Mirror symmetry for log Calabi-Yau surfaces I
Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 65-168.

We give a canonical synthetic construction of the mirror family to pairs (Y,D) where Y is a smooth projective surface and D is an anti-canonical cycle of rational curves. This mirror family is constructed as the spectrum of an explicit algebra structure on a vector space with canonical basis and multiplication rule defined in terms of counts of rational curves on Y meeting D in a single point. The elements of the canonical basis are called theta functions. Their construction depends crucially on the Gromov-Witten theory of the pair (Y,D).

DOI : 10.1007/s10240-015-0073-1
Mots clés : Break Line, Irreducible Component, Theta Function, Toric Variety, Singular Locus
Gross, Mark 1 ; Hacking, Paul 2 ; Keel, Sean 3

1 DPMMS, Centre for Mathematical Sciences Wilberforce Road CB3 0WB Cambridge UK
2 Department of Mathematics and Statistics, Lederle Graduate Research Tower, University of Massachusetts 01003-9305 Amherst MA USA
3 Department of Mathematics 1 University Station C1200 78712-0257 Austin TX USA
@article{PMIHES_2015__122__65_0,
     author = {Gross, Mark and Hacking, Paul and Keel, Sean},
     title = {Mirror symmetry for log {Calabi-Yau} surfaces {I}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {65--168},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {122},
     year = {2015},
     doi = {10.1007/s10240-015-0073-1},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-015-0073-1/}
}
TY  - JOUR
AU  - Gross, Mark
AU  - Hacking, Paul
AU  - Keel, Sean
TI  - Mirror symmetry for log Calabi-Yau surfaces I
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 65
EP  - 168
VL  - 122
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://archive.numdam.org/articles/10.1007/s10240-015-0073-1/
DO  - 10.1007/s10240-015-0073-1
LA  - en
ID  - PMIHES_2015__122__65_0
ER  - 
%0 Journal Article
%A Gross, Mark
%A Hacking, Paul
%A Keel, Sean
%T Mirror symmetry for log Calabi-Yau surfaces I
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 65-168
%V 122
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://archive.numdam.org/articles/10.1007/s10240-015-0073-1/
%R 10.1007/s10240-015-0073-1
%G en
%F PMIHES_2015__122__65_0
Gross, Mark; Hacking, Paul; Keel, Sean. Mirror symmetry for log Calabi-Yau surfaces I. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 65-168. doi : 10.1007/s10240-015-0073-1. http://archive.numdam.org/articles/10.1007/s10240-015-0073-1/

[AC11] D. Abramovich and Q. Chen, Stable logarithmic maps to Deligne-Faltings pairs II, | arXiv

[A02] Alexeev, V. Complete moduli in the presence of semiabelian group action, Ann. Math. (2), Volume 155 (2002), pp. 611-708 | DOI | MR | Zbl

[A76] Artin, M. Lectures on Deformations of Singularities (1976) | Zbl

[A07] Auroux, D. Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol., Volume 1 (2007), pp. 51-91 | MR | Zbl

[AMRT75] Ash, A.; Mumford, D.; Rapoport, M.; Tai, Y. Smooth Compactification of Locally Symmetric Varieties (1975) | Zbl

[B78] Bingener, J. Über formale komplexe Räume, Manuscr. Math., Volume 24 (1978), pp. 253-293 | DOI | MR | Zbl

[C1869] Cayley, A. A memoir on cubic surfaces, Philos. Trans. R. Soc. Lond., Volume 159 (1869), pp. 231-326 | DOI | Zbl

[CPS] M. Carl, M. Pumperla, and B. Siebert, A tropical view of Landau-Ginzburg models, available at http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf.

[CO06] Cho, C.-H.; Oh, Y.-G. Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math., Volume 10 (2006), pp. 773-814 | DOI | MR | Zbl

[E95] Eisenbud, D. Commutative Algebra with a View Toward Algebraic Geometry (1995) | Zbl

[FM83] Friedman, R.; Miranda, R. Smoothing cusp singularities of small length, Math. Ann., Volume 263 (1983), pp. 185-212 | DOI | MR | Zbl

[FP84] Friedman, R.; Pinkham, H. Smoothings of cusp singularities via triangle singularities, Compos. Math., Volume 53 (1984), pp. 303-324 (With an appendix by H. Pinkham) | Numdam | MR | Zbl

[F75] A. Fujiki, On the blowing down of analytic spaces, Publ. Res. Inst. Math. Sci., 10 (1974/1975), 473–507.

[Giv] Givental, A. Homological geometry. I. Projective hypersurfaces, Sel. Math., Volume 1 (1995), pp. 325-345 | DOI | MR | Zbl

[G09] Gross, M. Mirror symmetry for P2 and tropical geometry, Adv. Math., Volume 224 (2010), pp. 169-245 | DOI | MR | Zbl

[G11] Gross, M. Tropical Geometry and Mirror Symmetry (2011) | Zbl

[GHK12] M. Gross, P. Hacking, and S. Keel, Moduli of surfaces with anti-canonical cycle, Comp. Math., to appear, Preprint, 2012.

[GHK13] M. Gross, P. Hacking, and S. Keel, Birational geometry of cluster algebras, Algebr. Geom., to appear Preprint, 2013.

[GHKK] M. Gross, P. Hacking, S. Keel, and M. Kontsevich, Canonical bases for cluster algebras, Preprint, 2014.

[GHKII] M. Gross, P. Hacking, and S. Keel, Mirror symmetry for log Calabi-Yau surfaces II, in preparation.

[GHKS] M. Gross, P. Hacking, S. Keel, and B. Siebert, Theta functions on varieties with effective anticanonical class, in preparation.

[K3] M. Gross, P. Hacking, S. Keel, and B. Siebert, Theta functions for K3 surfaces, in preparation.

[GPS09] Gross, M.; Pandharipande, R.; Siebert, B. The tropical vertex, Duke Math. J., Volume 153 (2010), pp. 197-362 | DOI | MR

[GS06] Gross, M.; Siebert, B. Mirror symmetry via logarithmic degeneration data, I, J. Differ. Geom., Volume 72 (2006), pp. 169-338 | MR | Zbl

[GS07] Gross, M.; Siebert, B. From real affine geometry to complex geometry, Ann. Math., Volume 174 (2011), pp. 1301-1428 | DOI | MR | Zbl

[GS11] Gross, M.; Siebert, B. Logarithmic Gromov-Witten invariants, J. Am. Math. Soc., Volume 26 (2013), pp. 451-510 | DOI | MR | Zbl

[GSTheta] M. Gross and B. Siebert, Theta functions and mirror symmetry, | arXiv

[G60] A. Grothendieck, Éléments de géométrie algébrique I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., No. 4.

[G61] Grothendieck, A. Éléments de Géométrie Algébrique III, Étude Cohomologique des Faisceaux Cohérents i (1961)

[H04] Hacking, P. Compact moduli of plane curves, Duke Math. J., Volume 124 (2004), pp. 213-257 | DOI | MR | Zbl

[Hi73] Hirzebruch, F. Hilbert modular surfaces, Enseign. Math., Volume 19 (1973), pp. 183-281 | MR | Zbl

[H77] Hartshorne, R. Algebraic Geometry (1977) | Zbl

[IP03] Ionel, E.-N.; Parker, T. Relative Gromov-Witten invariants, Ann. Math., Volume 157 (2003), pp. 45-96 | DOI | MR | Zbl

[KM98] Kollár, J.; Mori, S. Birational Geometry of Algebraic Varieties (1998) | DOI | Zbl

[KS06] Kontsevich, M.; Soibelman, Y. Affine structures and non-Archimedean analytic spaces, The Unity of Mathematics (2006), pp. 321-385 | DOI

[L02] Lang, S. Algebra (2002) | DOI | Zbl

[L73] Laufer, H. Taut two-dimensional singularities, Math. Ann., Volume 205 (1973), pp. 131-164 | DOI | MR | Zbl

[Li00] Li, J. Stable morphisms to singular schemes and relative stable morphisms, J. Differ. Geom., Volume 57 (2000), pp. 509-578

[Li02] Li, J. A degeneration formula of GW-invariants, J. Differ. Geom., Volume 60 (2002), pp. 199-293 | Zbl

[LT98] Li, J.; Tian, G. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Am. Math. Soc., Volume 11 (1998), pp. 119-174 | DOI | MR | Zbl

[LR01] Li, A.-M.; Ruan, Y. Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, I, Invent. Math., Volume 145 (2001), pp. 151-218 | DOI | MR | Zbl

[L81] Looijenga, E. Rational surfaces with an anticanonical cycle, Ann. Math. (2), Volume 114 (1981), pp. 267-322 | DOI | MR | Zbl

[Ma89] Matsumura, H. Commutative Ring Theory (1989) | Zbl

[Mum] Mumford, D. An analytic construction of degenerating Abelian varieties over complete rings, Compos. Math., Volume 24 (1972), pp. 239-272 | Numdam | MR | Zbl

[N80] Nakamura, I. Inoue-Hirzebruch surfaces and a duality of hyperbolic unimodular singularities, Math. Ann., Volume 252 (1980), pp. 221-235 | DOI | MR | Zbl

[Ob04] Oblomkov, A. Double affine Hecke algebras of rank 1 and affine cubic surfaces, Int. Math. Res. Not., Volume 2004 (2004), pp. 877-912 | DOI | MR | Zbl

[R83] Reid, M. Decomposition of toric morphisms, Arithmetic and Geometry, Vol. II (1983), pp. 395-418 | DOI

[SYZ96] Strominger, A.; Yau, S.-T.; Zaslow, E. Mirror symmetry is T-duality, Nucl. Phys. B, Volume 479 (1996), pp. 243-259 | DOI | MR | Zbl

[Ty99] A. Tyurin, Geometric quantization and mirror symmetry, | arXiv

[W76] Wahl, J. Equisingular deformations of normal surface singularities I, Ann. Math. (2), Volume 104 (1976), pp. 325-356 | DOI | MR | Zbl

Cité par Sources :