We prove that a knot is the unknot if and only if its reduced Khovanov cohomology has rank 1. The proof has two steps. We show first that there is a spectral sequence beginning with the reduced Khovanov cohomology and abutting to a knot homology defined using singular instantons. We then show that the latter homology is isomorphic to the instanton Floer homology of the sutured knot complement: an invariant that is already known to detect the unknot.
@article{PMIHES_2011__113__97_0, author = {Kronheimer, P. B. and Mrowka, T. S.}, title = {Khovanov homology is an unknot-detector}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {97--208}, publisher = {Springer-Verlag}, volume = {113}, year = {2011}, doi = {10.1007/s10240-010-0030-y}, mrnumber = {2805599}, zbl = {1241.57017}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-010-0030-y/} }
TY - JOUR AU - Kronheimer, P. B. AU - Mrowka, T. S. TI - Khovanov homology is an unknot-detector JO - Publications Mathématiques de l'IHÉS PY - 2011 SP - 97 EP - 208 VL - 113 PB - Springer-Verlag UR - http://archive.numdam.org/articles/10.1007/s10240-010-0030-y/ DO - 10.1007/s10240-010-0030-y LA - en ID - PMIHES_2011__113__97_0 ER -
%0 Journal Article %A Kronheimer, P. B. %A Mrowka, T. S. %T Khovanov homology is an unknot-detector %J Publications Mathématiques de l'IHÉS %D 2011 %P 97-208 %V 113 %I Springer-Verlag %U http://archive.numdam.org/articles/10.1007/s10240-010-0030-y/ %R 10.1007/s10240-010-0030-y %G en %F PMIHES_2011__113__97_0
Kronheimer, P. B.; Mrowka, T. S. Khovanov homology is an unknot-detector. Publications Mathématiques de l'IHÉS, Tome 113 (2011), pp. 97-208. doi : 10.1007/s10240-010-0030-y. http://archive.numdam.org/articles/10.1007/s10240-010-0030-y/
[1.] Torsion classes and a universal constraint on Donaldson invariants for odd manifolds, Trans. Am. Math. Soc., Volume 347 (1995), pp. 63-76 | DOI | MR | Zbl
[2.] J. A. Baldwin, On the spectral sequence from Khovanov homology to Heegaard Floer homology, prepint (2008). | Zbl
[3.] J. Bloom, A link surgery spectral sequence in monopole Floer homology, prepint (2009). | MR | Zbl
[4.] Floer’s work on instanton homology, knots and surgery, The Floer Memorial Volume (Progr. Math., 133), Birkhäuser, Basel (1995), pp. 195-256 | MR | Zbl
[5.] Classification of oriented sphere bundles over a 4-complex, Ann. Math. (2), Volume 69 (1959), pp. 667-677 | DOI | MR | Zbl
[6.] The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Differ. Geom., Volume 26 (1987), pp. 397-428 | MR | Zbl
[7.] The geometry of four-manifolds, Oxford University Press, New York, 1990 | MR | Zbl
[8.] An instanton-invariant for 3-manifolds, Commun. Math. Phys., Volume 118 (1988), pp. 215-240 | DOI | MR | Zbl
[9.] Instanton homology, surgery, and knots, Geometry of Low-Dimensional Manifolds, 1 (London Math. Soc. Lecture Note Ser., 150), Cambridge Univ. Press, Cambridge (1990), pp. 97-114 | MR | Zbl
[10.] On the colored Jones polynomial, sutured Floer homology, and knot Floer homology, Adv. Math., Volume 223 (2010), pp. 2114-2165 | DOI | MR | Zbl
[11.] Khovanov homology of the 2-cable detects the unknot, Math. Res. Lett., Volume 16 (2009), pp. 991-994 | MR | Zbl
[12.] Does Khovanov homology detect the unknot?, Am. J. Math. (2010) | DOI | MR | Zbl
[13.] Holomorphic discs and sutured manifolds, Algebr. Geom. Topol., Volume 6 (2006), pp. 1429-1457 (electronic) | DOI | MR | Zbl
[14.] Floer homology and surface decompositions, Geom. Topol., Volume 12 (2008), pp. 299-350 | DOI | MR | Zbl
[15.] The index of elliptic operators over V-manifolds, Nagoya Math. J., Volume 84 (1981), pp. 135-157 | MR | Zbl
[16.] A categorification of the Jones polynomial, Duke Math. J., Volume 101 (2000), pp. 359-426 | DOI | MR | Zbl
[17.] An obstruction to removing intersection points in immersed surfaces, Topology, Volume 36 (1997), pp. 931-962 | DOI | MR | Zbl
[18.] Gauge theory for embedded surfaces. I, Topology, Volume 32 (1993), pp. 773-826 | DOI | MR | Zbl
[19.] Gauge theory for embedded surfaces. II, Topology, Volume 34 (1995), pp. 37-97 | DOI | MR | Zbl
[20.] Monopoles and Three-Manifolds, New Mathematical Monographs, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[21.] P. B. Kronheimer and T. S. Mrowka, Knot homology groups from instantons, preprint (2008). | Zbl
[22.] Instanton Floer homology and the Alexander polynomial, Algebr. Geom. Topol., Volume 10 (2010), pp. 1715-1738 | DOI | MR | Zbl
[23.] Knots, sutures, and excision, J. Differ. Geom., Volume 84 (2010), pp. 301-364 | MR | Zbl
[24.] Monopoles and lens space surgeries, Ann. Math. (2), Volume 165 (2007), pp. 457-546 | DOI | MR | Zbl
[25.] An endomorphism of the Khovanov invariant, Adv. Math., Volume 197 (2005), pp. 554-586 | DOI | MR | Zbl
[26.] An unoriented skein exact triangle for knot Floer homology, Math. Res. Lett., Volume 14 (2007), pp. 839-852 | MR | Zbl
[27.] On the Khovanov and knot Floer homologies of quasi-alternating links, Gökova Geometry/Topology Conference (GGT) (2008), pp. 60-81 | MR | Zbl
[28.] Holomorphic disks and knot invariants, Adv. Math., Volume 186 (2004), pp. 58-116 | DOI | MR | Zbl
[29.] On the Heegaard Floer homology of branched double-covers, Adv. Math., Volume 194 (2005), pp. 1-33 | DOI | MR | Zbl
[30.] Khovanov homology and the slice genus, Invent. Math. (2010) | DOI | MR | Zbl
[31.] J. Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University, 2003. | MR
[32.] Knot polynomials and knot homologies, Geometry and Topology of Manifolds (Fields Inst. Commun., 47), Am. Math. Soc., Providence (2005), pp. 261-280 | MR | Zbl
[33.] Casson’s invariant and gauge theory, J. Differ. Geom., Volume 31 (1990), pp. 547-599 | MR | Zbl
Cité par Sources :