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University of Oregon Mathematics Department 

Moursund Lectures 1998 

J.-P. Serre 

Notes by W.E. Duckworth 



These informai notes are closely bâ.sed on a series of eight lectures given by 
J.-P. Serre at the University of Oregon in October 1998. Professor Serre 
gave two talks per week for four weeks. 

The first talk each week was concerned with constructing embeddings 
of finite groups, especially PSL2(p) and PGL2(p), into Lie groups. The 
second talk each week was about generalizations of the notion of complete 
reducibility in group theory, especially in positive characteristic. 

The notes are divided into two parts, one for each of the tapies of the 
lecture series. At the end of the notes, there is a short list of references as 
a guide to further reading. 



Part I 

Finite subgroups of Lie groups 
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Lecture 1 

We begin with a guiding example. Let G be the compact Lie group S03 (R). 
The finite subgroups of G fall into the following families: 

• The cyclic subgroup Cn of order n. This appears as a subgroup of the 
maximal torus T of G consisting of rotations around some fixed axis. 
It is not really interesting: it 's there because of the torus, not really 
because of G. 

• The dihedral group Dn of order 2n. Again, such subgroups lie in 
another Lie subgroup of G, namely the normalizer N of T in G. The 
index (N : T) = 2 and the · additional reflection generating Dn lies 
inside N. 

• Three more "exceptional" examples: the alternating group A4 on four 
letters, the symmetric group S4, and the alternating group A5 . These 
may be viewed as the automorphisms of the regular tetrahedron, cube 
and icosahedron respectively. 

Let us indicate one reason for the importance of this example for com-
plex analysis and topology. One can view S03 (R) as a maximal compact 
subgroup of the group PGL2(C), that is, the group of all transformations 
z i-+ ~:t~ with ad-be-/= O. Up to conjugacy, compact subgroups of PGL2(C) 
and S03 (R) are the same. So the above list also describes the embeddings 
of finite subgroups r into PGL2(C). Now, PGL2(C) is the automorphism 
group of the projective line IP\ over C, so a finite subgroup r c PGL2(C) 
acts on JP>1. Dividing, we get a (ramified) Galois covering 

of a curve of genus O by another, and our list of fini te subgroups gives all 
possible Galois coverings of JP>1 by JP>1. 

We wish to consider finite subgroups of more general Lie groups G. We 
will restrict our attention to the following sorts of Lie group: 

• Compact, real, connected Lie groups, especially the semisimple ones: 
SUn, SOn, ... ,Es. 

• The corresponding complex groups: SLn ( C), SOn ( C), . . . , Es ( C) . 

• Any of these groups G(k) over an arbitrary field k. Indeed, thanks to 
Chevalley, we can define these groups even over Z. 
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In fact as we will see, one can often use -the groups G ( k) over fields of 
positive characteristic to shed light on the first two problems. An example 
of this philosophy appears in the work of Minkowski, who was studying 
lattices A C Rn (cf. [Min]). The group r := Aut(A) is finite, and he was 
interested in findirig an upper bound for the exponent of a given prime f in 
II'!- Now A~ zn so r C GLn(Z). If we reduce modulo p then we have a map 
r GLn(Z/pZ). Minkowski showed that for p 3 this is an embedding, 
so that !fi <livides I GLn(Z/pZ)I = (pn - l)(pn - p) ... (pn - pn- 1 ). Now, 
by varying p one gets an upper bound for the exponent off in II'!, namely, 
[ /\] + [ l(l~l)] + .... (This is correct only for f > 2; the case f = 2 requires 
a slightly different argument.) Moreover, this upper bound is exact. 

From now on G is a semisimple group, e.g. SLn, ... , Es. We want 
to understand the possible fini te groups r C G ( q. First, we discuss the 
case that r is abelian. Let T be a maximal torus of G of dimension r = 
rankG. So, T Gm x ... x Gm (r copies) where Gm is the one dimensional 
multiplicative group. So over C, T(C) C x • • • x C. Thus we can realize 
any abelian finite group on r generators as a subgroup of T(C). ln fact, 
almost ail finite abelian subgroups subgroups of G(C) arise in this way, but 
there are exceptions. For example, recail our embedding of the Klein group 
D2, which is an elementary abelian (2, 2)-group, in SO3(R) C PGL2(C) : it 
cannot be embedded in T(C) since PGL2(C) only has rank 1. 

Let us restrict our attention to elementary abelian (p, p, ... , p )-groups 
E. Then ail subgroups of G(C) isomorphic to E are 'toral', that is, are 
contained in some maximal torus, unless p is one of finitely many torsion 
primes. For each of these torsion primes, there is an 'exceptional' embedding 
of some E into G(C); R. Griess has classified such embeddings, cf. [G]. The 
torsion primes for simply connected, simple G are as follows: 

Es 
none 2 none 2 2 2,3 2,3 2,3 2,3,5 

These primes first arose in topology in the 1950s (cf, e.g. [Bo]). For a 
compact Lie group G, the cohomology ring H* ( G, Z) with coefficients in Z 
is not always a free Z-module. The primes p such that H* ( G, Z) has p-torsion 
are called the torsion primes. Moreover, these primes can be described in 
terms of the root data: if all the roots have the same length, they are the 
primes that <livide a coefficient of the highest root when written in terras of 
the simple roots. 

For another example of one of these exceptional embeddings, consider 
G = G2. We view G2(C) as the group of automorphisms of the Cayley 
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algebra. This algebra has a standard ha.sis {1, e0 1 a E Z/7Z} and the 
automorphisms determined by e0 r-+ ±e0 for a= 1, 2, 3 give an 'exceptional' 
elementary abelian (2, 2, 2)-group inside G2(C). This subgroup is important 
in studying the Galois cohomology of G2. 

These results on abelian subgroups can be extended somewhat to nilpo-
tent subgroups using a result of Borel-Serre ( cf. [BS]): every fini te nilpotent 
subgroup of G ( C) is contained in the normalizer of some maximal torus of 
G(C). 

Now we consider a second, quite different situation, namely, we let r 
be a quasi-simple group (i.e. the quotient by its center is simple and non-
abelian). If G = SLn then one can classify all possible embeddings r Y 
G(C) by viewing the natural G(C)-module as a representation of r and 
using character theory. A variation of this approach allows one to tackle the 
problem also for G = SOn, Sp2n and even G2 ( since this can be viewed as 
the subgroup of SO7 which leaves invariant an alternating 3-linear form). 
In other words, in these cases, the problem can be reduced to a question 
about the character table of r. This leaves the cases F4, E6, E1 and Es . A 
lot of work in the last few years, in particular by A. Cohen, R . Griess and 
A. Ryba, has resulted in a list of the possible r that can arise. This list is 
complete according to computer verifications. There are still open questions 
however. For instance, the number of conjugacy classes of such subgroups 
is not known in general. 

Sorne of the most interesting questions arise when r = PSL2(1Fp) - For 
instance, if G = Es, then G(C) has finite subgroups PSL2(1Fp) for p = 
31, 41, 61 (cf.[GR], [S3]). The principal difficulty is in proving the existence 
of these subgroups. We now discuss briefly the sorts of method one can use 
for such a construction. 

The first method depends upon computer calculations. For instance, to 
embed PSL2(1F6i) in Es(C), start with a Borel subgroup B C PSL2(1F61 ) 

consisting of all upper triangular matrices and its opposite B- consisting of 
all lower triangular matrices. Then Bis isomorphic to a semidirect product 
of cyclic subgroups of order 61 and 30. Choose an element in Es(C) of order 
30, namely, a Coxeter element. There is a subgroup of Es(C) generated 
by an element of order 61 upon which this Coxeter element acts by an 
automorphism of order 30. We map B to the subgroup of Es(C) generated 
by these two elements. Then one needs an involution within Es(C) which 
gives the embedding of the other Borel B-, and this is where the computer 
cornes in. In fact, the computer calculations are done by working within 
Es (IFt) for some large prime f not dividing the order of r. The results are 
then lifted ( easily) to Es ( C). 
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The second method ( cf.[S3]) is quite different, and depends on lifting 
from the same characteristic p = 61. There is a so-called principal homo-
morphism SL2 -+ Es with kernel {±1}. This is defined over IFp, giving an 
embedding of PSL2 (IF P) into Es (IF P ) . The idea is to lift this embedding to 
an embedding in characteristic O. However, there may be a non-trivial ob-
struction preventing a lift to an embedding PSL2(IFp) Y Es('ll/p2'll). So one 
has to proceed more indirectly, and we will discuss the argument in more 
detail in the remaining lectures. 

Finally, we return to our opening example. Recall we had subgroups 
A4 PSL2(lF3), S4 PGL2(lF3) and A5 PSL2(IF5) inside SO3(1R), corre-
sponding to the symmetries of the tetrahedron, cube and icosahedron. The 
analogues of these embeddings for Es are the embeddings of PSL2(lF3i), 
PGL2(lF3i) and PSL2(IF61 )! In fact, quite generally for any simple, simply-

connected G, let h be the Coxeter number defined as dii: - 1. Notice in 
ran 

the rank 1 case SO3 (JR), we have h = 2. In the case of Es we have h = 30. 
It is true in general that if h + l or 2h + 1 is prime then G ( C) has subgroups 
of the form PSL2(IFh+1 ), PGL2(lFh+1) and PSL2(IF2h+1 ). 

Lecture 2 

We continue to assume that G is a simple algebraic group over an al-
gebraically closed field k of characteristic zero. We recall our notation: 
r = rank G, h is the Coxeter number di~G - 1, and Wc is the Weyl group 
of G ( uniquely determined up to isomorphism). Also fix q = pe for some 
prime p. 

The group W a has a natural reflection representation V of dimension r. 
Let k[V] denote the coordinate ring of V, a polynomial ring in r generators. 
By general theory (cf.[B], Chap V, §5), the ring of invariants k[V]Wa is 
a graded polynomial ring in r generators, P1, ... , Pr say. Moreover, the 
degrees 2 = d1 d2 · · · dr = h of these generators A, ... , Pr are 
uniquely determined. The invariant degrees are listed in Table 1. 

Now let r be either SL2(q) or GL2(q). Let U be the unipotent sub-
group of r consisting of all upper triangular unipotent matrices, so U is an 
elementary abelian group of type (p, ... , p) ( e times). Suppose we have a 
map 

f: f-+ G, 

which is nondegenerate in the sense that ker f is contained in the center of 
r. We say that f is of toral type if f (U) is contained in a toms of G. 
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TABLE 1: INVARIANT DEGREES 

G degrees dimG h 
Ar 2,3, ... ,r + 1 (r+l?-1 r+l 
Br 2,4, . . . ,2r 2r2 +r 2r 
Cr 2,4, . . . ,2r 2r2 +r 2r 
Dr 2,4, ... ,2r - 2,r 2r2 -r 2r-2 
G2 2,6 14 6 
F4 2,6,8,12 52 12 
E6 2,5,6,8,9,12 78 12 
E1 2,6,8,10,12,14,18 133 18 
Es 2,8,12,14,18,20,24,30 248 30 

In the remaining lectures we will give a partial proof of the following: 

Main Theorem. Suppose q 5. There exists a nondegenerate map 

of toral type if and only if q - 1 divides 2d for some degree d. 

We begin with the easy implication, namely, that the existence of such 
a map f implies that q - l <livides some 2d. In fact one proves more: if 
there is a nondegenerate toral map from a Borel subgroup of r = SL2 ( q) to 
G then q - l <livides 2d. 

Let T be a maximal torus in G, N its normalizer. Then N /T = W a acts 
on T. Moreover, N controls the fusion of Tin G; this means: 

(F) . If A and A' are subsets of T, g E G with gAg- 1 = A' then there exists 
n E N such that nan-1 = gag-1 for all a E A. 

We will also need the following theorem of Springer (Sp2]: 

( Sp). Let m 1. The f ollowing are equivalent: 

(i) m divides one of the degrees ofWa; 
(ii) there exists w E W a and an eigenvalue À of w (for the natural repre-

sentation) whose order is m. 

We assume now that q is odd ( the even case being similar). Let B be the 
Borel subgroup of SL2 ( q) consisting of all upper triangular matrices. Let f 
be a nondegenerate homomorphism of B into G. Let A be the image of U; 
we can assume that A C T. Then A lFq and B acts upon A as squares, 
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that is, conjugating by { t~ 1 ) acts as multiplication by t2• In particular 
there exists an automorphism a of A induced by B of the form a .....+ Àa for 
À E of order g21 . 

Now, a has an eigenvalue in ÏFp of order ~' and by (F) above, the action 
of ais induced by an element w E Wa. Viewing A as a subset of T[p], which 
is the reduction modulo p of the standard representation of W a, we deduce 
that in characteristic zero there exists an eigenvalue of w which has order 
921p0 for some a. By (Sp), 921p0 <livides some degree d, as required. 

Note that the same arguments apply ( with minor modifications) to maps 
from r = GL2(q) to Gas well: in this case, one finds that q - 1 <livides one 
of the degrees. 

Now we turn to the converse. The case where G is classical can be 
handled directly using the knowledge of the character table of r = PSL2 (IFq). 
For instance, if G is of type A, one uses the irreducible representation of r of 
degree 921 

( assuming p f= 2; if p = 2, use a representation of degree q - 1). 
So let G be exceptional. One can easily work out which PSL2(q) need 

to be constructed, remembering our assumption q 5: 

• For G2, q-1 should divide 4 or 12. But there is a subgroup A2 of G2, 
and the case q - 1 <livides 6 has been treated already, working inside 
this A2. So one just needs to embed PSL2(13) into G2(k). 

• Again, for F4 , q - l should <livide 4, 12, 16 or 24, but most of the first 
two cases have already been dealt with since F4 contains a subgroup 
G2. So we need embeddings of PSL2(17) and PSL2(25). 

• For E6 the new cases are q = 11, 19. 
• For E1, they are q = 29, 37. 
• For Es, they are q = 31, 41, 49, 61. 

We will give a uniform proof of existence in all these cases provided q 
is prime. The missing cases ( essentially, q = 25 for F4 and 49 for Es) have 
been done by computer calculation, cf. [GR]. 

Sorne can be done right away with the next theorem, which for instance 
covers Es for q = 31. 

Theorem 1. ([S3]) Let k be an algebraically closed field of characteristic 
O. If p = h + 1 is prime, then there exists a nondegenerate toral map 
PGL2(IFp) G. 

Let us sketch the proof. We may assume that G is split, so that G(R) 
makes sense for any ring R. In particular we have G(7l/p7l), G(7l/p27l), 
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etc ... and 
~G(Z/prz) = G(Zp) 

where Zp denotes the ring of p-adic integers. Let us start from an embedding 
of PGL2(1Fp) into G(1Fp) in which the non-trivial elements of U are regular 
unipotent elements of G(1Fp)- The existence of such an embedding over 1Fp 
was proved by Testerman ( this requires p 2:: h w hich is true in our setting: 
p = h + 1) see [Te] and [S3]. 

This embedding of r into G(1Fp) lifts to G(Z/p2Z): 

1 -+ Lie G /Fp -+ G(Z/p2Z) -+ G(Z/pZ) -+ 1 
t 
r 

Indeed, the obstruction to such a lift is O because of: 

Theorem 2. Hi (r, Lie G /Fp) = 0 for i 2:: 1. 

The proof of Theorem 2 uses the embedding 

where Cp U is a Sylow p-subgroup of r. Now, 

dim H 0 ( Cp, Lie G /Fp) = dim (Lie algebra of the centralizer of Cp) 

and, since the non-trivial elements of Cp are regular, this dimension is r, cf. 
[St]. U sing the fact that dim G = pr, one sees that every Jordan black of the 
action of Cp on Lie G /Fp has size p, and Hi( Cp, Lie G /Fp) = 0 as required. 

Hence, the lifting to Z / p2Z is possible. The same argument applies to 
Z/p3Z, etc. One ends up with an embedding of PGL2(1Fp) in G(Zp), hence 
in G((Qp). Since is of characteristic 0, an easy argument then gives an 
embedding in G ( C) ( or even in G ( K) w here K is a number field), as was to 
be shown. 

Remark. In Theorem 1, the hypothesis that k has characteristic O can be 
suppressed (cf.[S3]), except in one case: G of type A1, and k of character-
istic equal to 2. (Indeed, there is no embedding of S4 into PGL2 (k) when 
char(k) = 2.) 
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Lecture 3 

Let us give a sketch of an existence proof in the remaining cases of the 
Main Theorem with q prime, postponing some of the technical details until 
Lecture 4. 

As before let G be quasi-simple and split over Z. Let h be its Cox-
eter number. Suppose we have a non-trivial morphism ef> : SL2 G such 
that: 

(1) ef> is defined over the local ring of Z at p, i.e. over Z(p)i 
(2) writing Lie G = EB L(ni) where L(ni) is the irreducible representation 

of SL2 with highest weight ni, we require that all ni are < p, exactly 
one ni equals 2, and exactly one ni equals p - 3; 

(3) p > h. 

We will prove: 

Theorem 3. If cf> : SL2 G is a morphism satisfying the above conditions, 
then there exists a non-degenerate morphism SL2(1Fp) G(C). 

As a special case take cf> to be the principal embedding, as discussed by 
Kostant and others [K]. Here property ( 1) has been verified by Testerman 
[Te]. Denoting the invariant degrees d1, ... , dr, the ni in this case are 

{ 2di - 2 1 i = 1, ... , r}. 

In particular the largest ni is 2h - 2 = p - 3 and the conditions (2) and (3) 
are satisfied. We then obtain as a consequence of Theorem 3 a proof of a 
well known conjecture of Kostant (in the special case where 2h+ 1 is prime). 

As another special case consider G = SLn, with degrees are 2, 3, ... , n. 
The nï's are {2di -2 1 i = 1, ... , r }. So taking n = P21

, the conditions of the 
theorem are satisfied, and we recover the well known fact ( due to Frobenius) 
that SL2(1Fp) has an irreducible character of degree P21 . The existence of 
an irreducible character of degree P!1 can be proved similarly. 

Other examples corne from Dynkin's classification of A1 type subgroups 
of simple algebraic groups in characteristic O (see [Dy]) . Dynkin's work 
shows that such embeddings are determined uniquely up to conjugacy in 
the following way. Let cf> : SL2 Y G be an embedding and { a1, . . . , ar} a 
base of the root system of G. We may assume that ef> maps the maximal torus 
Gm of SL2 into the maximal torus T of G. For a root a, the inner product 
(ef>, a) is defined as the integer corresponding to the composite fonction 

Gm ~T~Gm. 
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We may also assume that </J belongs to the Weyl chamber, i.e. that all 
(<P, ai) are O. Then the embedding <P is determined up to conjugacy by 
the weights ( </J, ai) for i · = 1, ... , r. Writing these on the corresponding nodes 
of the Dynkin diagram of G, we obtain a labelled diagram determining the 
embedding </J. Dynkin worked out precisely which labelled diagrams can 
arise. We mention two examples with G = Es when the labelled diagrams 
are: 

2 2 0 2 0 2 2 

2 

2 0 2- 0 2 0 2 

0 

One shows that Theorem 3, applied to such diagrams, gives embeddings 
with p = 41 and p = 31. Similarly, one gets p = 29 and p = 37 for E7. (All 
these cases have also been clone by computer, except p = 29.) 

We now begin the proof of the theorem. Let Qp be the field of p-adic 
numbers. It is not possible to work over Q,, as, for example, the values of the 
character of SL2(p) of degree P21 involve -1+2vTri. So we need to work over 
the ramified extension Kp,u := Q,, ( .Ji.nt) where u is a unit in Zp ( there are 
only two cases according as u is square modp or not). Set Rp,u := Zp[ffe], 
the corresponding ring of integers, with residue field lFp as before. We will 
prove: 

Theorem 4. One may choose u so that the subgroup </J(SL2(lFp)) C G(lFp) 
can be lifted to a subgroup of G(Rp,u), 

Viewing G(Rp,u) as a subgroup of G(C) this implies Theorem 3. 
To prove Theorem 4, we first abbreviate R = R,i,u, 1r = -Jpü, A = 

</J(SL2(lFp) ). As G is smooth, we have surjective maps G(R) -+ G(R/1rn R) 
with kernels denoted Gn. Then G = Go :) G1 :) ... and G = \!!!!G/Gn. 
We note the following basic properties ( cf. [DG]): 

G/G1 = G(lFp) 
G/G2 = G(R/1r2 R) = G(R/pR) Liep G G(lFp) 

(Gi, Gj) c Gi+j 
Gïf Gi+l Liep G 
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By assumption, A is embedded in G / G 1 , and we would like to lift this to 
G / G2. The split exact sequence 

gives an obvious lift a : A G / G2. However, this a does not lift to G / G 3, so 
we need to modify it. For any o: E H 1(A, Liep G) represented by a 1-cocycle 
a, we can define a new lift aa(s) by setting aa(s) = a(s)a(s). Two liftings 
are conjugate by an element in the kernel if and only if the corresponding 
cocycles are cohomologous. So studying H 1 (A, Liep G) is crucial. We will 
show that there is a choice of o: which allow us to continue lifting to every 
G/Gn. _ 

Hypothesis (2) is known to imply that Liep G = EB L( ni)p with ni < p. 
When n < p one can show that dimH1(A, L(n)) is 1 if n = p - 3 and zero 
otherwise. When n < p-1 one can show that dimH2(A,L(n)) is 1 if n = 2 
and zero otherwise. Hence 

dimH1 (A, Liep G) = 1 and dimH2 (A, Liep G) = 1. 

We wish to use the sequence Liep G G / G3 G / G2 to lift A -4 G / G2 to 
a map G/G3. The corresponding obstruction is denoted by obs(a) E 
H 2 ( A, Liep G). With a equal to the lift of the original embedding A Y G / G 1 
we have obs(a) =/= O. Now if we take o: E H 1(A, Liep G) and calculate a 0 one 
finds (cf. Lecture 4) that obs(a0 ) = obs(a) + ½[o:, o:J where [ , ] is the cup 
product in cohomology induced by 

[ , ] : Liep G x Liep G Liep G. 

So we try to choose o: such that obs(a) + ½[o:, o:] = O. If there is no o: 
satisfying this equation, then we change our choice of u ( in fact in all the 
cases I know, the choice of u = -1 works). 

So now we may assume that A -4 G /G2 is liftable to G /G3. Call 
this lift T. The lift to G / G 4 may again have a non-trivial obstruction in 
H 2 ( A, Liep G). Again one can modify T by a 1-cocycle b : A Liep G, 
and one proves that obs(Tb) = obs(T) + [o:, /3], where /3 is the class of b in 
H 1 (A,LiepG). Since o: =/= 0 one can choose /3 such that [o:,/3] = -obs(T), 
hence obs( Tb) = 0 and Tb can be lifted to G /G4. 

The process continues in this manner: we obtain inductively a lift of 
a map A G / Gn to G / Gn+l and then modify this lift to get a map 
to G /Gn+2· Putting it all together completes our sketch of the proof of 
Theorem 4. 
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Lecture 4 

In this lecture, we go back to discuss some of the technical points arising in 
the proof of Theorem 4. We will consider a general setup which includes the 
situation considered in Lecture 3. 

Consider a sequence of surjective group homomorphisms E3 E2 E1 
with M1 = ker E3 E2, M2 = ker E3 E1 and M3 = ker E2 E1. One 
has a short exact sequence: 

Assumption A. Assume that M1, Af3 are abelian, and M1 is in the center of 
M2. (This gives natural actions of E2 on M2 and of E1 on M1 and M3.) 

Now let A be a group and cp : A E 2 . Cali obs(cp) E H 2 (A, M1 ) the 
obstruction to lifting </J to E3 . Let x be a 1-cocycle M3 , and <Px be 
the map s H- x(s)cp(s) of A into E 2 • Write ;f. for the class of x in H 1(A, M3). 

We want to compare obs(cp) and obs(</Jx); note that A acts the same way on 
M1 by cp or by <Px since E 1 acts on M1. We have the following key formula: 

Proposition 1. obs(</Jx) = obs(cp) + ~(;f.) 

where : H 1 (A, M3 ) H 2 (A, M1) is the (non-abelian) coboundary map 
associated with the exact sequence of A-groups: 

( cf. [S4] Ch I, §5. 7). This formula will be verified by a direct computation 
given at the end of the lecture. 

Next, we want to compute~: H 1(A,M3) H 2 (A,M1). We make the 
following assumption: 
Assumption B. The map m H- m 2 of M1 onto itself is bijective (in additive 
notation M1 is a Z[½]-module). 

This allows us to define an addition in M2 by x + y = x.y.(x, y)-112 

(note that (x, y) is the usual commutator and belongs to M1) and a Lie 
bracket [x, y] = (x, y). This makes M2 into a Lie algebra. (I am using here 
an elementary case of the inversion of the Hausdorff formula, cf. [B], Chap 
II, §6.) 

Cali M~b the corresponding abelian group. We have an exact sequence 
of A-modules: 
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hence by (abelian) cohomology an additive map 

On the other hand the bracket defines a bilinear map 

hence a ( cup product) map 

which we denote by o., /3 M [a..{3]. It is symmetric. We can now state the 
formula giving ~: 

Proposition 2. ~(o.) = 8(0.) + ½[o..o.] for every a. E H 1(A, M3). 

This is verified again by a direct computation which we will give at the 
end of the lecture. Note that 8(0.) is linear in o. and [o..o.] is quadratic; hence 

is a polynomial fonction of degree 2. We conclude with the computations 
mentioned above. 

Computations for Proposition 1. Ifs E A, one has cp(s) E E2; choose z5 E E3, 
with z5 M cp(s). This defines a 2-cocycle o(s, t) by the usual formula 

Z5 Zt = o(s, t)zst , o(s, t) E M1. 

The class of o(s, t) in H 2(A, M1) is obs(cp). 
Similarly, choose b5 E M2 with b5 M x(s) in M1. By [S4], loc. cit., ~(~) 

is the class in H 2 (A, M1) of the 2-cocycle 6.(s, t) defined by 

~(s, t) = b5 •
5 bt.b--;/ 

(where 5 bt means the transform of bt by cp(s), i.e. z5 btz;1 .) Since cf>x(s) = 
x(s)cp(s) we may choose b5 z5 as a lifting of cf>x(s) in E3. This gives a cocycle 
Ox(s, t) by: 

b5 z5 .btZt = Ox(s, t).bstZst 

and the class of ox(s, t) is obs(cf>x)-
We calculate b5 z5 btzt: 

b5 .z5 btz:;1 .z5 Zt = b5 .Z5 btz:;1 .o(s, t)Zst 
= b5 •

5 bt,o(s, t).Zst 
6.(s, t)bstO(s, t)zst· 
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Hence ox(s, t)bst = ~(s, t)bsto(s, t). Since bst commutes with o(s, t), this 
gives ox(s, t) = ~(s, t).o(s, t), as desired. 

Computations for Proposition 2. Choose a 1-cocycle (as) of A in M3 rep-
resenting the class a, and lift as to bs E M2. The cocycle ~(s, t) defined 
by 

represents (a), cf. ab ove. 
On the other hand, the coboundary ô (a) may be represented by the 

2-cocycle ô(s, t) given by 

where x * y is the product of x, y with respect to the composition law 
x.y.(x, y)-112 . By collecting terms, this gives 

ô(s, t) = ~(s, t),(s, t), 

where7(s,t) = (bs,sbt)- 112 (bs8bt,b;/)- 112 • In additive notation, thismeans: 

7(s, t) = -½[as, sat] +½[as+ sat, ast]-

But as + sat = ast, since a is a 1-cocycle. Hence the last term is O. As for 
s, t 1-r [as, 8 at], it is the cup-product (with respect to [ , ]) of the cocycle a 
with itself. Hence "Y = -½[a.a] and since ~(a) = ô(a) - 1_(a), where 1_(a) 
is the class of 7( s, t), this gives the required formula. 



Part II 

The notion of complete reducibility 
in group theory 
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Lecture 1 

Let r be a group. We will discuss linear representations of r over some fixed 
field k of characteristic p 2: O. By this we mean a group homomorphism 
r GL(V) for some finite dimensional vector space V over k. We will 
usually refer to V instead as a r-module, though of course technically we 
should say k[r]-module where k[r] denotes the group algebra of r over k. 
Recall that V is irreducible or simple if: 

(1) V/0; 
(2) no subspace of Vis r-stable apart from O and V . 

One says that V is completely reducible or semisimple if V is a direct sum 
of irreducible submodules; equivalently, V is semisimple if V is generated 
by irreducible submodules. 

The category of semisimple r-modules is stable under the usual oper-
ations of linear algebra. In other words one can take r-stable subspaces, 
quotients, direct sums and duals ail within this category. Indeed, all of these 
statements (apart from dual spaces) are true for modules over an arbitrary 
ring. But when we consider groups, we can also consider the operations of 
multilinear algebra. For instance, given two r-modules Vi, ½ we can impose 
a r-module structure upon Vi ® ½ using the diagonal map r r X r. From 
this we can construct exterior powers, symmetric powers, etc .... 

Around 1950, Chevalley proved the following simple looking result: 

Theorem 1. (cf. [C]) Suppose that k has characteristic O. If Vi, ½ are 
semisimple r-modules, then Vi ® ½ is again semisimple. 

An interesting feature of this result is that, although it is stated in el-
ementary terms, the only known proofs involve some algebraic geometry. 
We sketch the idea. One starts with a series of reductions, reducing to the 
case that k is algebraically closed and ris a subgroup of GL(Vi) x GL(½). 
Then one replaces r by its Zariski closure in GL(Vi) x GL(½) . So now 
r is an algebraic group. The connected component r 0 of r containing the 
identity is a normal subgroup of r of fini te index ( this is one bonus of using 
the Zariski topology). In other words, r /r0 is a fini te group and since the 
characteristic is 0, one easily then reduces to the case that r = r 0

• So now, 
r is connected. Let Ru r be the unipotent radical of r, i.e. its largest normal 
unipotent subgroup. In any semisimple representation, Rur acts trivially, 
and the converse is known to be true in characteristic zero. Since Vi and ½ 
are semisimple and the representation of r on Vi EB ½ is faithful, we deduce 
that Rur is trivial, and we are done. 
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Now we ask what happens for p > O. Chevalley's result does not remain 
true in general. For instance, consider r = SL2 (k) = SL(V) with dim V = 2. 
Let Symn(V) be n th symmetric power of V. If n < p then Symn(V) is an 
irreducible representation of r. But if n = p, the subspace v[1] c SymP(V) 
generated by xP and yP, where { x, y} is any ha.sis of V, is stable under the 
action of r. This gives a short exact sequence 

where L = det V is one-dimensional. This sequence does not split (unless 
p = lkl = 2). So SymP(V) is not semisimple in general. Hence, V® ... ® V 
(p times) is not semisimple either. 

N ow a general principle is that if a statement is true in characteristic 
zero then it is also true for "large" p. In keeping with this, we have the 
following: 

Theorem 2. ([S1]) Let Vi, ... , Vn be semisimple r-modules. Then 

n 

Vi ® ... ® Vn is semisimple if p > L(dim ¼ -1). 
i=l 

The proof again uses a reduction to algebraic group theory. As above we 
may assume that k is algebraically closed, the representation r GL(V) is 
faithful and ris a closed subgroup of GL(V) in the Zariski topology, where 
V = Vi EB ... EB Vn. But we can no longer reduce to the case that r is 
connected. Indeed, if r is finite of order divisible by p, this assumption will 
be no help at all. So we need to do more. We need r to be saturated. 

To define this notion (cf. [N],[S1]), suppose that x E GLn(k) has order p. 
Write x = l + ê for some matrix ê and note that êP = O. For any t E k define 
xt := 1 +té+ (~)ê2 + ... + (P~ 1)t:p-l. Since êP = 0 we have constructed a 
one parameter subgroup {xt I t E k} of GLn(k). By definition, a subgroup 
r C GLn(k) is said to be saturated if it is Zariski closed and x E r with 
xP = 1 implies that xt Er for all t E k. One can define the saturated closure 
of a subgroup r denoted by r5at. It is the smallest saturated subgroup of 
G Ln ( k) containing r. 

Here are some examples: 

• If p > 2 every classical group in its natural representation is saturated. 
• If p > 3 the group G2(k), embedded in GL1(k), is saturated. 
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• If p = 2 the group PGL2{k); embedded in GL3{k) by its adjoint rep-
resentation, is not saturated. 

• If p = 11 the Janko group J1, embedded in GL1{k), has for saturated 
closure the group G2 ( k). 

It can be checked that our problem is stable under replacing r by rsat . 
So, we may assume that r is saturated. This implies that r /r0 is finite 
of order prime top, so we can reduce as before to the case where r is a 
connected reductive algebraic group. Then we resort to the general theory of 
representations of algebraic groups to complete the proof, which is somewhat 
technical. ( cf. [S1]) 

One can also ask about various converse theorems ( cf. [S2]). For in-
stance: 

{1) Does Vi ® Vi semisimple imply V2 semisimple? 
(2) Does /\ 2 V semisimple imply V semisimple? 
(3) Does Sym2 V semisimple imply V semisimple? 

For question (1) the answer in characteristic zero is yes unless dim Vi = O. 
In characteristic p > 0, the answer is yes unless dim Vi = 0 in k, i.e. unless 
dim Vi = 0 {mod p). 

For question {2) the answer in characteristic zero is yes unless dim V= 2. 
In characteristic p > 0 the answer is yes unless dim V = 2 ( mod p). 

For question (3) the answer is yes in characteristic zero, while in char-
acteristic p > 0 the answer is yes unless dim V = - 2 ( mod p). 

Remarks. These questions make sense more generally in the setting of a 
"tensor category", cf. [D]. Such a category has tensor products and duals, 
as well as a distinguished abject 1- There is the notion of dimension of an 
abject: consider the composition of the natural maps 

V@V* 1-

This determines an element of k = End{l), w hich is called the dimension 
of V. In particular it is possible for the dimension to be -2 in k. In this 
formalism, there is a way of transforming symmetric powers into exterior 
powers, by changing categories. Deligne noticed that if one proves in this 
setting one of the two statements: 

/\ 
2 V semisimple =} V semisimple if dim V -::/ 2 in k 

Sym2 V semisimple =} V semisimple if dim V-::/ -2 in k 
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then the other is true as well (cf. [S2],§6.2)~ (Here k is assumed to be of 
characteristic not equal to 2.) 

W. Feit has provided varions counterexamples showing that the results 
are essentially the 'best possible' for questions (1) and (2), (cf. [S2), ap-
pendix). The situation is different for question (3). For instance, with p = 7 
there is no known example in which Sym2 V is semisimple but V is not. 

We turn now to giving a generalization of the notion of complete re-
ducibility ( cf. [T2]). Let k be algebraically closed, G be a connected, re-
ductive algebraic k-group and r C G(k). I shall say that r is G-completely 
reducible ( G-cr for short) if for every parabolic subgroup P of G ( k) contain-
ing r there exists a Levi subgroup of P, also .containing r. 

The de:finition of G-cr may be reformulated within the context of Tits 
buildings ( cf. [Tl]). The Tits building of G is the simplicial complex X, with 
simplices corresponding to the parabolic subgroups of G ( k) and inclusions 
being reversed. The group G(k) acts simplicially on X. Soif r C G(k), we 
can consider the complex xr of all r-:fixed points. One can prove that there 
are precisely two possibilities: 

( 1) X r is contractible (homotopy type of a point); 
(2) xr has the homotopy type of a bouquet of spheres. 

One can show that (2) occurs precisely when ris G-cr. 
The property of r being G-cr relates nicely to the usual property of a 

r-module being semisimple. If we take G to be GL(V) for some vector 
space V, it is clear that ris G-cr if and only if Vis a semisimple r-module. 
More generally, if p i= 2 and G is any symplectic group, orthogonal group, 
or G2 then r is G-cr if and only if the natural representation of G ( k) is a 
semisimple r-module. We would like in a general setting, given r C G(k) 
and a linear representation V of G ( k), to relate the property "r is G-cr" to 
the property that Vis a semisimple r-module (for p larger that some bound 
n(V)). This will be discussed in the later lectures. 

Finally, we give an application of these ideas. The Dynkin diagram of D 4 

has a symmetry of order 3 which gives rise to an automorphism T of Spins. 
Consequently, there are three irreducible modules for Spins of dimension 8, 
say Vi, Vi, and½. Suppose that ris a subgroup of Spins, Is it true that: 

Vi is r-semisimple Vi and½ are r-semisimple? 

The answer is yes if p > 2 ( and sometimes no if p = 2): this follows from 
the fact that ¼ is r-semisimple if and only if r is Spin8-cr. 
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Lecture 2 

Fix an algebraically closed field k and let G be a connected, reductive alge-
braic k-group. We are interested only in the case where p = char k > O. Re-
call that a subgroup r C G ( k) is called G-cr if for every parabolic subgroup 
P of G ( k) containing r, there exists a Levi subgroup of P also containing 
r. We wish to relate this to the usual notion of complete reducibility. 

Let T be a maximal torus of G, and B be à Borel subgroup containing 
T with U its unipotent radical. This determines a root system and a set 
of positive roots. Let X (T) = Hom(T, Gm) be the character group, and 
Y(T) = Hom(Gm,T) = Hom(X(T),Z) the cocharacter group. We have a 
natural pairing (., .) : X(T) x Y(T) Z and for each a in the root system 
we have the coroot av E Y(T). 

For each À E X (T) define 

na(À) = n(À) := L (À, av). 
a>O 

Note we can also write this as (À, c/J) where c/J = I:a>O av, the principal 
homomorphism of Gm into T. If Vis any finite dimensional G-module, let 
us put; 

na(V) = n(V) := supn(À) 

where the supremum is taken over all the weights À of T in V. 
As an example, consider G = GLm, with V the natural m-dimensional 

representation. Then n(V) = m -1 = dim V - l and n(/\ i V) = i ( dim V -i). 
In general, if Vi and·½ are any G-modules, n(Vi ® ½) = n(Vi) + n(½) . 

Note that if V is a nondegenerate linear representation of G, i.e. the 
connected kernel of the representation is a toms, then n(V) h - 1, where 
h is the Coxeter number of G. Indeed, let À be a highest weight of V. So 
n(V) = n(À) = (À, I:a>O av) (À+ p, 13v) - 1, where p is half the sum of 
positive roots and 13v is the highest coroot. Since À is nonzero and dominant 
we have (À, 13v) 1 and (p, {3v) = h - 1. 

Our goal is to prove the following result: 

Main Theorem. Let V be G-module with p > n(V). Let r be a subgroup 
of G(k). Then 

r is G-cr V is r -semisimple. 

Moreover, the converse is true if V is nondegenerate, i.e. the connected 
kernel of the representation is a torus. 
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Sorne of the results mentioned in Lecture 1 are immediate consequences. 
For example, let {Vi, ... , Vm} be a collection of semisimple r-modules and 
p > Li(dim ¼ - 1). Then the theorem, applied to e = I] GL(½) and 
V = ® ¼, tells us that Vi @ • • •@ Vm is also semisimple. Alternatively, 
suppose that V is a semisimple r-module with p > i(dim V - i). Then 
the theorem shows that /\ i V is r semisimple. (This was stated as an open 
question at the end of [S2]; and the special case where V is irreducible had 
been proved by McNinch.) 

The proof of the main theorem uses the notion of saturation with respect 
to the groupe. In order to define it, we need to introduce the "exponential" 
xt, for x unipotent in e and t E k. This is possible ( for p not too small) 
thanks to: 

Theorem 3. Assume p h (resp. p > h if e is not simply connected}. 
There exists a unique isomorphism of varieties log : eu 9nilp with the 
f ollowing properties: 

(i) log(au) = a logu for alla E Aute; 
(ii) the restriction of log to U(k) is an isomorphism of algebraic groups 

U(k) Lie U, whose tangent map is the identity; 
(iii) log(x0 (0)) = 0X0 , for every root a and every 0 E k. 

Here, 9nilp is the nilpotent variety of Lie e, x 0 : Ga U a denotes some 
fixed parameterization of the root group U0 of U, and Xa = fo(xa(B))lo=o 
is the corresponding basis element of Lie U0 • We are viewing Lie U as an 
algebraic group over k via the Campbell-Hausdorff formula: XY := X + 
Y+ ½[X, Y]+ i12 [X, [X, Y]]+ ... (cf. [B], Chap II, §6) which makes sense 
in characteristic p because of the assumption p h and the fact that the 
nilpotency class of Lie U is at most h. 

For the proof, uniqueness is obvious since the U a generate U and eu 
is the union of conjugates of U. (Moreover, one can show that (iii) is a 
consequence of (i) and (ii).) However, the existence part is less easy. One 
possible method is to define first log on U and then extend it to eu. This 
approach uses the fact that 9nilp is a normal variety (cf. [D], [BR]) whenp is 
good, that eu is a normal variety ( cf. [St]) and draws on work by Springer 
(cf. [Sp2]). 

Given the theorem, let exp : 9nilp eu denote the inverse to log. For 
x E eu ( k) and t E k we define xt as exp( t log x). Note that the exponential 
map x, t xt may be viewed as a morphism F : eu x A 1 eu. Moreover 
this map is the "reduction modp" of the corresponding well-known map in 
characteristic zero, and this gives a convenient way to compute it. 
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Lecture 3 

Continue with the notation of the previous lecture. Recall that we have 
just defined the map x H- xt for any unipotent element x E G(k) and any 
t E k. We can now at last define the saturation process (assuming p h). 
A subgroup r of G ( k) is saturated if 

( 1) r is Zariski closed; 
(2) whenever x Er n Gu, we have xt Er for all t E k. 

We wish in the remainder of this lecture to describe some basic properties 
of saturated subgroups and G-cr subgroups. We will apply these properties 
in Lecture 4 to prove the Main Theorem. 

We begin by mentioning some elementary examples: every parabolic 
subgroup is saturated; the centralizer of any subgroup of G ( k) is saturated; 
Levi subgroups are saturated, since they may be realized as the centralizer 
of a toms. We also note that in the case of saturated subgroups lying in 
U, there are various alternative characterizations giving further 'unipotent' 
examples: 

Property 1. Let V be a closed subgroup of U ( k). The following are equiv-
alent: 

(i) V is saturated; 
(ii) V= exp(u) for tJ a Lie subalgebra ofLieU; 
(iii) log V is a vector subspace of Lie U. 

Another basic property is as follows: 

Property 2. Let H be a semisimple subgroup of G with H(k) saturated. If 
x is any unipotent element of H(k), then the element xt {defined relative to 
H) coincides with xt ( defined relative to G}. 

Even to state Property 2 correctly, we need first to know that the Coxeter 
number hH of H does not exceed the Coxeter number ha of G. In fact , a 
stronger result holds: 

Theorem 4. Let p be any prime, and H be a semisimple subgroup of a 
semisimple group G. Let di,H and dj,G be the invariant degrees of the Weyl 
groups of H and G respectively. Then, the polynomial IT (1 - Tdi ,H) divides 
Il(l - Tdi,G). 
(For the properties of the invariant degrees, see [B], Chap V, §5.) 
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As a corollary we see that each di,H <livides some dj,G· For, choosing T 
to be a primitive dj,Hth root of unity, the theorem implies that TI ( 1 -Tdi,G) 
vanishes, so (1 - Tdi,G) vanishes for some j. Since the Coxeter number hH 
is the largest degree di,H, and similarly for G, we deduce in particular that 
h H ha, as required for the statement of Property 2 to make sense. 

We sketch the proof of Property 2. Assume that H is a semisimple 
subgroup of G with H ( k) saturated. We may assume that there is a maximal 
unipotent subgroup UH of H with UH C U. Note that UH(k) is also a 
saturated subgroup of G. We need to show that loge ( x) = logH ( x) for any 
unipotent x E H ( k). Conjugating, it suffices to prove this for x E U H ( k). 
We have an isomorphism log : U ( k) Lie U. Viewing Lie U H as a subgroup 
of Lie U, we conclude that the restriction of loge gives a isomorphism U H 3:'. 
Lie U H which is compatible with conjugation and whose tangent map is the 
identity. By the uniqueness in the definition of logH we conclude that the 
restriction of loge is equal to logH, as required. 

Property 3. If H CG is saturated then the index (H: H 0
) is prime top. 

To prove Property 3, suppose p <livides (H : H 0 ) and take some element x 
of the fini te group H / H 0 of order p. One proves, from general principles, that 
there exists x E Hu(k) which maps onto x in the quotient. By saturation, 
{ xt I t E k} is a subgroup of H ( k), hence of H 0 ( k) since it is connected. So 
x E H 0 ( k), a contradiction. 

We turn to discussing some basic properties of G-cr subgroups, as defined 
in Lectures 1 and 2. Recall that given a completely reducible H-module for 
an algebraic group H, the unipotent radical of H acts trivially. The next 
property that we will need is similar, but stated intrinsically within the 
groups. 

Property 4. If r is G-cr and V is a normal unipotent subgroup of r then 
V = 1. In particular, if in addition r is Zariski closed, then r 0 is reductive. 

The proof of this depends on the construction of Borel and Tits ( cf. 
[BT]) which associates to the subgroup V a parabolic subgroup P of G with 
V C Ru(P). Now r normalizes V, and since P is defined in a canonical 
fashion, r normalizes P. Therefore r c P. N ow we use the fact that r is 
G-cr to deduce that r n Ru(P) = 1, whence V = 1. 

Property 5. Let I'o C r be a normal subgroup of r of index prime to p. 
Then, ro is G-cr => r is G-cr. 
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(Before sketching the proof of this, we mention an open problem: if 
I'o C r is normal, is it true that r is G-cr Po is G-cr?) 

Now for the proof, let P be a parabolic subgroup of G containing r , and 
let L be a Levi subgroup of P which contains I'o. Write P = Rv. P L. 
Let rL be the image of r under the projection P L. The kernel of this 
projection is r n Rv. P = 1 so we have an isomorphism r rL. Then ris 
obtained from r L by a 1-cocycle a : r Rv. P, with a equal to a coboundary 
on restriction to I'o. This implies that ais induced by a 1-cocycle a' on r /I'o 
with values in V = Rv. P n Z(I'o) = (Rv. Pf O• Now, V has a composition 
series made up of k-vector spaces, and since II' /I'ol is prime top, the cocycle 
induced by a' on each such composition factor is a coboundary. This implies 
that a', whence a, is a coboundary, ·so that we can conjugate r to a subgroup 
of L, as required. 

· Lecture 4 

Now we proceed to prove the Main Theorem. We begin with: 

Theorem 5. Suppose p h. Let V be a G-module with associated rep-
resentation pv : G GL(V). For every unipotent element u of G , let 
du (V) be the degree of the polynomial map t pv ( ut) E End(V). Then 
dv. (V) n(V), and there is equality if u is regular. 

The proof is in several steps. 
(1) The case G = S12. In this case we may assume u = ( ô} ), ut= ( ô I ), 

and we have to prove dv.(V) = n(V). 
(1.1) One has dv.(V) n(V). Write pv(ut) as 1+ ~i>l aiti, ai E End{V). 

If sÀ = ( À~1) with À E k*, we have sÀuts-; 1 = uÀ2 t, h;nce 

V( ) '°' ti ( -1) '°' ,2iti p s À • ai .pv s À = ai A , 

which implies pv(sÀ)aipv(sÀ)-1 = ..\2iai for every i. Hence ai has weight 
2i in End(V) = V ® V*. By definition of the invariant n this shows that 
ai # 0 2i n(V ® V*) = n(V) + n(V*) = 2n(V), i.e. i n(V) . Hence 
dv.(V) n(V). 

(1.2) One has dv.(V) n(V). If V has Jordan-Holder quotients V0 , it 
is clear that n(V) = supn(V0 ), dv.(V) supdv.(V0 ). Hence we may assume 
that V is simple. In that case, the equality n(V) = dv.(V) is obvious from 
the explicit description of V à la Steinberg. 

(2) The case G arbitrary, u regular. Choose a principal homomorphism 
SL2 G, ( cf. [Te] - see also [S3]). It is known that a nontrivial unipotent 
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of SL2 gives a regular unipotent of e. On the other hand, one has na(V) = 
nsL2 (V), almost by definition. Hence the result follows from ( 1). 

(3) General case. For u unipotent of e, write pv(ut) as above: 

The ai are regular functions of u ( viewed as a point of the unipotent variety 
eu). If i < n(V) then ai(u) is O when u is regular, by (2). Since the regular 
unipotents are dense in eu, this implies ai ( u) = 0 for every u. 

Corollary 1. If H is a reductive and saturated subgroup of e, one has 
nH(V) :S na(V). 

Choose a regular unipotent element u EH. One gets nH(V) = du(V) ::; 
na(V) by Theorem 5, applied to both H and e. 
Corollary 2. The following are equivalent: 

(i) p > n(V); 
(ii) pv(ut) = pv(u)t for every unipotent u of e, and every t E k. 

Indeed (ii) holds if and only if the degree of t r-+ pv(ut) is < p, i.e. if 
and only if du (V) < p. Since n(V) = supu du (V), this shows the equivalence 
of (i) and (ii). (The same proof shows that (i) and (ii) are equivalent to: 

(ii') pv(ut) = pv(u)t for every regular u, and every t E k.) 

Theorem 6. Let e be reductive connected, and let V be a e-module. As-
sume p > n(V). Let r be a subgroup of G(k), which is e-cr. Then V is 
r -semisimple. 

The proof is in several steps. 
(1) We may assume that pv : e GL(V) has trivial kernel. 
(2) We have p h. This follows from p > n(V) h - 1 (cf. Lecture 2). 
(3) The e-module V is semisimple. Write e as T.S1 ... Sm, where T 

is the maximal central toms, and S1 ... Sm is the decomposition of ( e, e) 
into quasi-simple factors. To prove (3), it is enough to show that V is Si-
semisimple for every i (this is an easy lemma, cf. [J2] and comments below); 
since n 5 i (V) :S na(V) we are reduced to the case where e is quasi-simple. 
With the usual notation we have, for every weight À of V, À =/= 0, 

(À+ p,f3v) :S 1 + L(À,av) :S p, 
a>O 
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where the inequality on the left is in [Sl], p.519. This shows that the simple 
modules L(.Xi) in a Jordan-Holder series of V are of two types: Ài = 0, 
or (Ài + p,/3v) p. But it is known (cf. [JI]) that this implies . 
Exth(L(Ài), L(.Xi)) = 0 for every pair Ài, Àj (e.g. because these L(.Xi) are 
Weyl modules). Hence Vis semisimple. 

We pause to discuss a variant of this proof. If À is a dominant weight with 
~a>o(À, av) < p, then L(.X) = V(.X), where V(.X) is the Weyl module. The 
proof is by reduction to G quasi-simple, and one distinguishes between two 
cases: À = 0, where it is obvions, and À # 0, where we have (À + p, 13v) 
p. Moreover, if À, µ have the property L(.X) = V(.X), L(µ) = V(µ) then 
Exth(L(.X), L(µ)) = O. See [J2] for more details. 

( 4) The rsat -module V is semisimple. (Note that we can define rsat since 
· p h by (2).) Let H be the connected component of rsat. Since rsat is G-cr 

(because r is), H is a reductive group. By Corollary 1 to Theorem 5, we 
have nH(V) na(V) hence nH(V) < p and part (3) above (applied to H) 
shows that V is H-semisimple. Since (rsat : H) is prime to p, this implies 
that V is rsat_semisimple (cf. [Sl], p.523). 

(5) If a subspace W of V is r-stable, it is rsat_stable. Let Hw be the 
stabilizer of W in G. If u E Hw is unipotent, one has pv(ut) = pv(u)t by 
Corollary 2 to Theorem 5 above. Since pv ( u) W = W the same is true for 
pv(u)t for every t. This shows that Hw is saturated. Since it contains r, it 
also contains rsat. 

(6) End of proof. By (5), the subspaces of V which are r-stable are the 
same as those which are rsat_stable. Sincè, by (4), V is rsat_semisimple, it 
is r-semisimple. 

Note that this is the "Main Theorem" announced at the beginning of 
these lectures. It implies for instance. the following (where k is arbitrary of 
characteristic p): 

If Va are semisimple r modules, and ia 0 integers with 

L ia(dim Va - ia) < p, 

then ®a /\i0 Va is semisimple. 
(Sketch of proof. Apply Theorem 6 to ITa GL(Va) and V= ®a /\i0 Va, 

and deduce the statement when k is algebraically closed. Next show that 
one can assume io: (dim V0 )/2, and dim Vo: < p for ail a; deduce that Va 
is absolutely semisimple (i.e. remains semisimple after extension of scalars 
from k to k); hence ® a /\ io Va is absolutely semisimple.) 

Theorem 7 {Eugene). (cf. [J2], [Mc], [LS]) Let H C G be connected re-
ductive, and p ha. Then H is G-cr. 
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The proof starts by reducing to the case ·G is quasi-simple. Then there 
are separate proofs for type An (Jantzen), Bn, Cn, Dn (Jantzen-McNinch), 
and exceptional type (Liebeck-Seitz). There is a little extra work involved 
in the Bn, Cn, Dn cases when H is of type A1. (Note that in special cases 
p 2:: ha can be improved.) 

Theorem 8. Let r C G. Assume p > ha. The following are equiva-
lent: 

(i) r is G-cr; 
(ii) the connected component of rsat is reductive. 

The direction (i) => ( ii) is clear sin ce r is G-cr => rsat is G-cr, and hence 
(rsat )0 is reductive. 

For (ii)=>(i) apply Theorem 7 to H = (rsat)0 • One sees that His G-cr, 
hence also rsat, hence also r. 

Theorem 9. Let V be a nondegenerate G-module. Assume n(V) < p. If 
r C G, the f ollowing are equivalent: 

(i) r is G-cr; 
( ii) V is r -semisimple. 

The direction (i)=>(ii) is Theorem 6. Conversely, if Vis r-semisimple, it 
is also rsat_semisimple (cf. argument ofTheorem 6), hence (rsat)0-semisimple 
and by Theorem 8 this shows that r is G-cr. 

Note: The implication (ii)=>(i) proved above under the condition p > 
n(V) is far from best possible. Example: take G = GL(W), and V= /\2 W, 
which is nondegenerate if dim W =/ 2. One has n(V) = 2(dim W - 2) and 
one sees that: 

/\ 2W is r-semisimple => W is r-semisimple 

if p > 2(dim W -2). However, an elementary argument [S2], shows that this 
remains true as long as p does not <livide dim W - 2. 

Example of Theorem 8: If one takes for V the adjoint representation 
Lie G, which is nondegenerate, one has n(Lie G) = 2h - 2 and Theorem 8 
gives: 

r is G-cr {=:> Lie G is r-semisimple 

provided p > 2h - 2. (In fact, for G = GLn, no condition on pis needed for 
~, cf. [S2], Theorem 3.3.) 
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