We consider mirror symmetry for (essentially arbitrary) hypersurfaces in (possibly noncompact) toric varieties from the perspective of the Strominger-Yau-Zaslow (SYZ) conjecture. Given a hypersurface in a toric variety we construct a Landau-Ginzburg model which is SYZ mirror to the blowup of along , under a positivity assumption. This construction also yields SYZ mirrors to affine conic bundles, as well as a Landau-Ginzburg model which can be naturally viewed as a mirror to . The main applications concern affine hypersurfaces of general type, for which our results provide a geometric basis for various mirror symmetry statements that appear in the recent literature. We also obtain analogous results for complete intersections.
@article{PMIHES_2016__123__199_0, author = {Abouzaid, Mohammed and Auroux, Denis and Katzarkov, Ludmil}, title = {Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {199--282}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {123}, year = {2016}, doi = {10.1007/s10240-016-0081-9}, zbl = {1368.14056}, mrnumber = {3502098}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-016-0081-9/} }
TY - JOUR AU - Abouzaid, Mohammed AU - Auroux, Denis AU - Katzarkov, Ludmil TI - Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces JO - Publications Mathématiques de l'IHÉS PY - 2016 SP - 199 EP - 282 VL - 123 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-016-0081-9/ DO - 10.1007/s10240-016-0081-9 LA - en ID - PMIHES_2016__123__199_0 ER -
%0 Journal Article %A Abouzaid, Mohammed %A Auroux, Denis %A Katzarkov, Ludmil %T Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces %J Publications Mathématiques de l'IHÉS %D 2016 %P 199-282 %V 123 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-016-0081-9/ %R 10.1007/s10240-016-0081-9 %G en %F PMIHES_2016__123__199_0
Abouzaid, Mohammed; Auroux, Denis; Katzarkov, Ludmil. Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces. Publications Mathématiques de l'IHÉS, Volume 123 (2016), pp. 199-282. doi : 10.1007/s10240-016-0081-9. http://archive.numdam.org/articles/10.1007/s10240-016-0081-9/
[1.] M. Abouzaid, Family Floer cohomology and mirror symmetry, in Proceedings of the 2014 ICM, vol. II, p. 815, | arXiv
[2.] M. Abouzaid and D. Auroux, Homological mirror symmetry for hypersurfaces in , in preparation.
[3.] Homological mirror symmetry for punctured spheres, J. Am. Math. Soc., Volume 26 (2013), pp. 1051-1083 | DOI | MR | Zbl
[4.] M. Abouzaid and S. Ganatra, Generating Fukaya categories of LG models, in preparation.
[5.] M. Abouzaid and P. Seidel, Lefschetz fibration methods in wrapped Floer cohomology, in preparation.
[6.] Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol., Volume 1 (2007), pp. 51-91 | MR | Zbl
[7.] Special Lagrangian fibrations, wall-crossing, and mirror symmetry, Surveys in Differential Geometry (2009), pp. 1-47 | Zbl
[8.] Infinitely many monotone Lagrangian tori in , Invent. Math., Volume 201 (2015), pp. 909-924 | DOI | MR | Zbl
[9.] Derived categories of coherent sheaves, Proc. International Congress of Mathematicians, vol. II (2002), pp. 47-56 | Zbl
[10.] Some piece-wise smooth Lagrangian fibrations, Rend. Semin. Mat. (Torino), Volume 63 (2005), pp. 223-253 | MR | Zbl
[11.] Lagrangian 3-torus fibrations, J. Differ. Geom., Volume 81 (2009), pp. 483-573 | DOI | MR | Zbl
[12.] SYZ mirror symmetry for toric Calabi-Yau manifolds, J. Differ. Geom., Volume 90 (2012), pp. 177-250 | DOI | MR | Zbl
[13.] Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not., Volume 2004 (2004), pp. 1803-1843 | DOI | MR | Zbl
[14.] Products of Floer cohomology of torus fibers in toric Fano manifolds, Commun. Math. Phys., Volume 260 (2005), pp. 613-640 | DOI | MR | Zbl
[15.] Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math., Volume 10 (2006), pp. 773-814 | DOI | MR | Zbl
[16.] P. Clarke, Duality for toric Landau-Ginzburg models, | arXiv
[17.] Homological mirror symmetry for curves of higher genus, Adv. Math., Volume 230 (2012), pp. 493-530 | DOI | MR | Zbl
[18.] Floer homology for families—a progress report, Integrable Systems, Topology, and Physics (2002), pp. 33-68 | DOI | Zbl
[19.] Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math., Volume 50 (2010), pp. 521-590 | DOI | MR | Zbl
[20.] Lagrangian Intersection Floer Theory: Anomaly and Obstruction I and II (2009) | Zbl
[21.] Lagrangian Floer theory on compact toric manifolds I, Duke Math. J., Volume 151 (2010), pp. 23-174 | DOI | MR | Zbl
[22.] K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian surgery and holomorphic discs, Chapter 10 of [20], available at: http://www.math.kyoto-u.ac.jp/~fukaya/fukaya.html.
[23.] Topological mirror symmetry, Invent. Math., Volume 144 (2001), pp. 75-137 | DOI | MR | Zbl
[24.] Examples of special Lagrangian fibrations, Symplectic Geometry and Mirror Symmetry (2001), pp. 81-109 | DOI | Zbl
[25.] M. Gross, L. Katzarkov and H. Ruddat, Towards mirror symmetry for varieties of general type, | arXiv
[26.] Mirror symmetry via logarithmic degeneration data I, J. Differ. Geom., Volume 72 (2006), pp. 169-338 | DOI | MR | Zbl
[27.] From real affine geometry to complex geometry, Ann. Math., Volume 174 (2011), pp. 1301-1428 | DOI | MR | Zbl
[28.] Mirror symmetry and quantum geometry, Proc. ICM, vol. III (2002), pp. 431-443 | Zbl
[29.] K. Hori and C. Vafa, Mirror symmetry, | arXiv
[30.] D. Joyce, Lectures on Calabi-Yau and special Lagrangian geometry, | arXiv
[31.] On the theory of homology of fiber spaces, Usp. Mat. Nauk, Volume 35 (1980), pp. 183-188 | MR
[32.] Homological mirror symmetry for manifolds of general type, Cent. Eur. J. Math., Volume 7 (2009), pp. 571-605 | MR | Zbl
[33.] Birational geometry and homological mirror symmetry, Real and Complex Singularities (2007), pp. 176-206 | DOI | Zbl
[34.] Homological algebra of mirror symmetry, Proc. International Congress of Mathematicians (1995), pp. 120-139 | DOI | Zbl
[35.] M. Kontsevich, Lectures at ENS, Paris, Spring 1998, notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona, unpublished.
[36.] Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry (2001), pp. 203-263 | DOI | Zbl
[37.] Affine structures and non-Archimedean analytic spaces, The Unity of Mathematics (2006), pp. 321-385 | DOI | Zbl
[38.] The symplectic topology of some rational homology balls, Comment. Math. Helv., Volume 89 (2014), pp. 571-596 | DOI | MR | Zbl
[39.] S. Mau, K. Wehrheim and C. Woodward, functors for Lagrangian correspondences, preprint, | arXiv
[40.] Deformations of calibrated submanifolds, Commun. Anal. Geom., Volume 6 (1998), pp. 705-747 | DOI | MR | Zbl
[41.] Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology, Volume 43 (2004), pp. 1035-1065 | DOI | MR | Zbl
[42.] Spin structures on manifolds, Enseign. Math., Volume 9 (1963), pp. 198-203 | MR | Zbl
[43.] Triangulated categories of singularities and equivalences between Landau-Ginzburg models, Sb. Math., Volume 197 (2006), pp. 1827-1840 | DOI | MR | Zbl
[44.] H. Rullgård, Polynomial amoebas and convexity, preprint (2001).
[45.] A long exact sequence for symplectic Floer cohomology, Topology, Volume 42 (2003), pp. 1003-1063 | DOI | MR | Zbl
[46.] Fukaya categories and Picard-Lefschetz theory, Zurich Lect. in Adv. Math. (2008) | Zbl
[47.] Homological mirror symmetry for the genus two curve, J. Algebraic Geom., Volume 20 (2011), pp. 727-769 | DOI | MR | Zbl
[48.] Fukaya -structures associated to Lefschetz fibrations I, J. Symplectic Geom., Volume 10 (2012), pp. 325-388 | DOI | MR | Zbl
[49.] On the homological mirror symmetry conjecture for pairs of pants, J. Differ. Geom., Volume 89 (2011), pp. 271-367 | DOI | MR | Zbl
[50.] Floer cohomology and pencils of quadrics, Invent. Math., Volume 189 (2012), pp. 149-250 | DOI | MR | Zbl
[51.] Mirror symmetry is T-duality, Nucl. Phys. B, Volume 479 (1996), pp. 243-259 | DOI | MR | Zbl
[52.] On the reconstruction problem in mirror symmetry, Adv. Math., Volume 256 (2014), pp. 449-478 | DOI | MR | Zbl
[53.] K. Wehrheim and C. T. Woodward, Exact triangle for fibered Dehn twists, | arXiv
Cited by Sources: