Differential forms on log canonical spaces
Publications Mathématiques de l'IHÉS, Tome 114 (2011), pp. 87-169.

The present paper is concerned with differential forms on log canonical varieties. It is shown that any p-form defined on the smooth locus of a variety with canonical or klt singularities extends regularly to any resolution of singularities. In fact, a much more general theorem for log canonical pairs is established. The proof relies on vanishing theorems for log canonical varieties and on methods of the minimal model program. In addition, a theory of differential forms on dlt pairs is developed. It is shown that many of the fundamental theorems and techniques known for sheaves of logarithmic differentials on smooth varieties also hold in the dlt setting.

Immediate applications include the existence of a pull-back map for reflexive differentials, generalisations of Bogomolov-Sommese type vanishing results, and a positive answer to the Lipman-Zariski conjecture for klt spaces.

DOI : 10.1007/s10240-011-0036-0
Greb, Daniel 1 ; Kebekus, Stefan 1 ; Kovács, Sándor J 2 ; Peternell, Thomas 3

1 Mathematisches Institut, Albert-Ludwigs-Universität Freiburg Eckerstraße 1, 79104, Freiburg im Breisgau Germany
2 Department of Mathematics, University of Washington Box 354350, Seattle, WA, 98195 USA
3 Matematisches Institut, Universität Bayreuth 95440, Bayreuth Germany
@article{PMIHES_2011__114__87_0,
     author = {Greb, Daniel and Kebekus, Stefan and Kov\'acs, S\'andor J and Peternell, Thomas},
     title = {Differential forms on log canonical spaces},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {87--169},
     publisher = {Springer-Verlag},
     volume = {114},
     year = {2011},
     doi = {10.1007/s10240-011-0036-0},
     zbl = {1258.14021},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-011-0036-0/}
}
TY  - JOUR
AU  - Greb, Daniel
AU  - Kebekus, Stefan
AU  - Kovács, Sándor J
AU  - Peternell, Thomas
TI  - Differential forms on log canonical spaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2011
SP  - 87
EP  - 169
VL  - 114
PB  - Springer-Verlag
UR  - http://archive.numdam.org/articles/10.1007/s10240-011-0036-0/
DO  - 10.1007/s10240-011-0036-0
LA  - en
ID  - PMIHES_2011__114__87_0
ER  - 
%0 Journal Article
%A Greb, Daniel
%A Kebekus, Stefan
%A Kovács, Sándor J
%A Peternell, Thomas
%T Differential forms on log canonical spaces
%J Publications Mathématiques de l'IHÉS
%D 2011
%P 87-169
%V 114
%I Springer-Verlag
%U http://archive.numdam.org/articles/10.1007/s10240-011-0036-0/
%R 10.1007/s10240-011-0036-0
%G en
%F PMIHES_2011__114__87_0
Greb, Daniel; Kebekus, Stefan; Kovács, Sándor J; Peternell, Thomas. Differential forms on log canonical spaces. Publications Mathématiques de l'IHÉS, Tome 114 (2011), pp. 87-169. doi : 10.1007/s10240-011-0036-0. http://archive.numdam.org/articles/10.1007/s10240-011-0036-0/

[Bar78] Barlet, D. Le faisceau ω X · sur un espace analytique X de dimension pure, Fonctions de plusieurs variables complexes III (Sém. François Norguet, 1975–1977) (Lecture Notes in Math., 670), Springer, Berlin (1978), pp. 187-204 | DOI | MR | Zbl

[BS95] Beltrametti, M. C.; Sommese, A. J. The Adjunction Theory of Complex Projective Varieties, de Gruyter Expositions in Mathematics, 16, de Gruyter, Berlin, 1995 ( 96f:14004 ) | Zbl

[BCHM10] Birkar, C.; Cascini, P.; Hacon, C. D.; McKernan, J. Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 | DOI | MR | Zbl

[Cam04] Campana, F. Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 499-630 | DOI | Numdam | MR | Zbl

[Car85] Carlson, J. A. Polyhedral resolutions of algebraic varieties, Trans. Am. Math. Soc., Volume 292 (1985), pp. 595-612 | DOI | MR | Zbl

[{Cor}07] Corti, A. et al. Flips for 3-Folds and 4-Folds, Oxford Lecture Series in Mathematics and Its Applications, 35, Oxford University Press, Oxford, 2007 | DOI | MR | Zbl

[Del70] Deligne, P. Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, 163, Springer, Berlin, 1970 ( 54 #5232 ) | Zbl

[DB81] Du Bois, P. Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math. Fr., Volume 109 (1981), pp. 41-81 | Numdam | MR | Zbl

[DBJ74] Du Bois, P.; Jarraud, P. Une propriété de commutation au changement de base des images directes supérieures du faisceau structural, C. R. Acad. Sci. Paris Sér. A, Volume 279 (1974), pp. 745-747 | MR | Zbl

[dJS04] Jong, A. J.; Starr, J. Cubic fourfolds and spaces of rational curves, Ill. J. Math., Volume 48 (2004), pp. 415-450 | MR | Zbl

[EV82] Esnault, H.; Viehweg, E. Revêtements cycliques, Algebraic threefolds (Lecture Notes in Mathematics, 947), Springer, Berlin (1982), pp. 241-250 | DOI | MR | Zbl

[EV90] Esnault, H.; Viehweg, E. Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compos. Math., Volume 76 (1990), pp. 69-85 Algebraic geometry (Berlin, 1988). | Numdam | MR | Zbl

[EV92] Esnault, H.; Viehweg, E. Lectures on Vanishing Theorems, DMV Seminar, 20, Birkhäuser, Basel, 1992 | DOI | MR | Zbl

[FGI+05] Fantechi, B.; Göttsche, L.; Illusie, L.; Kleiman, S. L.; Nitsure, N.; Vistoli, A. Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, 123, American Mathematical Society, Providence, 2005 (Grothendieck’s FGA explained.) | MR | Zbl

[Fle88] Flenner, H. Extendability of differential forms on nonisolated singularities, Invent. Math., Volume 94 (1988), pp. 317-326 | DOI | MR | Zbl

[Fog69] Fogarty, J. Invariant Theory, W. A. Benjamin, Inc., New York, 1969 | MR | Zbl

[God73] Godement, R. Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973 (Troisième édition revue et corrigée, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Actualités Scientifiques et Industrielles, No. 1252.) | MR | Zbl

[Gra72] Grauert, H. Über die Deformation isolierter Singularitäten analytischer Mengen, Invent. Math., Volume 15 (1972), pp. 171-198 | DOI | MR | Zbl

[GR70] Grauert, H.; Riemenschneider, O. Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math., Volume 11 (1970), pp. 263-292 | DOI | MR | Zbl

[GKK10] Greb, D.; Kebekus, S.; Kovács, S. J. Extension theorems for differential forms, and Bogomolov-Sommese vanishing on log canonical varieties, Compos. Math., Volume 146 (2010), pp. 193-219 | DOI | MR | Zbl

[GKKP10] D. Greb, S. Kebekus, S. J. Kovács, and T. Peternell, Differential forms on log canonical varieties, Extended version of the present paper, including more detailed proofs and color figures. March 2010. | arXiv

[GLS07] Greuel, G.-M.; Lossen, C.; Shustin, E. Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007 | MR | Zbl

[Gre80] Greuel, G.-M. Dualität in der lokalen Kohomologie isolierter Singularitäten, Math. Ann., Volume 250 (1980), pp. 157-173 | MR | Zbl

[Gro60] Grothendieck, A. Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., Volume 4 (1960), p. 228 | DOI | Numdam | MR | Zbl

[Gro71] Grothendieck, A. Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, 224, Springer, Berlin, 1971 Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. | MR | Zbl

[GNPP88] Guillén, F.; Navarro Aznar, V.; Pascual Gainza, P.; Puerta, F. Hyperrésolutions cubiques et descente cohomologique, Lecture Notes in Mathematics, 1335, Springer, Berlin, 1988 (Papers from the Seminar on Hodge-Deligne Theory held in Barcelona, 1982.) | MR | Zbl

[HK10] Hacon, C. D.; Kovács, S. J. Classification of Higher Dimensional Algebraic Varieties, Oberwolfach Seminars, Birkhäuser, Boston, 2010 | DOI | Zbl

[HM07] Hacon, C. D.; McKernan, J. On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007), pp. 119-136 | DOI | MR | Zbl

[Har77] Hartshorne, R. Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, New York, 1977 | MR | Zbl

[HM89] Hauser, H.; Müller, G. The trivial locus of an analytic map germ, Ann. Inst. Fourier (Grenoble), Volume 39 (1989), pp. 831-844 | DOI | Numdam | MR | Zbl

[Hei91] Heinzner, P. Geometric invariant theory on Stein spaces, Math. Ann., Volume 289 (1991), pp. 631-662 | DOI | MR | Zbl

[Hir62] Hironaka, H. On resolution of singularities (characteristic zero), Proc. Int. Cong. Math. (1962), pp. 507-521 | Zbl

[Hoc75] Hochster, M. The Zariski-Lipman conjecture for homogeneous complete intersections, Proc. Am. Math. Soc., Volume 49 (1975), pp. 261-262 | MR | Zbl

[Hol61] Holmann, H. Quotienten komplexer Räume, Math. Ann., Volume 142 (1960/1961), pp. 407-440 | DOI | MR | Zbl

[HL97] Huybrechts, D.; Lehn, M. The Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997 | MR | Zbl

[JK09a] K. Jabbusch and S. Kebekus, Families over special base manifolds and a conjecture of Campana, Math. Z., to appear. doi:10.1007/s00209-010-0758-6, , May 2009. | arXiv | Zbl

[JK09b] K. Jabbusch and S. Kebekus, Positive sheaves of differentials on coarse moduli spaces, Ann. Inst. Fourier (Grenoble), to appear. April 2009. | arXiv | Numdam | Zbl

[Kaw88] Kawamata, Y. Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math., Volume 127 (1988), pp. 93-163 | DOI | MR | Zbl

[KK07] S. Kebekus and S. J. Kovács, The structure of surfaces mapping to the moduli stack of canonically polarized varieties, preprint (July 2007). | arXiv

[KK08] Kebekus, S.; Kovács, S. J. Families of canonically polarized varieties over surfaces, Invent. Math., Volume 172 (2008), pp. 657-682 | DOI | MR | Zbl

[KK10a] Kebekus, S.; Kovács, S. J. The structure of surfaces and threefolds mapping to the moduli stack of canonically polarized varieties, Duke Math. J., Volume 155 (2010), pp. 1-33 (arXiv:0812.2305) | DOI | MR | Zbl

[Kol] J. Kollár, Algebraic groups acting on schemes, Undated, unfinished manuscript. Available on the author’s website at www.math.princeton.edu/~kollar.

[Kol96] Kollár, J. Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics, 32, Springer, Berlin, 1996 | MR | Zbl

[Kol07] Kollár, J. Lectures on Resolution of Singularities, Annals of Mathematics Studies, 166, Princeton University Press, Princeton, 2007 | MR | Zbl

[KK10b] Kollár, J.; Kovács, S. J. Log canonical singularities are Du Bois, J. Am. Math. Soc., Volume 23 (2010), pp. 791-813 | DOI | Zbl

[KM98] Kollár, J.; Mori, S. Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. 2000b:14018 ) | DOI | Zbl

[{Kol}92] Kollár, J. et al. Flips and Abundance for Algebraic Threefolds, Astérisque, 211, Société Mathématique de France, Paris, 1992 Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991 (1992). | Numdam | MR | Zbl

[KS09] Kovács, S. J.; Schwede, K. Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities, Topology of Stratified (2001), pp. 51-94

[Lau73] Laufer, H. B. Taut two-dimensional singularities, Math. Ann., Volume 205 (1973), pp. 131-164 | DOI | MR | Zbl

[Lip65] Lipman, J. Free derivation modules on algebraic varieties, Am. J. Math., Volume 87 (1965), pp. 874-898 | DOI | MR | Zbl

[Loj64] Lojasiewicz, S. Triangulation of semi-analytic sets, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (1964), pp. 449-474 | Numdam | MR | Zbl

[ML95] Mac Lane, S. Homology, Classics in Mathematics, Springer, Berlin, 1995 (Reprint of the 1975 edition.) | MR | Zbl

[{Mas}1899] Maschke, H. Beweis des Satzes, dass diejenigen endlichen linearen Substitutionsgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind, Math. Ann., Volume 52 (1899), pp. 363-368 | DOI | JFM | MR

[Nam01] Namikawa, Y. Extension of 2-forms and symplectic varieties, J. Reine Angew. Math., Volume 539 (2001), pp. 123-147 | DOI | MR | Zbl

[OSS80] Okonek, C.; Schneider, M.; Spindler, H. Vector Bundles on Complex Projective Spaces, Progress in Mathematics, 3, Birkhäuser, Boston, 1980 | DOI | MR | Zbl

[PS08] Peters, C. A. M.; Steenbrink, J. H. M. Mixed Hodge Structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 52, Springer, Berlin, 2008 | MR | Zbl

[Pri67] Prill, D. Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J., Volume 34 (1967), pp. 375-386 | DOI | MR | Zbl

[Rei80] Reid, M. Canonical 3-folds, Algebraic Geometry, Sijthoff & Noordhoff, Alphen aan den Rijn (1980) | Zbl

[Rei87] Reid, M. Young person’s guide to canonical singularities, Algebraic Geometry, Bowdoin, 1985 (Proc. Sympos. Pure Math., 46), Amer. Math. Soc, Providence (1987), pp. 345-414 | MR | Zbl

[SS72] Scheja, G.; Storch, U. Differentielle Eigenschaften der Lokalisierungen analytischer Algebren, Math. Ann., Volume 197 (1972), pp. 137-170 | DOI | MR | Zbl

[Sei50] Seidenberg, A. The hyperplane sections of normal varieties, Trans. Am. Math. Soc., Volume 69 (1950), pp. 357-386 | MR | Zbl

[Sha94] Shafarevich, I. R. Basic Algebraic Geometry. 1, Springer, Berlin, 1994 (Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid.) | DOI | MR | Zbl

[SvS85] Steenbrink, J.; Straten, D. Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Semin. Univ. Hamb., Volume 55 (1985), pp. 97-110 | DOI | MR | Zbl

[Ste85] Steenbrink, J. H. M. Vanishing theorems on singular spaces, Astérisque, Volume 130 (1985), pp. 330-341 Differential systems and singularities (Luminy, 1983). | Numdam | MR | Zbl

[Sza94] Szabó, E. Divisorial log terminal singularities, J. Math. Sci. Univ. Tokyo, Volume 1 (1994), pp. 631-639 | MR | Zbl

[Tei77] Teissier, B. The hunting of invariants in the geometry of discriminants, Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn (1977), pp. 565-678 | MR | Zbl

[Ver76] Verdier, J.-L. Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., Volume 36 (1976), pp. 295-312 | DOI | MR | Zbl

[Vie10] Viehweg, E. Compactifications of smooth families and of moduli spaces of polarized manifolds, Ann. Math., Volume 172 (2010), pp. 809-910 (arXiv:math/0605093.) | DOI | MR | Zbl

[VZ02] Viehweg, E.; Zuo, K. Base spaces of non-isotrivial families of smooth minimal models, Complex Geometry (Göttingen, 2000), Springer, Berlin (2002), pp. 279-328 | DOI | MR | Zbl

[Wah85] Wahl, J. M. A characterization of quasihomogeneous Gorenstein surface singularities, Compos. Math., Volume 55 (1985), pp. 269-288 | Numdam | MR | Zbl

Cité par Sources :