We prove the
@article{PMIHES_2014__119__97_0, author = {Bartels, Arthur and L\"uck, Wolfgang and Reich, Holger and R\"uping, Henrik}, title = {$K$- and \protect\emph{$L$}-theory of group rings over $GL_n ( \mathbf{Z} )$}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {97--125}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {119}, year = {2014}, doi = {10.1007/s10240-013-0055-0}, language = {en}, url = {https://www.numdam.org/articles/10.1007/s10240-013-0055-0/} }
TY - JOUR AU - Bartels, Arthur AU - Lück, Wolfgang AU - Reich, Holger AU - Rüping, Henrik TI - $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$ JO - Publications Mathématiques de l'IHÉS PY - 2014 SP - 97 EP - 125 VL - 119 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-013-0055-0/ DO - 10.1007/s10240-013-0055-0 LA - en ID - PMIHES_2014__119__97_0 ER -
%0 Journal Article %A Bartels, Arthur %A Lück, Wolfgang %A Reich, Holger %A Rüping, Henrik %T $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$ %J Publications Mathématiques de l'IHÉS %D 2014 %P 97-125 %V 119 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-013-0055-0/ %R 10.1007/s10240-013-0055-0 %G en %F PMIHES_2014__119__97_0
Bartels, Arthur; Lück, Wolfgang; Reich, Holger; Rüping, Henrik. $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$. Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 97-125. doi : 10.1007/s10240-013-0055-0. https://www.numdam.org/articles/10.1007/s10240-013-0055-0/
[1.] A. Bartels, T. Farrell, and W. Lück, The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups. | arXiv
[2.] On twisted group rings with twisted involutions, their module categories and L-theory, Cohomology of Groups and Algebraic K-Theory (2009), pp. 1-55 | MR | Zbl
[3.] Geodesic flow for CAT(0)-groups, Geom. Topol., Volume 16 (2012), pp. 1345-1391 | DOI | MR | Zbl
[4.] The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. Math. (2), Volume 175 (2012), pp. 631-689 | DOI | MR | Zbl
[5.] The K-theoretic Farrell-Jones conjecture for hyperbolic groups, Invent. Math., Volume 172 (2008), pp. 29-70 | DOI | MR | Zbl
[6.] On the Farrell-Jones conjecture and its applications, Topology, Volume 1 (2008), pp. 57-86 | DOI | MR | Zbl
[7.] Coefficients for the Farrell-Jones conjecture, Adv. Math., Volume 209 (2007), pp. 337-362 | DOI | MR | Zbl
[8.] Metric Spaces of Non-Positive Curvature (1999) | MR | Zbl
[9.] Cohomology of Groups (1982) | MR | Zbl
[10.] Algebraic K-theory over the infinite dihedral group: a controlled topology approach, Topology, Volume 4 (2011), pp. 505-528 | DOI | MR | Zbl
[11.] Permutation Groups (1996) | MR | Zbl
[12.] Geometry of Nonpositively Curved Manifolds (1996) | MR | Zbl
[13.] Isomorphism conjectures in algebraic K-theory, J. Am. Math. Soc., Volume 6 (1993), pp. 249-297 | MR | Zbl
[14.] Rigidity for aspherical manifolds with π1⊂GLm(R), Asian J. Math., Volume 2 (1998), pp. 215-262 | MR | Zbl
[15.] The Whitehead groups of braid groups vanish, Int. Math. Res. Not., Volume 10 (2000), pp. 515-526 | DOI | MR | Zbl
[16.] Reduction theory using semistability, Comment. Math. Helv., Volume 59 (1984), pp. 600-634 | DOI | MR | Zbl
[17.] Principles of Algebraic Geometry (1978) | MR | Zbl
[18.] Differential Geometry, Lie Groups, and Symmetric Spaces (1978) | MR | Zbl
[19.] P. Kühl, Isomorphismusvermutungen und 3-Mannigfaltigkeiten. Preprint, | arXiv
[20.] Survey on classifying spaces for families of subgroups, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects (2005), pp. 269-322 | MR | Zbl
[21.] The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, Handbook of K-Theory, vols. 1, 2 (2005), pp. 703-842 | MR | Zbl
[22.] Algebraic Number Theory (1999) | MR | Zbl
[23.] The Farrell-Jones isomorphism conjecture for 3-manifold groups, K-Theory, Volume 1 (2008), pp. 49-82 | MR | Zbl
[24.] The K-theoretic Farrell-Jones conjecture for CAT(0)-groups, Proc. Am. Math. Soc., Volume 140 (2012), pp. 779-793 | DOI | MR | Zbl
- The Farrell–Jones Conjecture for Hyperbolic-by-Cyclic Groups, International Mathematics Research Notices, Volume 2023 (2023) no. 7, p. 5887 | DOI:10.1093/imrn/rnac012
- On the homotopy type of L‐spectra of the integers, Journal of Topology, Volume 14 (2021) no. 1, p. 183 | DOI:10.1112/topo.12180
- On the Farrell–Jones conjecture for algebraic K-theory of spaces : the Farrell–Hsiang method, Annals of K-Theory, Volume 4 (2019) no. 1, p. 57 | DOI:10.2140/akt.2019.4.57
- The Farrell–Jones Conjecture for mapping class groups, Inventiones mathematicae, Volume 215 (2019) no. 2, p. 651 | DOI:10.1007/s00222-018-0834-9
- On the stable Cannon Conjecture, Journal of Topology, Volume 12 (2019) no. 3, p. 799 | DOI:10.1112/topo.12099
- The isomorphism conjecture for solvable groups in Waldhausen’s A-theory, Journal of Topology and Analysis, Volume 11 (2019) no. 02, p. 405 | DOI:10.1142/s1793525319500195
- On the Farrell–Jones conjecture for Waldhausen’s A–theory, Geometry Topology, Volume 22 (2018) no. 6, p. 3321 | DOI:10.2140/gt.2018.22.3321
- Topological rigidity for FJ by the infinite cyclic group, Journal of Topology and Analysis, Volume 10 (2018) no. 02, p. 421 | DOI:10.1142/s1793525318500139
- Farrell–Jones via Dehn fillings, Journal of Topology and Analysis, Volume 10 (2018) no. 04, p. 873 | DOI:10.1142/s1793525318500292
- Approximately fibering a manifold over an aspherical one, Mathematische Annalen, Volume 370 (2018) no. 1-2, p. 669 | DOI:10.1007/s00208-017-1535-1
- Algebraic K-theory of group rings and the cyclotomic trace map, Advances in Mathematics, Volume 304 (2017), p. 930 | DOI:10.1016/j.aim.2016.09.004
- Coarse flow spaces for relatively hyperbolic groups, Compositio Mathematica, Volume 153 (2017) no. 4, p. 745 | DOI:10.1112/s0010437x16008216
- The Farrell–Jones conjecture for arbitrary lattices in virtually connected Lie groups, Geometry Topology, Volume 20 (2016) no. 3, p. 1275 | DOI:10.2140/gt.2016.20.1275
- The Farrell–Jones conjecture forS-arithmetic groups, Journal of Topology, Volume 9 (2016) no. 1, p. 51 | DOI:10.1112/jtopol/jtv034
- On the transfer reducibility of certain Farrell–Hsiang groups, Algebraic Geometric Topology, Volume 15 (2015) no. 5, p. 2921 | DOI:10.2140/agt.2015.15.2921
- The Farrell–Jones conjecture for virtually solvable groups:, Journal of Topology, Volume 8 (2015) no. 4, p. 975 | DOI:10.1112/jtopol/jtv026
- Some Open Problems About Aspherical Closed Manifolds, Trends in Contemporary Mathematics, Volume 8 (2014), p. 33 | DOI:10.1007/978-3-319-05254-0_3
Cité par 17 documents. Sources : Crossref