We construct a new cohomology theory for proper smooth (formal) schemes over the ring of integers of
The construction of the cohomology theory relies on Faltings’ almost purity theorem, along with a certain functor
@article{PMIHES_2018__128__219_0, author = {Bhatt, Bhargav and Morrow, Matthew and Scholze, Peter}, title = {Integral $p$-adic {Hodge} theory}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {219--397}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {128}, year = {2018}, doi = {10.1007/s10240-019-00102-z}, language = {en}, url = {https://archive.numdam.org/articles/10.1007/s10240-019-00102-z/} }
TY - JOUR AU - Bhatt, Bhargav AU - Morrow, Matthew AU - Scholze, Peter TI - Integral $p$-adic Hodge theory JO - Publications Mathématiques de l'IHÉS PY - 2018 SP - 219 EP - 397 VL - 128 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://archive.numdam.org/articles/10.1007/s10240-019-00102-z/ DO - 10.1007/s10240-019-00102-z LA - en ID - PMIHES_2018__128__219_0 ER -
%0 Journal Article %A Bhatt, Bhargav %A Morrow, Matthew %A Scholze, Peter %T Integral $p$-adic Hodge theory %J Publications Mathématiques de l'IHÉS %D 2018 %P 219-397 %V 128 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://archive.numdam.org/articles/10.1007/s10240-019-00102-z/ %R 10.1007/s10240-019-00102-z %G en %F PMIHES_2018__128__219_0
Bhatt, Bhargav; Morrow, Matthew; Scholze, Peter. Integral $p$-adic Hodge theory. Publications Mathématiques de l'IHÉS, Tome 128 (2018), pp. 219-397. doi : 10.1007/s10240-019-00102-z. https://archive.numdam.org/articles/10.1007/s10240-019-00102-z/
[1.] The Stacks Project, available at http://stacks.math.columbia.edu.
[2.] Topos co-évanescents et généralisations, 2015
[3.] Comparison isomorphisms for smooth formal schemes, J. Inst. Math. Jussieu, Volume 12 (2013), pp. 77-151 | DOI | MR | Zbl
[4.] Un lemme de descente, C. R. Acad. Sci., Sér. 1 Math., Volume 320 (1995), pp. 335-340 | MR | Zbl
[5.] Sur le “théorème de Lefschetz faible” en cohomologie cristalline, C. R. Acad. Sci. Paris, Sér. A-B, Volume 277 (1973), p. A955-A958 | Zbl
[6.] Notes on Crystalline Cohomology, Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1978 | Zbl
[7.]
[8.] B. Bhatt, M. Morrow and P. Scholze, Topological Hochschild homology and integral
[9.] Integral
[10.] B. Bhatt and P. Scholze, Prisms and prismatic cohomology, in preparation.
[11.] The pro-étale topology for schemes, Astérisque, Volume 369 (2015), pp. 99-201 | Zbl
[12.]
[13.] Enriques’ classification of surfaces in char.
[14.] The basic geometry of Witt vectors, I: The affine case, Algebra Number Theory, Volume 5 (2011), pp. 231-285 | DOI | MR | Zbl
[15.] Non-Archimedean Analysis, Springer, Berlin, 1984 (A systematic approach to rigid analytic geometry) | Zbl
[16.] Formal and rigid geometry. I. Rigid spaces, Math. Ann., Volume 295 (1993), pp. 291-317 | DOI | MR | Zbl
[17.] Groupes
[18.] Représentations
[19.] Conjecture de l’inertie modérée de Serre, Invent. Math., Volume 171 (2008), pp. 629-699 | DOI | MR | Zbl
[20.] Syntomic complexes and
[21.] B. Conrad and O. Gabber, Spreading out of rigid-analytic varieties, in preparation.
[22.] On the Witt vector Frobenius, Proc. Am. Math. Soc., Volume 142 (2014), pp. 2211-2226 | DOI | MR | Zbl
[23.] Smoothness, semi-stability and alterations, Publ. Math. IHÉS, Volume 83 (1996), pp. 51-93 | DOI | MR | Zbl
[24.] Relèvements modulo
[25.] T. Ekedahl, Answer on Mathoverflow, http://mathoverflow.net/questions/21023/liftability-of-enriques-surfaces-from-char-p-to-zero.
[26.] Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. Éc. Norm. Supér., Volume 6 (1973), pp. 553-603 | DOI | MR | Zbl
[27.]
[28.] Integral crystalline cohomology over very ramified valuation rings, J. Am. Math. Soc., Volume 12 (1999), pp. 117-144 | DOI | MR | Zbl
[29.] Almost étale extensions, Astérisque, Volume 279 (2002), pp. 185-270 (Cohomologies
[30.] Quelques résultats et conjectures concernant la courbe, Astérisque, Volume 369 (2015), pp. 325-374 | MR | Zbl
[31.] L. Fargues and J.-M. Fontaine, Courbes et fibrés vectoriels en théorie de Hodge
[32.] Sur certains types de représentations
[33.] Perfectoïdes, presque pureté et monodromie-poids (d’après Peter Scholze), Astérisque, Volume 352 (2013), pp. 509-534 (Exp. No. 1057, x. Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058) | Zbl
[34.]
[35.] J.-M. Fontaine and Y. Ouyang, Theory of
[36.] On space filling curves and Albanese varieties, Geom. Funct. Anal., Volume 11 (2001), pp. 1192-1200 | DOI | MR | Zbl
[37.] Almost Ring Theory, Springer, Berlin, 2003 (vi+307 pp.) | Zbl
[38.] O. Gabber and L. Ramero, Foundations of almost ring theory, http://math.univ-lille1.fr/~ramero/hodge.pdf.
[39.] The de Rham-Witt complex and
[40.] On the topological cyclic homology of the algebraic closure of a local field, An Alpine Anthology of Homotopy Theory, Am. Math. Soc., Providence, 2006, pp. 133-162 | DOI
[41.] A generalization of formal schemes and rigid analytic varieties, Math. Z., Volume 217 (1994), pp. 513-551 | DOI | MR | Zbl
[42.] Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Vieweg, Braunschweig, 1996 | DOI | Zbl
[43.] Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979), pp. 501-661 | DOI | Zbl
[44.] Les suites spectrales associées au complexe de de Rham-Witt, Publ. Math. IHÉS, Volume 57 (1983), pp. 73-212 | DOI | Zbl
[45.]
[46.] Nonarchimedean geometry of Witt vectors, Nagoya Math. J., Volume 209 (2013), pp. 111-165 | DOI | MR | Zbl
[47.] K. S. Kedlaya, Some ring-theoretic properties of A_inf, | arXiv
[48.] Relative
[49.] Crystalline representations and
[50.] Integral models for Shimura varieties of Abelian type, J. Am. Math. Soc., Volume 23 (2010), pp. 967-1012 | DOI | MR | Zbl
[51.] On Enriques surfaces in characteristic
[52.] De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 231-314 | DOI | MR | Zbl
[53.] Arithmetic moduli and lifting of Enriques surfaces, J. Reine Angew. Math., Volume 706 (2015), pp. 35-65 | MR | Zbl
[54.] Formal-algebraic and rigid-analytic geometry, Math. Ann., Volume 286 (1990), pp. 341-371 | DOI | MR | Zbl
[55.] Bertini theorems over finite fields, Ann. Math., Volume 160 (2004), pp. 1099-1127 | DOI | MR | Zbl
[56.] Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl
[57.] Functors of Artin rings, Trans. Am. Math. Soc., Volume 130 (1968), pp. 208-222 | DOI | MR | Zbl
[58.] Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci., Volume 116 (2012), pp. 245-313 | DOI | MR | Zbl
[59.]
[60.] Perfectoid spaces: a survey, Current Developments in Mathematics 2012, International Press, Somerville, 2013, pp. 193-227
[61.]
[62.] P. Scholze and J. Weinstein,
[63.] F. Tan and J. Tong, Crystalline comparison isomorphisms in p-adic hodge theory: the absolutely unramified case, available at | arXiv
[64.]
[65.] Descent for the
Cité par Sources :