We present the min-max construction of critical points of the area using penalization arguments. Precisely, for any immersion of a closed surface
@article{PMIHES_2017__126__177_0, author = {Rivi\`ere, Tristan}, title = {A viscosity method in the min-max theory of minimal surfaces}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {177--246}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {126}, year = {2017}, doi = {10.1007/s10240-017-0094-z}, mrnumber = {3735867}, zbl = {1387.53084}, language = {en}, url = {https://www.numdam.org/articles/10.1007/s10240-017-0094-z/} }
TY - JOUR AU - Rivière, Tristan TI - A viscosity method in the min-max theory of minimal surfaces JO - Publications Mathématiques de l'IHÉS PY - 2017 SP - 177 EP - 246 VL - 126 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-017-0094-z/ DO - 10.1007/s10240-017-0094-z LA - en ID - PMIHES_2017__126__177_0 ER -
%0 Journal Article %A Rivière, Tristan %T A viscosity method in the min-max theory of minimal surfaces %J Publications Mathématiques de l'IHÉS %D 2017 %P 177-246 %V 126 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-017-0094-z/ %R 10.1007/s10240-017-0094-z %G en %F PMIHES_2017__126__177_0
Rivière, Tristan. A viscosity method in the min-max theory of minimal surfaces. Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 177-246. doi : 10.1007/s10240-017-0094-z. https://www.numdam.org/articles/10.1007/s10240-017-0094-z/
[1.] On the first variation of a varifold, Ann. Math. (2), Volume 95 (1972), pp. 417-491 | DOI | MR | Zbl
[2.] Y. Bernard, Noether’s theorem and the Willmore functional, 2014, | arXiv
[3.] Energy quantization for Willmore surfaces and applications, Ann. Math. (2), Volume 180 (2014), pp. 87-136 | DOI | MR | Zbl
[4.] Y. Bernard and T. Rivière, Uniform regularity results for critical and subcritical surface energies, in preparation.
[5.] The min-max construction of minimal surfaces, Surveys in Differential Geometry (2003), pp. 75-107
[6.] Width and mean curvature flow, Geom. Topol., Volume 12 (2008), pp. 2517-2535 | DOI | MR | Zbl
[7.] Width and finite extinction time of Ricci flow, Geom. Topol., Volume 12 (2008), pp. 2537-2586 | DOI | MR | Zbl
[8.] Genus bounds for minimal surfaces arising from min-max constructions, J. Reine Angew. Math., Volume 644 (2010), pp. 47-99 | MR | Zbl
[9.] Geometric Measure Theory (1969) | Zbl
[10.] P. Gaspar and M. A. M. Guaraco, The Allen–Cahn equation on closed manifolds, | arXiv
[11.] M. A. M. Guaraco, Min-max for phase transitions and the existence of embedded minimal hypersurfaces, | arXiv
[12.] Immersions of manifolds, Trans. Am. Math. Soc., Volume 93 (1959), pp. 242-276 | DOI | MR | Zbl
[13.] Gromov’s Compactness Theorem for Pseudo-Holomorphic Curves (1997) | DOI | Zbl
[14.] Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J., Volume 35 (1986), pp. 45-71 | DOI | MR | Zbl
[15.] Convergence of phase interfaces in the van der Waals–Cahn–Hilliard theory, Calc. Var. Partial Differ. Equ., Volume 10 (2000), pp. 49-84 | DOI | MR | Zbl
[16.] An Introduction to Teichmüller Spaces (1992) (Translated and revised from the Japanese by the authors) | DOI | Zbl
[17.] Geometric Function Theory and Non-linear Analysis (2001) | Zbl
[18.] Two dimensional curvature functionals with superquadratic growth, J. Eur. Math. Soc., Volume 17 (2015), pp. 3081-3111 | DOI | MR | Zbl
[19.] Fundamentals of Differential Geometry (1999) | Zbl
[20.] A compactness theorem for surfaces with
[21.] A Luzin type property of Sobolev functions, Indiana Univ. Math. J., Volume 26 (1977), pp. 645-651 | DOI | MR | Zbl
[22.] Min-max theory and the Willmore conjecture, Ann. Math. (2), Volume 179 (2014), pp. 683-782 | DOI | MR | Zbl
[23.] F. C. Marques and A. Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, 2013, | arXiv
[24.] Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math., Volume 4 (2016), pp. 463-511 | DOI | MR | Zbl
[25.] A viscosity method for the min-max construction of closed geodesics, ESAIM Control Optim. Calc. Var., Volume 22 (2016), pp. 1282-1324 | DOI | Numdam | MR | Zbl
[26.] Willmore spheres in compact Riemannian manifolds, Adv. Math., Volume 232 (2013), pp. 608-676 | DOI | MR | Zbl
[27.] Immersed spheres of finite total curvature into manifolds, Adv. Calc. Var., Volume 7 (2014), pp. 493-538 | DOI | MR | Zbl
[28.] The problem of Plateau on a Riemannian manifold, Ann. Math., Volume 49 (1948), pp. 807-851 | DOI | MR | Zbl
[29.] Critical point theory and the minmax principle, Proc. Sympos. Pure Math. (1970), pp. 185-212
[30.] A. Pigati and T. Rivière, The regularity of parametrized integer 2-rectifiable stationary varifolds, 2017, | arXiv
[31.] Existence and Regularity of Minimal Surfaces on Riemannian Manifolds (1981) | DOI | Zbl
[32.] Weak immersions of surfaces with
[33.] Analysis aspects of Willmore surfaces, Invent. Math., Volume 174 (2008), pp. 1-45 | DOI | MR | Zbl
[34.] Lipschitz conformal immersions from degenerating Riemann surfaces with
[35.] The regularity of Conformal Target Harmonic Maps, Calc. Var. Partial Differ. Equ., Volume 56 (2017) | DOI | MR | Zbl
[36.] T. Rivière, Minmax methods in the calculus of variations of curves and surfaces, Course given at Columbia in May 2016, https://people.math.ethz.ch/~riviere/minmax.html.
[37.] T. Rivière, Minmax hierarchies and minimal surfaces in manifolds, | arXiv
[38.] The existence of minimal immersions of 2-spheres, Ann. Math. (2), Volume 113 (1981), pp. 1-24 | DOI | MR | Zbl
[39.] Lectures on Geometric Measure Theory (1983) | Zbl
[40.] A classification of immersions of the two-sphere, Trans. Am. Math. Soc., Volume 90 (1958), pp. 281-290 | DOI | MR | Zbl
[41.] F. Smith, On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary Riemannian metric, supervisor L. Simon, University of Melbourne, 1982.
[42.] D. Stern, A natural min-max construction for Ginzburg–Landau functionals, | arXiv
[43.]
D. Stern, Energy concentration for min-max solutions of the Ginzburg–Landau equations on manifolds with
[44.] Paracompactness and product spaces, Bull. Am. Math. Soc., Volume 54 (1948), pp. 977-982 | DOI | MR | Zbl
[45.] The existence of surfaces of constant mean curvature with free boundaries, Acta Math., Volume 160 (1988), pp. 19-64 | DOI | MR | Zbl
[46.] Positive solutions of critical semilinear elliptic equations on non-contractible planar domains, J. Eur. Math. Soc., Volume 2 (2000), pp. 329-388 | DOI | MR | Zbl
[47.] Stable phase interfaces in the van der Waals–Cahn–Hilliard theory, J. Reine Angew. Math. (Crelles J.), Volume 2012 (2012) | Zbl
[48.] X. Zhou, On the existence of min-max minimal torus, J. Geom. Anal., 20 (2010).
[49.]
X. Zhou, On the existence of min-max minimal surface of genus
Cité par Sources :