According to a theorem of Martio, Rickman and Väisälä, all nonconstant -smooth quasiregular maps in , , are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in . We prove that the order of smoothness is sharp in . For each we construct a -smooth quasiregular map in with nonempty branch set.
@article{PMIHES_2005__101__209_0, author = {Kaufman, Robert and Tyson, Jeremy T. and Wu, Jang-Mei}, title = {Smooth quasiregular maps with branching in $\mathbf {R}^n$}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {209--241}, publisher = {Springer}, volume = {101}, year = {2005}, doi = {10.1007/s10240-005-0031-4}, zbl = {1078.30015}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-005-0031-4/} }
TY - JOUR AU - Kaufman, Robert AU - Tyson, Jeremy T. AU - Wu, Jang-Mei TI - Smooth quasiregular maps with branching in $\mathbf {R}^n$ JO - Publications Mathématiques de l'IHÉS PY - 2005 SP - 209 EP - 241 VL - 101 PB - Springer UR - http://archive.numdam.org/articles/10.1007/s10240-005-0031-4/ DO - 10.1007/s10240-005-0031-4 LA - en ID - PMIHES_2005__101__209_0 ER -
%0 Journal Article %A Kaufman, Robert %A Tyson, Jeremy T. %A Wu, Jang-Mei %T Smooth quasiregular maps with branching in $\mathbf {R}^n$ %J Publications Mathématiques de l'IHÉS %D 2005 %P 209-241 %V 101 %I Springer %U http://archive.numdam.org/articles/10.1007/s10240-005-0031-4/ %R 10.1007/s10240-005-0031-4 %G en %F PMIHES_2005__101__209_0
Kaufman, Robert; Tyson, Jeremy T.; Wu, Jang-Mei. Smooth quasiregular maps with branching in $\mathbf {R}^n$. Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 209-241. doi : 10.1007/s10240-005-0031-4. http://archive.numdam.org/articles/10.1007/s10240-005-0031-4/
1. The boundary correspondence under quasiconformal mappings, Acta Math., 96 (1956), 125-142. | MR | Zbl
and ,2. A quasisymmetric surface with no rectifiable curves, Proc. Amer. Math. Soc., 127 (1999), 2035-2040. | MR | Zbl
,3. Smooth quasiregular mappings with branching, Publ. Math., Inst. Hautes Études Sci., 100 (2004), 153-170. | Numdam | MR | Zbl
and ,4. Finite-to-one open mappings of manifolds, Mat. Sb. (N.S.), 65 (1964), 357-369. | MR | Zbl
,5. Addendum to the paper “Finite-to-one open mappings of manifolds”, Mat. Sb. (N.S.), 66 (1965), 471-472. | Zbl
,6. Differentiable open maps on manifolds, Trans. Amer. Math. Soc., 109 (1963), 87-100. | MR | Zbl
,7. Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann., 315 (1999), 641-710. | MR | Zbl
and ,8. Quasiconformal 4-manifolds, Acta Math., 163 (1989), 181-252. | MR | Zbl
and ,9. Théorie de l'approximation des fonctions d'une variable complexe, Séminaire de Mathématiques Supérieures, no. 26 (Été 1967). Les Presses de l'Université de Montréal, Montréal, Que. (1968). | Zbl
,10. The branch set of a quasiregular mapping, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing (2002), pp. 691-700. | MR | Zbl
,11. Quasiregular maps S 3→S 3 with wild branch sets, Topology, 37 (1998), 1-24. | Zbl
and ,12. Geometric branched covers between generalized manifolds, Duke Math. J., 113 (2002), 465-529. | MR | Zbl
and ,13. Geometric function theory and non-linear analysis, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2001). | MR | Zbl
and ,14. Diffeomorphic approximation of quasiconformal and quasisymmetric homeomorphisms, Ann. Acad. Sci. Fenn., Ser. A I, Math., 8 (1983), 251-256. | MR | Zbl
,15. Measure properties of the branch set and its image of quasiregular mappings, Ann. Acad. Sci. Fenn., Ser. A I, 541 (1973), 16. | MR | Zbl
and ,16. Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn., Ser. A I, 488 (1971), 31. | MR | Zbl
, and J. Väisälä,17. Geometry of sets and measures in Euclidean spaces, vol. 44 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1995). | MR | Zbl
,18. Space mappings with bounded distortion, Sibirsk. Mat. Z., 8 (1967), 629-659. | MR | Zbl
,19. Space mappings with bounded distortion, vol. 73 of Translations of Mathematical Monographs, American Mathematical Society, Providence (1989). Translated from the Russian by H. H. McFadden. | MR | Zbl
,20. Quasiregular Mappings, Springer, Berlin (1993). | MR | Zbl
,21. Construction of quasiregular mappings, in Quasiconformal mappings and analysis (Ann Arbor, MI 1995), Springer, New York (1998), pp. 337-345. | MR | Zbl
,22. The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn., Ser. A I, Math., 1 (1975), 297-307. | MR | Zbl
,23. Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. (1970). | MR | Zbl
,24. Hyperbolic geometry and homeomorphisms, in Geometric topology (Proc. Georgia Topology Conf., Athens, Ga. 1977), Academic Press, New York (1979), pp. 543-555. | MR | Zbl
,25. Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn., Ser. A I, Math., 5 (1980), 97-114. | MR | Zbl
and ,26. Quasiconformal extension from dimension n to n+1, Ann. of Math. (2), 115 (1982), 331-348. | MR | Zbl
and ,27. Extension of embeddings close to isometries or similarities, Ann. Acad. Sci. Fenn., Ser. A I, Math., 9 (1984), 153-175. | MR | Zbl
and ,28. Quasiconformal dimensions of self-similar fractals, Rev. Mat. Iberoamer., accepted for publication. | MR | Zbl
and ,29. J. Väisälä, Lectures on n -dimensional quasiconformal mappings, no. 229 in Lecture Notes in Mathematics, Springer, Berlin (1971). | MR
30. J. Väisälä, A survey of quasiregular maps in R n , in Proceedings of the International Congress of Mathematicians (Helsinki 1978), Acad. Sci. Fennica, Helsinki (1980), pp. 685-691. | MR | Zbl
31. Bi-Lipschitz and quasisymmetric extension properties, Ann. Acad. Sci. Fenn., Ser. A I, Math., 11 (1986), 239-274. | MR | Zbl
,Cité par Sources :