The hyperbolic Ax-Lindemann-Weierstraß conjecture
Publications Mathématiques de l'IHÉS, Tome 123 (2016), pp. 333-360.
DOI : 10.1007/s10240-015-0078-9
Mots-clés : Irreducible Component, Symmetric Domain, Zariski Closure, Shimura Variety, Modular Curf
Klingler, B. 1 ; Ullmo, E. 2 ; Yafaev, A. 3

1 Université Paris-Diderot (Institut de Mathématiques de Jussieu-PRG) and IUF Paris France
2 IHES, Laboratoire Alexander Grothendieck CNRS, Université Paris-Saclay Paris France
3 Department of Mathematics, University College London London UK
@article{PMIHES_2016__123__333_0,
     author = {Klingler, B. and Ullmo, E. and Yafaev, A.},
     title = {The hyperbolic {Ax-Lindemann-Weierstra{\ss}} conjecture},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {333--360},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {123},
     year = {2016},
     doi = {10.1007/s10240-015-0078-9},
     zbl = {1372.14016},
     mrnumber = {3502100},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-015-0078-9/}
}
TY  - JOUR
AU  - Klingler, B.
AU  - Ullmo, E.
AU  - Yafaev, A.
TI  - The hyperbolic Ax-Lindemann-Weierstraß conjecture
JO  - Publications Mathématiques de l'IHÉS
PY  - 2016
SP  - 333
EP  - 360
VL  - 123
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-015-0078-9/
DO  - 10.1007/s10240-015-0078-9
LA  - en
ID  - PMIHES_2016__123__333_0
ER  - 
%0 Journal Article
%A Klingler, B.
%A Ullmo, E.
%A Yafaev, A.
%T The hyperbolic Ax-Lindemann-Weierstraß conjecture
%J Publications Mathématiques de l'IHÉS
%D 2016
%P 333-360
%V 123
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-015-0078-9/
%R 10.1007/s10240-015-0078-9
%G en
%F PMIHES_2016__123__333_0
Klingler, B.; Ullmo, E.; Yafaev, A. The hyperbolic Ax-Lindemann-Weierstraß conjecture. Publications Mathématiques de l'IHÉS, Tome 123 (2016), pp. 333-360. doi : 10.1007/s10240-015-0078-9. https://www.numdam.org/articles/10.1007/s10240-015-0078-9/

[1.] Ash, A.; Mumford, D.; Rapoport, M.; Tai, Y. Smooth Compactification of Locally Symmetric Varieties (1975) | Zbl

[2.] Ax, J. On Schanuel’s conjecture, Ann. Math., Volume 93 (1971), pp. 1-24 | DOI | MR | Zbl

[3.] Baily, W. L.; Borel, A. Compactification of arithmetic quotients of bounded symmetric domains, Ann. Math., Volume 84 (1966), pp. 442-528 | DOI | MR | Zbl

[4.] Borel, A. Introduction aux Groupes Arithmétiques (1969) | Zbl

[5.] C. Daw and M. Orr, Heights of pre-special points of Shimura varieties, Math. Ann., to appear, | arXiv

[6.] Deligne, P. Variétés de Shimura: interprétation modulaire et techniques de construction de modèles canoniques, Automorphic Forms, Representations, and L-Functions, Part. 2 (1979), pp. 247-290 | DOI | Zbl

[7.] van den Dries, L. Tame Topology and o-Minimal Structures (1998) | DOI | MR | Zbl

[8.] van den Dries, L.; Miller, C. On the real exponential field with restricted analytic functions, Isr. J. Math., Volume 85 (1994), pp. 19-56 | DOI | MR | Zbl

[9.] Edixhoven, B.; Yafaev, A. Subvarieties of Shimura varieties, Ann. Math., Volume 157 (2003), pp. 621-645 | DOI | MR | Zbl

[10.] Fortuna, E.; Lojasiewicz, S. Sur l’algébricité des ensembles analytiques complexes, J. Reine Angew. Math., Volume 329 (1981), pp. 215-220 | MR | Zbl

[11.] Hwang, J. M.; To, W. K. Volumes of complex analytic subvarieties of Hermitian symmetric spaces, Am. J. Math., Volume 124 (2002), pp. 1221-1246 | DOI | MR | Zbl

[12.] Klingler, B.; Yafaev, A. The André-Oort conjecture, Ann. Math., Volume 180 (2014), pp. 867-925 | DOI | MR | Zbl

[13.] Lindemann, F. Über die Zahl π, Math. Ann., Volume 20 (1882), pp. 213-225 | DOI | JFM | MR

[14.] Margulis, G. A. Discrete Subgroups of Semisimple Lie Groups (1991) | DOI | MR | Zbl

[15.] Mok, N. Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds (1989) | DOI | MR | Zbl

[16.] Mok, N. On the Zariski closure of a germ of totally geodesic complex submanifold on a subvariety of a complex hyperbolic space form of finite volume, Complex Analysis (2010) | DOI | MR | Zbl

[17.] Mok, N. Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric, J. Eur. Math. Soc., Volume 14 (2012), pp. 1617-1656 | DOI | MR | Zbl

[18.] Moonen, B. Linearity properties of Shimura varieties. I, J. Algeb. Geom., Volume 7 (1998), pp. 539-567 | MR | Zbl

[19.] Mumford, D. Hirzebruch’s proportionality theorem in the non-cocompact case, Invent. Math., Volume 42 (1979), pp. 239-272 | DOI | MR | Zbl

[20.] Peterzil, Y.; Starchenko, S. Definability of restricted theta functions and families of Abelian varieties, Duke Math. J., Volume 162 (2013), pp. 731-765 | DOI | MR | Zbl

[21.] Peterzil, Y.; Starchenko, S. Tame complex analysis and o-minimality, Proceedings of the ICM (2010) (Available on first author’s web-page) | MR | Zbl

[22.] Pyateskii-Shapiro, I. I. Automorphic Functions and the Geometry of Classical Domains (1969) (translated from the Russian) | MR | Zbl

[23.] Pila, J. O-minimality and the Andre-Oort conjecture for Cn, Ann. Math., Volume 173 (2011), pp. 1779-1840 | DOI | MR | Zbl

[24.] Pila, J.; Wilkie, A. The rational points on a definable set, Duke Math. J., Volume 133 (2006), pp. 591-616 | DOI | MR | Zbl

[25.] Pila, J.; Tsimerman, J. The André-Oort conjecture for the moduli space of abelian surfaces, Compos. Math., Volume 149 (2013), pp. 204-216 | DOI | MR | Zbl

[26.] Pila, J.; Tsimerman, J. Ax-Lindemann for Ag, Ann. Math., Volume 179 (2014), pp. 659-681 | DOI | MR | Zbl

[27.] Pila, J.; Zannier, U. Rational points in periodic analytic sets and the Manin-Mumford conjecture, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 19 (2008), pp. 149-162 | DOI | MR | Zbl

[28.] Satake, I. Algebraic Structures of Symmetric Domains (1980) | MR | Zbl

[29.] T. Scanlon, O-minimality as an approach to the André-Oort conjecture, preprint (2012). Available on author’s web-page. | MR

[30.] Ullmo, E. Applications du théorème d’Ax-Lindemann hyperbolique, Compos. Math., Volume 150 (2014), pp. 175-190 | DOI | MR | Zbl

[31.] Ullmo, E.; Yafaev, A. Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture, Ann. Math., Volume 180 (2014), pp. 823-865 | DOI | MR | Zbl

[32.] Ullmo, E.; Yafaev, A. A characterisation of special subvarieties, Mathematika, Volume 57 (2011), pp. 263-273 | DOI | MR | Zbl

[33.] Ullmo, E.; Yafaev, A. Nombre de classes des tores de multiplication complexe et bornes inférieures pour orbites Galoisiennes de points spéciaux, Bull. Soc. Math. Fr., Volume 143 (2015), pp. 197-228 | DOI | MR | Zbl

[34.] Ullmo, E.; Yafaev, A. Hyperbolic Ax-Lindemann theorem in the cocompact case, Duke Math. J., Volume 163 (2014), pp. 433-463 | DOI | MR | Zbl

[35.] Tsimermann, J. Brauer-Siegel theorem for tori and lower bounds for Galois orbits of special points, J. Am. Math. Soc., Volume 25 (2012), pp. 1091-1117 | DOI | MR | Zbl

[36.] K. Weierstraß, Zu Lindemanns Abhandlung: “Über die Ludolph’sche Zahl”, Berl. Ber. (1885), 1067–1086. | JFM

[37.] Wolf, J. A.; Korányi, A. Generalized Cailey transformations of bounded symmetric domains, Am. J. Math., Volume 87 (1965), pp. 899-939 | DOI | MR | Zbl

  • Chiu, Kenneth Chung Tak Ax–Schanuel for variations of mixed Hodge structures, Mathematische Annalen, Volume 391 (2025) no. 2, p. 1681 | DOI:10.1007/s00208-024-02958-x
  • Richard, Rodolphe; Ullmo, Emmanuel Équidistribution de sous-variétés faiblement spéciales et o-minimalité : André-Oort géométrique, Annales de l'Institut Fourier, Volume 74 (2024) no. 6, p. 2667 | DOI:10.5802/aif.3644
  • Richard, Rodolphe; Yafaev, Andrei Height functions on Hecke orbits and the generalised André–Pink–Zannier conjecture, Compositio Mathematica, Volume 160 (2024) no. 11, p. 2531 | DOI:10.1112/s0010437x2400722x
  • Wong, Kwok-Kin; Yeung, Sai-Kee Carathéodory hyperbolicity, volume estimates and level structures over function fields, Mathematische Annalen (2024) | DOI:10.1007/s00208-024-03066-6
  • Gao, Ziyang; Klingler, Bruno The Ax–Schanuel conjecture for variations of mixed Hodge structures, Mathematische Annalen, Volume 388 (2024) no. 4, p. 3847 | DOI:10.1007/s00208-023-02614-w
  • Richard, Rodolphe; Yafaev, Andrei On the generalised André–Pink–Zannier conjecture., Comptes Rendus. Mathématique, Volume 361 (2023) no. G11, p. 1717 | DOI:10.5802/crmath.491
  • Daw, Christopher; Orr, Martin Lattices with skew-Hermitian forms over division algebras and unlikely intersections, Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), p. 1097 | DOI:10.5802/jep.240
  • Huynh, Dinh Tuan; Sun, Ruiran; Xie, Song-Yan Big Picard theorem for jet differentials and non-archimedean Ax-Lindemann theorem, Journal of Number Theory, Volume 253 (2023), p. 257 | DOI:10.1016/j.jnt.2023.06.010
  • Binyamini, Gal; Schmidt, Harry; Yafaev, Andrei Lower bounds for Galois orbits of special points on Shimura varieties: a point-counting approach, Mathematische Annalen, Volume 385 (2023) no. 1-2, p. 961 | DOI:10.1007/s00208-021-02309-0
  • Daw, Christopher; Gorodnik, Alexander; Ullmo, Emmanuel The space of homogeneous probability measures on ΓXmaxS is compact, Mathematische Annalen, Volume 386 (2023) no. 1-2, p. 987 | DOI:10.1007/s00208-022-02412-w
  • Ngaiming, Mok Complex differential geometry and its applications, Chinese Science Bulletin, Volume 67 (2022) no. 32, p. 3737 | DOI:10.1360/tb-2022-0589
  • Daw, Christopher; Orr, Martin Quantitative Reduction Theory and Unlikely Intersections, International Mathematics Research Notices, Volume 2022 (2022) no. 20, p. 16138 | DOI:10.1093/imrn/rnab173
  • Richard, Rodolphe Manin-Mumford par le critère de Weyl, Journal of Number Theory, Volume 239 (2022), p. 137 | DOI:10.1016/j.jnt.2021.11.007
  • Huang, Jiaxing; Ng, Tuen Wai Ax–Schanuel type theorems on functional transcendence via Nevanlinna theory, Mathematische Zeitschrift, Volume 300 (2022) no. 2, p. 1639 | DOI:10.1007/s00209-021-02848-x
  • Klingler, B.; Otwinowska, A. On the closure of the Hodge locus of positive period dimension, Inventiones mathematicae, Volume 225 (2021) no. 3, p. 857 | DOI:10.1007/s00222-021-01042-4
  • Chen, Jiaming On the geometric André–Oort conjecture for variations of Hodge structures, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2021 (2021) no. 776, p. 295 | DOI:10.1515/crelle-2021-0011
  • Bakker, Benjamin; Tsimerman, Jacob Lectures on the Ax–Schanuel conjecture, Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces (2020), p. 1 | DOI:10.1007/978-3-030-49864-1_1
  • Gao, Ziyang Mixed Ax–Schanuel for the universal abelian varieties and some applications, Compositio Mathematica, Volume 156 (2020) no. 11, p. 2263 | DOI:10.1112/s0010437x20007447
  • Gao, Ziyang Generic rank of Betti map and unlikely intersections, Compositio Mathematica, Volume 156 (2020) no. 12, p. 2469 | DOI:10.1112/s0010437x20007435
  • Bakker, B.; Klingler, B.; Tsimerman, J. Tame topology of arithmetic quotients and algebraicity of Hodge loci, Journal of the American Mathematical Society, Volume 33 (2020) no. 4, p. 917 | DOI:10.1090/jams/952
  • Mok, Ngaiming Zariski closures of images of algebraic subsets under the uniformization map on finite-volume quotients of the complex unit ball, Compositio Mathematica, Volume 155 (2019) no. 11, p. 2129 | DOI:10.1112/s0010437x19007577
  • Richard, Rodolphe; Yafaev, Andrei Topological and equidistributional refinement of the André–Pink–Zannier conjecture at finitely many places, Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, p. 231 | DOI:10.1016/j.crma.2019.01.013
  • Richard, Rodolphe; Zamojski, Tomasz Stabilité analytique et convergence locale de translatées en dynamique homogène S-arithmétique, Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, p. 241 | DOI:10.1016/j.crma.2019.02.005
  • GAO, ZIYANG ENLARGED MIXED SHIMURA VARIETIES, BI-ALGEBRAIC SYSTEM AND SOME AX TYPE TRANSCENDENTAL RESULTS, Forum of Mathematics, Sigma, Volume 7 (2019) | DOI:10.1017/fms.2019.10
  • Bakker, Benjamin; Tsimerman, Jacob The Ax–Schanuel conjecture for variations of Hodge structures, Inventiones mathematicae, Volume 217 (2019) no. 1, p. 77 | DOI:10.1007/s00222-019-00863-8
  • Scanlon, Thomas Algebraic differential equations from covering maps, Advances in Mathematics, Volume 330 (2018), p. 1071 | DOI:10.1016/j.aim.2018.03.008
  • Giacomini, Michele Holomorphic curves in Shimura varieties, Archiv der Mathematik, Volume 111 (2018) no. 4, p. 379 | DOI:10.1007/s00013-018-1227-4
  • Daw, Christopher; Ren, Jinbo Applications of the hyperbolic Ax–Schanuel conjecture, Compositio Mathematica, Volume 154 (2018) no. 9, p. 1843 | DOI:10.1112/s0010437x1800725x
  • Mok, Ngaiming Some Recent Results on Holomorphic Isometries of the Complex Unit Ball into Bounded Symmetric Domains and Related Problems, Geometric Complex Analysis, Volume 246 (2018), p. 269 | DOI:10.1007/978-981-13-1672-2_21
  • Ullmo, Emmanuel; Yafaev, Andrei Algebraic flows on Shimura varieties, manuscripta mathematica, Volume 155 (2018) no. 3-4, p. 355 | DOI:10.1007/s00229-017-0949-0
  • Chambert-Loir, Antoine; Loeser, François A nonarchimedean Ax–Lindemann theorem, Algebra Number Theory, Volume 11 (2017) no. 9, p. 1967 | DOI:10.2140/ant.2017.11.1967
  • Gao, Ziyang About the mixed André–Oort conjecture: Reduction to a lower bound for the pure case, Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, p. 659 | DOI:10.1016/j.crma.2016.01.024

Cité par 32 documents. Sources : Crossref