The article is a contribution to the local theory of geometric Langlands duality. The main result is a categorification of the isomorphism between the (extended) affine Hecke algebra associated to a reductive group and Grothendieck group of equivariant coherent sheaves on Steinberg variety of Langlands dual group ; this isomorphism due to Kazhdan–Lusztig and Ginzburg is a key step in the proof of tamely ramified local Langlands conjectures.
The paper is a continuation of the author’s joint work with Arkhipov, it relies on the technical material developed in a joint work with Yun.
@article{PMIHES_2016__123__1_0, author = {Bezrukavnikov, Roman}, title = {On two geometric realizations of an affine {Hecke} algebra}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--67}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {123}, year = {2016}, doi = {10.1007/s10240-015-0077-x}, mrnumber = {3502096}, zbl = {1345.14017}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-015-0077-x/} }
TY - JOUR AU - Bezrukavnikov, Roman TI - On two geometric realizations of an affine Hecke algebra JO - Publications Mathématiques de l'IHÉS PY - 2016 SP - 1 EP - 67 VL - 123 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-015-0077-x/ DO - 10.1007/s10240-015-0077-x LA - en ID - PMIHES_2016__123__1_0 ER -
%0 Journal Article %A Bezrukavnikov, Roman %T On two geometric realizations of an affine Hecke algebra %J Publications Mathématiques de l'IHÉS %D 2016 %P 1-67 %V 123 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-015-0077-x/ %R 10.1007/s10240-015-0077-x %G en %F PMIHES_2016__123__1_0
Bezrukavnikov, Roman. On two geometric realizations of an affine Hecke algebra. Publications Mathématiques de l'IHÉS, Tome 123 (2016), pp. 1-67. doi : 10.1007/s10240-015-0077-x. http://archive.numdam.org/articles/10.1007/s10240-015-0077-x/
[1.] Perverse sheaves on affine flags and Langlands dual group, Isr. J. Math., Volume 170 (2009), pp. 135-184 | DOI | MR | Zbl
[2.] Quantum groups, the loop Grassmannian, and the Springer resolution, J. Am. Math. Soc., Volume 17 (2004), pp. 595-678 | DOI | MR | Zbl
[3.] Another realization of the category of modules over the small quantum group, Adv. Math., Volume 173 (2003), pp. 114-143 | DOI | MR | Zbl
[4.] Perverse coherent sheaves, Mosc. Math. J., Volume 10 (2010), pp. 3-29 | DOI | MR | Zbl
[5.] Singular support of coherent sheaves and the geometric Langlands conjecture, Sel. Math. New Ser., Volume 21 (2015), pp. 1-199 | DOI | MR | Zbl
[6.] How to glue perverse sheaves, K-Theory, Arithmetic and Geometry (1987) | DOI | MR | Zbl
[7.] A generalization of Casselman’s submodule theorem, Representation Theory of Reductive Groups (1983), pp. 35-52 | DOI | MR | Zbl
[8.] Faisceaux pervers, Analysis and Topology on Singular Spaces, I (1982) | Numdam | MR | Zbl
[9.] Tilting exercises, Mosc. Math. J., Volume 4 (2004), pp. 547-557 | DOI | MR | Zbl
[10.] D. Ben-Zvi and D. Nadler, The character theory of a complex group. | arXiv
[11.] Equivariant Sheaves and Functors (1994) | DOI | MR | Zbl
[12.] Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Isr. J. Math., Volume 170 (2009), pp. 185-206 | DOI | MR | Zbl
[13.] Noncommutative counterparts of the Springer resolution, Proceeding of the International Congress of Mathematicians (2006), pp. 1119-1144 | MR | Zbl
[14.] Cohomology of tilting modules over quantum groups and -structures on derived categories of coherent sheaves, Invent. Math., Volume 166 (2006), pp. 327-357 | DOI | MR | Zbl
[15.] Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory, Volume 7 (2003), pp. 1-18 | DOI | MR | Zbl
[16.] Some results about the geometric Whittaker model, Adv. Math., Volume 186 (2004), pp. 143-152 | DOI | MR | Zbl
[17.] Equivariant Satake category and Kostant–Whittaker reduction, Mosc. Math. J., Volume 8 (2008), pp. 39-72 | DOI | MR | Zbl
[18.] The small quantum group and the Springer resolution, Quantum Groups (2007), pp. 89-101 | DOI | MR | Zbl
[19.] Highest weight modules at the critical level and noncommutative Springer resolution, Contemp. Math., Volume 565 (2012), pp. 15-27 | DOI | MR | Zbl
[20.] Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution, Ann. Math., Volume 178 (2013), pp. 835-919 (with an Appendix by E. Sommers) | DOI | MR | Zbl
[21.] Affine braid group actions on derived categories of Springer resolutions, Ann. Sci. Éc. Norm. Super., Volume 45 (2012), pp. 535-599 | DOI | Numdam | MR | Zbl
[22.] R. Bezrukavnikov and S. Riche, Hodge -modules and braid group actions, in preparation.
[23.] On Koszul duality for Kac-Moody groups, Represent. Theory, Volume 17 (2013), pp. 1-98 (with Appendices by Z. Yun) | DOI | MR | Zbl
[24.] Representation Theory and Complex Geometry (1997) | MR | Zbl
[25.] La conjecture de Weil. II, Publ. Math. IHES, Volume 52 (1980), pp. 137-252 | DOI | Numdam | MR | Zbl
[26.] Catégories tannakiennes, The Grothendieck Festschrift, Vol. II (1990), pp. 111-195 | MR | Zbl
[27.] Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. Math., Volume 153 (2001), pp. 699-748 | DOI | MR | Zbl
[28.] D-modules on the affine flag variety and representations of affine Kac-Moody algebras, Represent. Theory, Volume 13 (2009), pp. 477-608 | DOI | MR | Zbl
[29.] Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math., Volume 144 (2001), pp. 253-280 | DOI | MR | Zbl
[30.] Appendix: braiding compatibilities, Representation Theory of Algebraic Groups and Quantum Groups (2004), pp. 91-100 | DOI | MR | Zbl
[31.] D. Gaitsgory, The notion of category over an algebraic stack. | arXiv
[32.] D. Gaitsgory, Sheaves of categories and the notion of 1-affineness. | arXiv | MR
[33.] Gauge theory, ramification, and the geometric Langlands program, Current Developments in Mathematics (2008), pp. 35-180 | MR | Zbl
[34.] A. Grothendieck, Éléments de géométrie algébrique, III, Publ. Math. IHES, 11 (1961) (partie 1). | Numdam | MR | Zbl
[35.] Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., Volume 87 (1987), pp. 153-215 | DOI | MR | Zbl
[36.] Cells in affine Weyl groups, Algebraic Groups and Related Topics (1985), pp. 255-287 | DOI | MR | Zbl
[37.] Cells in affine Weyl groups. IV, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., Volume 36 (1989), pp. 297-328 | MR | Zbl
[38.] Singularities, character formulas and a -analogue of weight multiplicities, Astérisque, Volume 101–102 (1983), pp. 208-229 | Numdam | MR | Zbl
[39.] Some examples of square integrable representations of semisimple -adic groups, Trans. Am. Math. Soc., Volume 277 (1983), pp. 623-653 | MR | Zbl
[40.] Equivariant K-theory and representations of Hecke algebras, Proc. Am. Math. Soc., Volume 94 (1985), pp. 337-342 | MR | Zbl
[41.] Linear Koszul duality, Compos. Math., Volume 146 (2010), pp. 233-258 | DOI | MR | Zbl
[42.] I. Mirković and S. Riche, Linear Koszul duality and affine Hecke algebras. | arXiv
[43.] The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Am. Math. Soc., Volume 9 (1996), pp. 205-236 | DOI | MR | Zbl
[44.] The connection between the -theory localization theorem of Thomasn, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. Éc. Norm. Super., Volume 25 (1992), pp. 547-566 | DOI | Numdam | MR | Zbl
[45.] Critères de platitude et de projectivité. Techniques de “platification” d’un module, Seconde partie, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl
[46.] Higher algebraic -theory of schemes and of derived categories, The Grothendieck Festschrift (1990), pp. 247-435 | DOI | MR
[47.] Spécialisation de faisceaux et monodromie modérée, Astérisque, Volume 101–102 (1983), pp. 332-364 | Numdam | MR | Zbl
Cité par Sources :