Let be a complex semisimple Lie algebra, and , the corresponding Yangian and quantum loop algebra, with deformation parameters related by . When is not a rational number, we constructed in Gautam and Toledano Laredo (J. Am. Math. Soc. 29:775, 2016) a faithful functor from the category of finite-dimensional representations of to those of . The functor is governed by the additive difference equations defined by the commuting fields of the Yangian, and restricts to an equivalence on a subcategory of defined by choosing a branch of the logarithm. In this paper, we construct a tensor structure on and show that, if , it yields an equivalence of meromorphic braided tensor categories, when and are endowed with the deformed Drinfeld coproducts and the commutative part of their universal -matrices. This proves in particular the Kohno–Drinfeld theorem for the abelian KZ equations defined by . The tensor structure arises from the abelian KZ equations defined by an appropriate regularisation of the commutative part of the -matrix of .
@article{PMIHES_2017__125__267_0, author = {Gautam, Sachin and Toledano Laredo, Valerio}, title = {Meromorphic tensor equivalence for {Yangians} and quantum loop algebras}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {267--337}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {125}, year = {2017}, doi = {10.1007/s10240-017-0089-9}, zbl = {1432.17012}, mrnumber = {3668651}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-017-0089-9/} }
TY - JOUR AU - Gautam, Sachin AU - Toledano Laredo, Valerio TI - Meromorphic tensor equivalence for Yangians and quantum loop algebras JO - Publications Mathématiques de l'IHÉS PY - 2017 SP - 267 EP - 337 VL - 125 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-017-0089-9/ DO - 10.1007/s10240-017-0089-9 LA - en ID - PMIHES_2017__125__267_0 ER -
%0 Journal Article %A Gautam, Sachin %A Toledano Laredo, Valerio %T Meromorphic tensor equivalence for Yangians and quantum loop algebras %J Publications Mathématiques de l'IHÉS %D 2017 %P 267-337 %V 125 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-017-0089-9/ %R 10.1007/s10240-017-0089-9 %G en %F PMIHES_2017__125__267_0
Gautam, Sachin; Toledano Laredo, Valerio. Meromorphic tensor equivalence for Yangians and quantum loop algebras. Publications Mathématiques de l'IHÉS, Tome 125 (2017), pp. 267-337. doi : 10.1007/s10240-017-0089-9. http://archive.numdam.org/articles/10.1007/s10240-017-0089-9/
[1.] Finite-dimensional representations of quantum affine algebras at roots of unity, J. Am. Math. Soc., Volume 9 (1996), pp. 391-423 | DOI | MR | Zbl
[2.] General theory of linear difference equations, Trans. Am. Math. Soc., Volume 12 (1911), pp. 243-284 | DOI | MR | Zbl
[3.] Isomonodromy transformations of linear systems of difference equations, Ann. Math., Volume 160 (2004), pp. 1141-1182 | DOI | MR | Zbl
[4.] La -matrice pour les algèbres quantiques de type affine non tordu, Ann. Sci. Éc. Norm. Supér., Volume 13 (1998), pp. 493-523 | DOI | Numdam | Zbl
[5.] Elliptic dynamical -matrices from the monodromy of the -Knizhnik–Zamolodchikov equations for the standard representation of , Asian J. Math., Volume 7 (2003), pp. 91-114 | DOI | MR | Zbl
[6.] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras, Preprint FTINT (1986), pp. 30–86.
[7.] A new realization of Yangians and quantum affine algebras, Sov. Math. Dokl., Volume 36 (1988), pp. 212-216 | MR
[8.] Weight functions and Drinfeld currents, Commun. Math. Phys., Volume 276 (2007), pp. 691-725 | DOI | MR | Zbl
[9.] On the quantum Kazhdan–Lusztig functor, Math. Res. Lett., Volume 9 (2002), pp. 449-463 | DOI | MR | Zbl
[10.] Analysis on Lie Groups, an Introduction (2008) | DOI | Zbl
[11.] Quantum affine algebras and holonomic difference equations, Commun. Math. Phys., Volume 146 (1992), pp. 1-60 | DOI | MR | Zbl
[12.] S. Gautam and V. Toledano Laredo, Quantum Kazhdan–Lusztig equivalence in the rational setting, in preparation.
[13.] Yangians, quantum loop algebras and abelian difference equations, J. Am. Math. Soc., Volume 29 (2016), pp. 775-824 | DOI | MR | Zbl
[14.] Representations of quantum affinizations and fusion product, Transform. Groups, Volume 10 (2005), pp. 163-200 | DOI | MR | Zbl
[15.] Drinfeld coproduct, quantum fusion tensor category and applications, Proc. Lond. Math. Soc. (3), Volume 95 (2007), pp. 567-608 | DOI | MR | Zbl
[16.] Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math., Volume 2015 (2015), pp. 77-126 | MR | Zbl
[17.] Tensor structures arising from affine Lie algebras. I, II, J. Am. Math. Soc., Volume 6 (1993), pp. 905-947 (949–1011) | DOI | MR | Zbl
[18.] Tensor structures arising from affine Lie algebras. III, J. Am. Math. Soc., Volume 7 (1994), pp. 335-381 | DOI | MR | Zbl
[19.] Tensor structures arising from affine Lie algebras. IV, J. Am. Math. Soc., Volume 7 (1994), pp. 383-453 | DOI | MR | Zbl
[20.] Representations of quantum affine algebras, Sel. Math. New Ser., Volume 1 (1995), pp. 537-595 | DOI | MR | Zbl
[21.] Yangian double, Lett. Math. Phys., Volume 36 (1996), pp. 373-402 | DOI | MR | Zbl
[22.] Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem, Russ. Math. Surv., Volume 59 (2004), pp. 1117-1154 | DOI | MR | Zbl
[23.] On generators and defining relations of Yangians, J. Geom. Phys., Volume 12 (1993), pp. 1-11 | DOI | MR
[24.] D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, | arXiv
[25.] A. Okounkov, Computations in quantum -theory, Lectures at Northeastern University, March 17, 19 and 20, 2015.
[26.] Systèmes aux -différences singuliers réguliers: classification, matrice de connexion et monodromie, Ann. Inst. Fourier (Grenoble), Volume 50 (2000), pp. 1021-1071 | DOI | Numdam | MR | Zbl
[27.] Form Factors in Completely Integrable Models of Quantum Field Theory (1992) | Zbl
[28.] The meromorphic braided category arising in quantum affine algebras, Int. Math. Res. Not., Volume 19 (1999), pp. 1067-1079 | MR | Zbl
[29.] Geometry of q-hypergeometric functions as a bridge between Yangians and quantum affine algebras, Invent. Math., Volume 128 (1997), pp. 501-588 | DOI | MR | Zbl
[30.] Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque, Volume 246 (1997), pp. 1-135 | Numdam | MR | Zbl
[31.] Galois Theory of Difference Equations (1997) | Zbl
Cité par Sources :