{A}')$. Puisque ces deux A-algèbres sont isomorphes, leurs annulateurs, \mathfrak{A} et \mathfrak{A}' , sont égaux.

Soient
$$\alpha \in \mathfrak{A}$$
, $X = \begin{pmatrix} \alpha & 0 & \dots & 0 \\ 0 & \dots & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & \dots & 0 \end{pmatrix}$ et $X' = 0$. Alors, $(X, X') \in S$, puisque

 $X \equiv 0 \mod \mathfrak{A}$. Donc, on a Tr $X = \operatorname{Tr} X'$, d'où $\alpha = 0$. Par conséquent, $\mathfrak{A} = 0$ et S est le graphe d'un A-isomorphisme $\varphi : M_n(A) \to M_n(A)$.

D'après ([2, Chapitre II, §5, exercice 21]), tout B-automorphisme d'une algèbre de matrices sur un anneau local B est intérieur. Ainsi, l'automorphisme φ est intérieur, donc ρ et ρ' sont conjuguées, ce qui démontre le théorème 1. \square

Corollaire 2. Supposons A intègre et soit K le corps des fractions de A. Soient ρ et ρ' deux représentations linéaires $R \to M_n(A)$. Supposons la représentation résiduelle $\tilde{\rho}$ absolument irréductible. Si les extensions de ρ et ρ' à K sont isomorphes, alors ρ et ρ' sont isomorphes.

2. DESCENTE D'UNE REPRÉSENTATION

Soit A' un sous-anneau local de A, d'idéal maximal $\mathfrak{m}' = A' \cap \mathfrak{m}$.

Rappelons la notion d'algèbre d'Azuyama sur un anneau commutatif ([2, Chapitre II, §5, exercice 14] ou [5, Chapitre III, §5.1]):

Définition 3. Soient B un anneau commutatif et Σ une B-algèbre. On dit que Σ est une algèbre d'Azumaya sur B si et seulement si

- (1) le B-module Σ est fidèle et de présentation finie,
- (2) pour tout idéal maximal m de B, la B/m-algèbre $\Sigma/m\Sigma$ est centrale simple.

Notons que si Σ est une algèbre d'Azumaya sur B, alors le B-module Σ est en fait projectif.

Suivant [5, Chapitre IV, §2], on note Trd : $\Sigma \to B$ l'application trace réduite.

Lorsque B est un anneau local, Σ est une algèbre d'Azumaya sur B si et seulement si Σ est un B-module libre de type fini et $\Sigma/m\Sigma$ est une B/mB-algèbre centrale simple, m désignant l'idéal maximal de B. En outre, il existe une extension fidèlement plate S de B telle que $S \otimes_B \Sigma$ soit une algèbre de matrices sur S (S est dite neutralisante pour Σ). On a alors $\mathrm{Trd}(x) = \mathrm{Tr}(1_S \otimes x)$ pour tout $x \in \Sigma$.

Soient maintenant Σ une algèbre d'Azumaya de rang n^2 sur A, et $\rho: R \to \Sigma$ un homomorphisme A-linéaire tel que $\tilde{\rho}$ soit absolument irréductible, *i.e.*, tel que $\tilde{\rho}(R) = \Sigma/\mathfrak{m}$ ou de manière équivalente, tel que $\rho(R) = \Sigma$.

Théorème 4. Soit R' une A'-sous-algèbre de R telle que R = AR'. Si $\operatorname{Trd} \rho(x)$ appartient à A' pour tout $x \in R'$, alors, $\rho(R')$ est une A'-algèbre d'Azumaya de rang n^2 et $A \otimes_{A'} \rho(R') \to \Sigma$ est un isomorphisme.

Avant de démontrer ce théorème, énonçons un corollaire immédiat :

Corollaire 5. Supposons que toute algèbre d'Azumaya de rang n^2 sur A' soit triviale, c'est-à-dire isomorphe à $M_n(A')$. Soit $\rho: R \to M_n(A)$ une représentation telle que $\operatorname{Tr} \rho(x) \in A'$ pour tout $x \in R'$ et $\tilde{\rho}$ est absolument irréductible. Alors, il existe une représentation $\rho': R' \to M_n(A')$ telle que ρ et ρ' soient conjuguées.

Preuve. (du théorème) Soit $\Sigma' = \rho(R')$. Il suffit de prouver le théorème pour R et R' remplacés par Σ et Σ' , et on suppose donc maintenant que R est une algèbre d'Azumaya de rang n^2 sur A.

On peut trouver une A-base $\{e_i\}_{1 \leq i \leq n^2}$ de R avec $e_i \in R'$. Soit $x \in \Sigma'$, $x = \sum_{i=1}^{n^2} \lambda_i e_i$ avec $\lambda_i \in A$. Montrons que les λ_i sont dans A'.

Soit j tel que $1 \leq j \leq n$. On a $\operatorname{Trd}(xe_j) = \sum \lambda_i \operatorname{Trd}(e_ie_j)$, $\operatorname{Trd}(xe_j) \in A'$ et $\operatorname{Trd}(e_ie_j) \in A'$. Or, la matrice $(\operatorname{Trd}(e_ie_j))$ a un déterminant qui n'est pas dans \mathfrak{m} , puisque non nul après réduction modulo \mathfrak{m} ; comme $\mathfrak{m} \cap A' = \mathfrak{m}'$, ce déterminant est inversible dans A'. Par conséquent, les λ_i , solutions uniques d'un système d'équations linéaires dans A', sont dans A'.

Ainsi, $\{e_i\}$ est une A'-base de R'. Donc, $A \otimes_{A'} R' \to R$ est un isomorphisme et R' est une A'-algèbre d'Azumaya (car $R'/\mathfrak{m}'R'$, devenant une algèbre centrale simple après extension des scalaires à A/\mathfrak{m} , est une algèbre centrale simple) de rang n^2 . \square

Remarque. Si G est un groupe (ou plus généralement un monoïde), les résultats ci-dessus s'appliquent à l'algèbre R = A[G] de G sur A, ainsi qu'à sa sous-algèbre R' = A'[G].

APPENDICE

LEMME DE GOURSAT

Soit \mathcal{C} la catégorie des groupes ou celle des anneaux ou celle des algèbres ou celle des algèbres de Lie. Soient M un objet de \mathcal{C} et N un sous-objet de M. On dira que N est un sous-objet distingué de M si le quotient M/N existe (cette notion correspond à celle de sous-groupe distingué, d'idéal, d'idéal de Lie, lorsque \mathcal{C} est respectivement la catégorie des groupes, des anneaux ou des algèbres de Lie).

Le lemme suivant (dont la démonstration est immédiate) décrit, dans un produit de deux objets, les sous-objets pour lesquels les deux projections sont surjectives (cf. [4, p. 47]).

Soient N et N' deux sous-objets distingués de Σ et Σ' et $\varphi: \Sigma/N \to \Sigma'/N'$ un isomorphisme. Soient $f: \Sigma \to \Sigma/N$ et $f': \Sigma' \to \Sigma'/N'$ les surjections canoniques. Soit S le sous-objet de $\Sigma \times \Sigma'$ donné par

$$S = \{ x \in \Sigma \times \Sigma' | \varphi \circ f \circ \operatorname{pr}_{\Sigma}(x) = f' \circ \operatorname{pr}_{\Sigma'}(x) \},$$

où $\operatorname{pr}_{\Sigma}: \Sigma \times \Sigma' \to \Sigma$ et $\operatorname{pr}_{\Sigma'}: \Sigma \times \Sigma' \to \Sigma'$ sont les projections canoniques.

Lemme 6. La construction précédente définit une bijection entre :

- les triplets (N, N', φ) où N et N' sont des sous-objets distingués de Σ et Σ' et $\varphi : \Sigma/N \to \Sigma'/N'$ est un isomorphisme,
- les sous-objets S de $\Sigma \times \Sigma'$ tels que les projections sur Σ et Σ' , $(\operatorname{pr}_{\Sigma})_{|S}$ et $(\operatorname{pr}_{\Sigma'})_{|S}$, sont surjectives.

BIBLIOGRAPHIE

- 1. N. Bourbaki, "Algèbre", Chapitre VIII, Hermann 1958.
- 2. N. Bourbaki, "Algèbre commutative", Chapitres I à IV, Masson 1985.
- 3. H. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, Contemporary mathematics 165, Amer. Math. Soc., 213-237 (1994).
- 4. E. Goursat, Sur les substitutions orthogonales et les divisions régulières de l'espace, Ann. Sci. ENS VI, 9-102 (1889).
- 5. M.-A. Knus et M. Ojanguren, "Théorie de la descente et algèbres d'Azumaya", Lecture Notes 389, Springer Verlag 1974.