Determinantal probability measures
Publications Mathématiques de l'IHÉS, Tome 98 (2003), pp. 167-212.

Determinantal point processes have arisen in diverse settings in recent years and have been investigated intensively. We study basic combinatorial and probabilistic aspects in the discrete case. Our main results concern relationships with matroids, stochastic domination, negative association, completeness for infinite matroids, tail triviality, and a method for extension of results from orthogonal projections to positive contractions. We also present several new avenues for further investigation, involving Hilbert spaces, combinatorics, homology, and group representations, among other areas.

@article{PMIHES_2003__98__167_0,
     author = {Lyons, Russell},
     title = {Determinantal probability measures},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {167--212},
     publisher = {Springer},
     volume = {98},
     year = {2003},
     doi = {10.1007/s10240-003-0016-0},
     mrnumber = {2031202},
     zbl = {1055.60003},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-003-0016-0/}
}
TY  - JOUR
AU  - Lyons, Russell
TI  - Determinantal probability measures
JO  - Publications Mathématiques de l'IHÉS
PY  - 2003
SP  - 167
EP  - 212
VL  - 98
PB  - Springer
UR  - http://archive.numdam.org/articles/10.1007/s10240-003-0016-0/
DO  - 10.1007/s10240-003-0016-0
LA  - en
ID  - PMIHES_2003__98__167_0
ER  - 
%0 Journal Article
%A Lyons, Russell
%T Determinantal probability measures
%J Publications Mathématiques de l'IHÉS
%D 2003
%P 167-212
%V 98
%I Springer
%U http://archive.numdam.org/articles/10.1007/s10240-003-0016-0/
%R 10.1007/s10240-003-0016-0
%G en
%F PMIHES_2003__98__167_0
Lyons, Russell. Determinantal probability measures. Publications Mathématiques de l'IHÉS, Tome 98 (2003), pp. 167-212. doi : 10.1007/s10240-003-0016-0. http://archive.numdam.org/articles/10.1007/s10240-003-0016-0/

1. D. J. Aldous (1990), The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J. Discrete Math., 3, 450-465. | MR | Zbl

2. N. Alon and J. H. Spencer (2001), The Probabilistic Method. Second edition. New York: John Wiley & Sons Inc. | MR | Zbl

3. I. Benjamini, R. Lyons, Y. Peres, and O. Schramm (1999), Group-invariant percolation on graphs. Geom. Funct. Anal., 9, 29-66. | MR | Zbl

4. I. Benjamini, R. Lyons, Y. Peres, and O. Schramm (2001), Uniform spanning forests. Ann. Probab., 29, 1-65. | MR | Zbl

5. J. Van Den Berg, and H. Kesten (1985), Inequalities with applications to percolation and reliability. J. Appl. Probab., 22, 556-569. | MR | Zbl

6. A. Beurling and P. Malliavin (1967), On the closure of characters and the zeros of entire functions. Acta Math., 118, 79-93. | MR | Zbl

7. A. Borodin (2000), Characters of symmetric groups, and correlation functions of point processes. Funkts. Anal. Prilozh., 34, 12-28, 96. English translation: Funct. Anal. Appl., 34(1), 10-23. | MR | Zbl

8. A. Borodin, A. Okounkov, and G. Olshanski (2000), Asymptotics of Plancherel measures for symmetric groups. J. Am. Math. Soc., 13, 481-515 (electronic). | MR | Zbl

9. A. Borodin and G. Olshanski (2000), Distributions on partitions, point processes, and the hypergeometric kernel. Comment. Math. Phys., 211, 335-358. | MR | Zbl

10. A. Borodin and G. Olshanski (2001), z-measures on partitions, Robinson-Schensted-Knuth correspondence, and β=2 random matrix ensembles. In P. Bleher and A. Its, eds., Random Matrix Models and Their Applications, vol. 40 of Math. Sci. Res. Inst. Publ., pp. 71-94. Cambridge: Cambridge Univ. Press. | Zbl

11. A. Borodin and G. Olshanski (2002), Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Preprint. | MR | Zbl

12. J. Bourgain and L. Tzafriri (1987), Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis. Isr. J. Math., 57, 137-224. | Zbl

13. A. Broder (1989), Generating random spanning trees. In 30th Annual Symposium on Foundations of Computer Science (Research Triangle Park, North Carolina), pp. 442-447. New York: IEEE.

14. R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte (1940), The dissection of rectangles into squares. Duke Math. J., 7, 312-340. | MR | Zbl

15. R. M. Burton and R. Pemantle (1993), Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab., 21, 1329-1371. | MR | Zbl

16. J. Cheeger and M. Gromov (1986), L2-cohomology and group cohomology. Topology, 25, 189-215. | MR | Zbl

17. Y. B. Choe, J. Oxley, A. Sokal, and D. Wagner (2003), Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. To appear. | MR | Zbl

18. J. B. Conrey (2003), The Riemann hypothesis. Notices Am. Math. Soc., 50, 341-353. | MR

19. J. B. Conway (1990), A Course in Functional Analysis. Second edition. New York: Springer. | MR | Zbl

20. J. P. Conze (1972/73), Entropie d'un groupe abélien de transformations. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25, 11-30. | Zbl

21. D. J. Daley and D. Vere-Jones (1988), An Introduction to the Theory of Point Processes. New York: Springer. | MR | Zbl

22. P. Diaconis (2003), Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture. Bull. Am. Math. Soc., New Ser., 40, 155-178 (electronic). | MR

23. D. Dubhashi and D. Ranjan (1998), Balls and bins: a study in negative dependence. Random Struct. Algorithms, 13, 99-124. | MR | Zbl

24. F. J. Dyson (1962), Statistical theory of the energy levels of complex systems. III. J. Math. Phys., 3, 166-175. | MR | Zbl

25. T. Feder and M. Mihail (1992), Balanced matroids. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 26-38, New York. Association for Computing Machinery (ACM). Held in Victoria, BC, Canada.

26. R. M. Foster (1948), The average impedance of an electrical network. In Reissner Anniversary Volume, Contributions to Applied Mechanics, pp. 333-340. J. W. Edwards, Ann Arbor, Michigan. Edited by the Staff of the Department of Aeronautical Engineering and Applied Mechanics of the Polytechnic Institute of Brooklyn. | MR | Zbl

27. W. Fulton and J. Harris (1991), Representation Theory: A First Course. Readings in Mathematics. New York: Springer. | MR | Zbl

28. D. Gaboriau (2002), Invariants l2 de relations d'équivalence et de groupes. Publ. Math., Inst. Hautes Étud. Sci., 95, 93-150. | Numdam | Zbl

29. H. O. Georgii (1988), Gibbs Measures and Phase Transitions. Berlin-New York: Walter de Gruyter & Co. | MR | Zbl

30. O. Häggström (1995), Random-cluster measures and uniform spanning trees. Stochastic Processes Appl., 59, 267-275. | MR | Zbl

31. P. R. Halmos (1982), A Hilbert Space Problem Book. Second edition. Encycl. Math. Appl. 17, New York: Springer. | MR | Zbl

32. D. Heicklen and R. Lyons (2003), Change intolerance in spanning forests. J. Theor. Probab., 16, 47-58. | MR | Zbl

33. K. Johansson (2001), Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. (2), 153, 259-296. | MR | Zbl

34. K. Johansson (2002), Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields, 123, 225-280. | MR | Zbl

35. G. Kalai (1983), Enumeration of Q-acyclic simplicial complexes. Isr. J. Math., 45, 337-351. | MR | Zbl

36. Y. Katznelson and B. Weiss (1972), Commuting measure-preserving transformations. Isr. J. Math., 12, 161-173. | MR | Zbl

37. G. Kirchhoff (1847), Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem., 72, 497-508.

38. R. Lyons (1998), A bird's-eye view of uniform spanning trees and forests. In D. Aldous and J. Propp, eds., Microsurveys in Discrete Probability, vol. 41 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 135-162. Providence, RI: Am. Math. Soc., Papers from the workshop held as part of the Dimacs Special Year on Discrete Probability in Princeton, NJ, June 2-6, 1997. | Zbl

39. R. Lyons (2000), Phase transitions on nonamenable graphs. J. Math. Phys., 41, 1099-1126. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. | MR | Zbl

40. R. Lyons (2003), Random complexes and ℓ2-Betti numbers. In preparation.

41. R. Lyons, Y. Peres, and O. Schramm (2003), Minimal spanning forests. In preparation.

42. R. Lyons and J. E. Steif (2003), Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination. Duke Math. J. To appear. | MR | Zbl

43. O. Macchi (1975), The coincidence approach to stochastic point processes. Adv. Appl. Probab., 7, 83-122. | MR | Zbl

44. S. B. Maurer (1976), Matrix generalizations of some theorems on trees, cycles and cocycles in graphs. SIAM J. Appl. Math., 30, 143-148. | MR | Zbl

45. M. L. Mehta (1991), Random Matrices. Second edition. Boston, MA: Academic Press Inc. | MR | Zbl

46. B. Morris (2003), The components of the wired spanning forest are recurrent. Probab. Theory Related Fields, 125, 259-265. | MR | Zbl

47. C. M. Newman (1984), Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Y. L. Tong, ed., Inequalities in Statistics and Probability, pp. 127-140. Hayward, CA: Inst. Math. Statist. Proceedings of the symposium held at the University of Nebraska, Lincoln, Neb., October 27-30, 1982. | MR

48. A. Okounkov (2001), Infinite wedge and random partitions. Sel. Math., New Ser., 7, 57-81. | MR | Zbl

49. A. Okounkov and N. Reshetikhin (2003), Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc., 16, 581-603 (electronic). | MR | Zbl

50. D. S. Ornstein and B. Weiss (1987), Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math., 48, 1-141. | MR | Zbl

51. J. G. Oxley (1992), Matroid Theory. New York: Oxford University Press. | MR | Zbl

52. R. Pemantle (1991), Choosing a spanning tree for the integer lattice uniformly. Ann. Probab., 19, 1559-1574. | MR | Zbl

53. R. Pemantle (2000), Towards a theory of negative dependence. J. Math. Phys., 41, 1371-1390. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. | MR | Zbl

54. J. G. Propp and D. B. Wilson (1998), How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms, 27, 170-217. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996). | MR | Zbl

55. R. Redheffer (1972), Two consequences of the Beurling-Malliavin theory. Proc. Am. Math. Soc., 36, 116-122. | MR | Zbl

56. R. M. Redheffer (1977), Completeness of sets of complex exponentials. Adv. Math., 24, 1-62. | MR | Zbl

57. K. Seip and A. M. Ulanovskii (1997), The Beurling-Malliavin density of a random sequence. Proc. Am. Math. Soc., 125, 1745-1749. | MR | Zbl

58. Q. M. Shao (2000), A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab., 13, 343-356. | MR | Zbl

59. Q. M. Shao and C. Su (1999), The law of the iterated logarithm for negatively associated random variables. Stochastic Processes Appl., 83, 139-148. | MR | Zbl

60. T. Shirai and Y. Takahashi (2000), Fermion process and Fredholm determinant. In H. G. W. Begehr, R. P. Gilbert, and J. Kajiwara, eds., Proceedings of the Second ISAAC Congress, vol. 1, pp. 15-23. Kluwer Academic Publ. International Society for Analysis, Applications and Computation, vol. 7. | MR | Zbl

61. T. Shirai and Y. Takahashi (2002), Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes. Preprint. | MR | Zbl

62. T. Shirai and Y. Takahashi (2003), Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties. Ann. Probab., 31, 1533-1564. | MR | Zbl

63. T. Shirai and H. J. Yoo (2002), Glauber dynamics for fermion point processes. Nagoya Math. J., 168, 139-166. | MR | Zbl

64. A. Soshnikov (2000a), Determinantal random point fields. Usp. Mat. Nauk, 55, 107-160. | MR | Zbl

65. A. B. Soshnikov (2000b), Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J. Stat. Phys., 100, 491-522. | MR | Zbl

66. V. Strassen (1965), The existence of probability measures with given marginals. Ann. Math. Stat., 36, 423-439. | MR | Zbl

67. C. Thomassen (1990), Resistances and currents in infinite electrical networks. J. Combin. Theory, Ser. B, 49, 87-102. | MR | Zbl

68. J. P. Thouvenot (1972), Convergence en moyenne de l'information pour l'action de Z2. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 24, 135-137. | Zbl

69. A. M. Vershik and S. V. Kerov (1981), Asymptotic theory of the characters of a symmetric group. Funkts. Anal. i Prilozh., 15, 15-27, 96. English translation: Funct. Anal. Appl., 15(4), 246-255 (1982). | MR | Zbl

70. D. J. A. Welsh (1976), Matroid Theory. London: Academic Press [Harcourt Brace Jovanovich Publishers]. L. M. S. Monographs, No. 8. | MR | Zbl

71. N. White, ed. (1987), Combinatorial Geometries. Cambridge: Cambridge University Press. | MR | Zbl

72. H. Whitney (1935), On the abstract properties of linear dependence. Am. J. Math., 57, 509-533. | MR | Zbl

73. H. Whitney (1957), Geometric Integration Theory. Princeton, N.J.: Princeton University Press. | MR | Zbl

74. D. B. Wilson (1996), Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing, pp. 296-303. New York: ACM. Held in Philadelphia, PA, May 22-24, 1996. | MR | Zbl

75. L. X. Zhang (2001), Strassen's law of the iterated logarithm for negatively associated random vectors. Stochastic Processes Appl., 95, 311-328. | Zbl

76. L. X. Zhang and J. Wen (2001), A weak convergence for negatively associated fields. Stat. Probab. Lett., 53, 259-267. | MR | Zbl

Cité par Sources :