Cet article est fondé sur les notes du mini-cours que nous avons donné le 5 janvier 2017 à l’Institut Henri Poincaré à l’occasion d’une journée organisée par la Société Française de Statistique et consacrée à la Statistique Mathématique. Il vise à donner un aperçu de la méthode de
This paper is based on the notes of the short course that we delivered on January 5, 2017 at Institut Henri Poincaré on the occasion of a session devoted to Mathematical Statistics and organized by the Société Française de Statistique. Its purpose is to give a brief account of the method of
Keywords: maximum likelihood, robust estimators,
@article{JSFS_2017__158_3_1_0, author = {Baraud, Yannick and Birg\'e, Lucien}, title = {Une alternative robuste au maximum de vraisemblance~: la $\rho $-estimation}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {1--26}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {158}, number = {3}, year = {2017}, zbl = {1380.62126}, language = {fr}, url = {https://archive.numdam.org/item/JSFS_2017__158_3_1_0/} }
TY - JOUR AU - Baraud, Yannick AU - Birgé, Lucien TI - Une alternative robuste au maximum de vraisemblance : la $\rho $-estimation JO - Journal de la société française de statistique PY - 2017 SP - 1 EP - 26 VL - 158 IS - 3 PB - Société française de statistique UR - https://archive.numdam.org/item/JSFS_2017__158_3_1_0/ LA - fr ID - JSFS_2017__158_3_1_0 ER -
%0 Journal Article %A Baraud, Yannick %A Birgé, Lucien %T Une alternative robuste au maximum de vraisemblance : la $\rho $-estimation %J Journal de la société française de statistique %D 2017 %P 1-26 %V 158 %N 3 %I Société française de statistique %U https://archive.numdam.org/item/JSFS_2017__158_3_1_0/ %G fr %F JSFS_2017__158_3_1_0
Baraud, Yannick; Birgé, Lucien. Une alternative robuste au maximum de vraisemblance : la $\rho $-estimation. Journal de la société française de statistique, Tome 158 (2017) no. 3, pp. 1-26. https://archive.numdam.org/item/JSFS_2017__158_3_1_0/
[Bahadur, 1958] Bahadur, R. (1958). Examples of inconsistency of maximum likelihood estimates. Sankhya Ser.A, 20 :207–210. | Zbl
[Baraud, 2011] Baraud, Y. (2011). Estimator selection with respect to Hellinger-type risks. Probab. Theory Related Fields, 151(1-2) :353–401.
[Baraud et Birgé, 2016a] Baraud, Y. et Birgé, L. (2016a). Rho-estimators for shape restricted density estimation. Stochastic Process. Appl., 126(12) :3888–3912.
[Baraud et Birgé, 2016b] Baraud, Y. et Birgé, L. (2016b). Rho-estimators revisited : General theory and applications. Technical report, http ://arxiv.org/abs/1605.05051.
[Baraud et al., 2017] Baraud, Y., Birgé, L., et Sart, M. (2017). A new method for estimation and model selection :$$-estimation. Invent. Math., 207(2) :425–517.
[Birgé, 1983] Birgé, L. (1983). Approximation dans les espaces métriques et théorie de l’estimation. Z. Wahrsch. Verw. Gebiete, 65(2) :181–237. | Zbl
[Birgé, 1989] Birgé, L. (1989). The Grenander estimator : a nonasymptotic approach. Ann. Statist., 17(4) :1532–1549. | Zbl
[Birgé, 2006] Birgé, L. (2006). Model selection via testing : an alternative to (penalized) maximum likelihood estimators. Ann. Inst. H. Poincaré Probab. Statist., 42(3) :273–325.
[Birgé et Massart, 1998] Birgé, L. et Massart, P. (1998). Minimum contrast estimators on sieves : exponential bounds and rates of convergence. Bernoulli, 4(3) :329–375. | Zbl
[Huber, 1981] Huber, P. J. (1981). Robust Statistics. John Wiley & Sons, Inc., New York. Wiley Series in Probability and Mathematical Statistics. | Zbl
[Le Cam, 1973] Le Cam, L. (1973). Convergence of estimates under dimensionality restrictions. Ann. Statist., 1 :38–53. | Zbl
[Le Cam, 1975] Le Cam, L. (1975). On local and global properties in the theory of asymptotic normality of experiments. In Stochastic processes and related topics (Proc. Summer Res. Inst. Statist. Inference for Stochastic Processes, Indiana Univ., Bloomington, Ind., 1974, Vol. 1 ; dedicated to Jerzy Neyman), pages 13–54. Academic Press, New York. | Zbl
[Le Cam, 1990] Le Cam, L. (1990). Maximum likelihood : An introduction. Inter. Statist. Review, 58(2) :153–171. | Zbl
[van der Vaart, 1998] van der Vaart, A. W. (1998). Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge. | Zbl