The classical Riemann-Hilbert correspondence establishes an equivalence between the triangulated category of regular holonomic
In this paper, we prove a Riemann-Hilbert correspondence for holonomic
@article{PMIHES_2016__123__69_0, author = {D{\textquoteright}Agnolo, Andrea and Kashiwara, Masaki}, title = {Riemann-Hilbert correspondence for holonomic {D-modules}}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {69--197}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {123}, year = {2016}, doi = {10.1007/s10240-015-0076-y}, mrnumber = {3502097}, zbl = {1351.32017}, language = {en}, url = {https://www.numdam.org/articles/10.1007/s10240-015-0076-y/} }
TY - JOUR AU - D’Agnolo, Andrea AU - Kashiwara, Masaki TI - Riemann-Hilbert correspondence for holonomic D-modules JO - Publications Mathématiques de l'IHÉS PY - 2016 SP - 69 EP - 197 VL - 123 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-015-0076-y/ DO - 10.1007/s10240-015-0076-y LA - en ID - PMIHES_2016__123__69_0 ER -
%0 Journal Article %A D’Agnolo, Andrea %A Kashiwara, Masaki %T Riemann-Hilbert correspondence for holonomic D-modules %J Publications Mathématiques de l'IHÉS %D 2016 %P 69-197 %V 123 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-015-0076-y/ %R 10.1007/s10240-015-0076-y %G en %F PMIHES_2016__123__69_0
D’Agnolo, Andrea; Kashiwara, Masaki. Riemann-Hilbert correspondence for holonomic D-modules. Publications Mathématiques de l'IHÉS, Tome 123 (2016), pp. 69-197. doi : 10.1007/s10240-015-0076-y. https://www.numdam.org/articles/10.1007/s10240-015-0076-y/
[1.] D. G. Babbitt and V. S. Varadarajan, Local moduli for meromorphic differential equations, Astérisque, 169–170 (1989), 217 pp. | Numdam | MR | Zbl
[2.] On the Laplace transform for tempered holomorphic functions, Int. Math. Res. Not., Volume 16 (2014), pp. 4587-4623 | DOI | MR | Zbl
[3.] On a reconstruction theorem for holonomic systems, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 88 (2012), pp. 178-183 | DOI | MR | Zbl
[4.] Leray’s quantization of projective duality, Duke Math. J., Volume 84 (1996), pp. 453-496 | DOI | MR | Zbl
[5.] Équations Différentielles à Points Singuliers Réguliers (1970) (iii + 133 pp.) | DOI | MR | Zbl
[6.] Singularités Irrégulières, Correspondance et documents (2007) (xii + 188 pp.) | MR | Zbl
[7.] Microlocal theory of sheaves and Tamarkin’s non displaceability theorem, Homological Mirror Symmetry and Tropical Geometry (2014), pp. 43-85 | DOI | MR | Zbl
[8.] Ordinary Differential Equations in the Complex Domain (1976) (xi + 484 pp.) | MR | Zbl
[9.] The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., Volume 20 (1984), pp. 319-365 | DOI | MR | Zbl
[10.]
[11.] Sheaves on Manifolds (1990) (x + 512 pp.) | DOI | MR | Zbl
[12.] M. Kashiwara and P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mém. Soc. Math. France, 64 (1996), iv + 76 pp. | Numdam | MR | Zbl
[13.] M. Kashiwara and P. Schapira, Ind-sheaves, Astérisque, 271 (2001), 136 pp. | Numdam | MR | Zbl
[14.] Microlocal study of ind-sheaves. I. Micro-support and regularity, Astérisque, Volume 284 (2003), pp. 143-164 | Numdam | MR | Zbl
[15.] Categories and Sheaves (2006) (x + 497 pp.) | DOI | Zbl
[16.] Good formal structures for flat meromorphic connections, I: surfaces, Duke Math. J., Volume 154 (2010), pp. 343-418 | DOI | MR | Zbl
[17.] Good formal structures for flat meromorphic connections, II: excellent schemes, J. Am. Math. Soc., Volume 24 (2011), pp. 183-229 | DOI | MR | Zbl
[18.] Asymptotic Analysis for Integrable Connections with Irregular Singular Points (1984) (xiv + 249 pp.) | DOI | Zbl
[19.] Good formal structure for meromorphic flat connections on smooth projective surfaces, Algebraic Analysis and Around (2009), pp. 223-253 | Zbl
[20.]
T. Mochizuki, Wild harmonic bundles and wild pure twistor
[21.] An existence theorem for tempered solutions of
[22.] Preconstructibility of tempered solutions of holonomic
[23.] C. Sabbah, Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque, 263, (2000), viii + 190 pp. | Numdam | Zbl
[24.] Introduction to Stokes Structures (2013) (xiv + 249 pp.) | DOI | Zbl
[25.] D. Tamarkin, Microlocal condition for non-displaceability, 2008, 93 pp., | arXiv
[26.] Asymptotic Expansions for Ordinary Differential Equations (1965) (ix + 362 pp.) | Zbl
- Sheaf quantization from exact WKB analysis, Journal für die reine und angewandte Mathematik (Crelles Journal) (2024) | DOI:10.1515/crelle-2024-0041
- Betti Structures of Hypergeometric Equations, International Mathematics Research Notices, Volume 2023 (2023) no. 12, p. 10641 | DOI:10.1093/imrn/rnac095
- Constructible sheaves and functions up to infinity, Journal of Applied and Computational Topology, Volume 7 (2023) no. 4, p. 707 | DOI:10.1007/s41468-023-00121-0
- Stokes Matrices for Confluent Hypergeometric Equations, International Mathematics Research Notices, Volume 2022 (2022) no. 5, p. 3511 | DOI:10.1093/imrn/rnaa287
- Characteristic cycles associated to holonomic
-modules, Mathematische Zeitschrift, Volume 301 (2022) no. 2, p. 2059 | DOI:10.1007/s00209-022-02974-0 - Stokes matrices for Airy equations, Tohoku Mathematical Journal, Volume 74 (2022) no. 4 | DOI:10.2748/tmj.20210506
- Corrigendum to “
-Constructible enhanced ind-sheaves”, Tsukuba Journal of Mathematics, Volume 46 (2022) no. 2 | DOI:10.21099/tkbjm/20224602271 - D-modules of pure Gaussian type and enhanced ind-sheaves, manuscripta mathematica, Volume 167 (2022) no. 3-4, p. 435 | DOI:10.1007/s00229-021-01281-y
- Irregular perverse sheaves, Compositio Mathematica, Volume 157 (2021) no. 3, p. 573 | DOI:10.1112/s0010437x20007678
- Topology of the Stokes phenomenon, Integrability, Quantization, and Geometry, Volume 103.1 (2021), p. 55 | DOI:10.1090/pspum/103.1/01832
- Enhanced specialization and microlocalization, Selecta Mathematica, Volume 27 (2021) no. 1 | DOI:10.1007/s00029-020-00613-2
- Topological computation of Stokes matrices of some weighted projective lines, manuscripta mathematica, Volume 164 (2021) no. 3-4, p. 327 | DOI:10.1007/s00229-020-01193-3
- On irregularities of Fourier transforms of regular holonomic D-modules, Advances in Mathematics, Volume 366 (2020), p. 107093 | DOI:10.1016/j.aim.2020.107093
- On Some Topological Properties of Fourier Transforms of Regular Holonomic -Modules, Canadian Mathematical Bulletin, Volume 63 (2020) no. 2, p. 454 | DOI:10.4153/s0008439519000559
- On a topological counterpart of regularization for holonomic 𝒟-modules, Journal de l’École polytechnique — Mathématiques, Volume 8 (2020), p. 27 | DOI:10.5802/jep.140
- The six Grothendieck operations on o-minimal sheaves, Mathematische Zeitschrift, Volume 294 (2020) no. 1-2, p. 109 | DOI:10.1007/s00209-019-02274-0
- Introduction, Quantitative Tamarkin Theory (2020), p. 1 | DOI:10.1007/978-3-030-37888-2_1
- Enhanced perversities, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2019 (2019) no. 751, p. 185 | DOI:10.1515/crelle-2016-0062
- Pierre Deligne: A Poet of Arithmetic Geometry, The Abel Prize 2013-2017 (2019), p. 13 | DOI:10.1007/978-3-319-99028-6_2
- A microlocal approach to the enhanced Fourier–Sato transform in dimension one, Advances in Mathematics, Volume 339 (2018), p. 1 | DOI:10.1016/j.aim.2018.09.022
- Three Lectures on Algebraic Microlocal Analysis, Algebraic and Analytic Microlocal Analysis, Volume 269 (2018), p. 63 | DOI:10.1007/978-3-030-01588-6_2
Cité par 21 documents. Sources : Crossref