@article{AIHPB_2003__39_3_413_0, author = {Van der Hofstad, Remco and Slade, Gordon}, title = {Convergence of critical oriented percolation to super-brownian motion above $4+1$ dimensions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {413--485}, publisher = {Elsevier}, volume = {39}, number = {3}, year = {2003}, doi = {10.1016/S0246-0203(03)00008-6}, mrnumber = {1978987}, zbl = {1020.60099}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0246-0203(03)00008-6/} }
TY - JOUR AU - Van der Hofstad, Remco AU - Slade, Gordon TI - Convergence of critical oriented percolation to super-brownian motion above $4+1$ dimensions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 413 EP - 485 VL - 39 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0246-0203(03)00008-6/ DO - 10.1016/S0246-0203(03)00008-6 LA - en ID - AIHPB_2003__39_3_413_0 ER -
%0 Journal Article %A Van der Hofstad, Remco %A Slade, Gordon %T Convergence of critical oriented percolation to super-brownian motion above $4+1$ dimensions %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 413-485 %V 39 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0246-0203(03)00008-6/ %R 10.1016/S0246-0203(03)00008-6 %G en %F AIHPB_2003__39_3_413_0
Van der Hofstad, Remco; Slade, Gordon. Convergence of critical oriented percolation to super-brownian motion above $4+1$ dimensions. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 3, pp. 413-485. doi : 10.1016/S0246-0203(03)00008-6. http://archive.numdam.org/articles/10.1016/S0246-0203(03)00008-6/
[1] Superprocess local and intersection local times and their corresponding particle pictures, in: , , (Eds.), Seminar on Stochastic Processes 1992, Birkhäuser, Boston, 1993, pp. 1-42. | MR | Zbl
,[2] Sharpness of the phase transition in percolation models, Comm. Math. Phys. 108 (1987) 489-526. | MR | Zbl
, ,[3] Tree graph inequalities and critical behavior in percolation models, J. Stat. Phys. 36 (1984) 107-143. | MR | Zbl
, ,[4] Tree-based models for random distribution of mass, J. Stat. Phys. 73 (1993) 625-641. | MR | Zbl
,[5] On the filtration of historical Brownian motion, Ann. Probab. 22 (1994) 1273-1294. | MR | Zbl
, ,[6] The critical contact process dies out, Ann. Probab. 18 (1990) 1462-1482. | MR | Zbl
, ,[7] E. Bolthausen, C. Ritzmann, A central limit theorem for convolution equations and weakly self-avoiding walks, Ann. Probab., to appear.
[8] Self-avoiding walk in 5 or more dimensions, Comm. Math. Phys. 97 (1985) 125-148. | MR | Zbl
, ,[9] Rescaled voter models converge to super-Brownian motion, Ann. Probab. 28 (2000) 185-234. | MR | Zbl
, , ,[10] Rescaled particle systems converging to super-Brownian motion, in: , (Eds.), Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten, Birkhäuser, Basel, 1999. | MR | Zbl
, , ,[11] Measure-Valued Markov Processes, in: Ecole d'Eté de Probabilités de Saint-Flour 1991, Lecture Notes in Mathematics, 1541, Springer, Berlin, 1993. | MR | Zbl
,[12] Lattice trees and super-Brownian motion, Canad. Math. Bull. 40 (1997) 19-38. | MR | Zbl
, ,[13] The scaling limit of lattice trees in high dimensions, Comm. Math. Phys. 193 (1998) 69-104. | MR | Zbl
, ,[14] Rescaled contact processes converge to super-Brownian motion in two or more dimensions, Probab. Theory Related Fields 114 (1999) 309-399. | MR | Zbl
, ,[15] Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times, Astérisque 157-158 (1988) 147-171. | Zbl
,[16] An Introduction to Branching Measure-Valued Processes, American Mathematical Society, Providence, RI, 1994. | MR | Zbl
,[17] An Introduction to Superprocesses, American Mathematical Society, Providence, RI, 2000. | MR | Zbl
,[18] Percolation, Springer, Berlin, 1999. | MR | Zbl
,[19] Directed percolation and random walk, in: (Ed.), In and Out of Equilibrium, Birkhäuser, Boston, 2002, pp. 273-297. | MR | Zbl
, ,[20] Mean-field critical behaviour for percolation in high dimensions, Comm. Math. Phys. 128 (1990) 333-391. | MR | Zbl
, ,[21] The number and size of branched polymers in high dimensions, J. Stat. Phys. 67 (1992) 1009-1038. | MR | Zbl
, ,[22] The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents, J. Stat. Phys. 99 (2000) 1075-1168. | MR | Zbl
, ,[23] The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion, J. Math. Phys. 41 (2000) 1244-1293. | MR | Zbl
, ,[24] Construction of the incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions, Comm. Math. Phys. 231 (2002) 435-461. | MR | Zbl
, , ,[25] A new inductive approach to the lace expansion for self-avoiding walks, Probab. Theory Related Fields 111 (1998) 253-286. | MR | Zbl
, , ,[26] R. van der Hofstad, G. Slade, The lace expansion on a tree with application to networks of self-avoiding walks, Adv. Appl. Math., to appear. | MR | Zbl
[27] A generalised inductive approach to the lace expansion, Probab. Theory Related Fields 122 (2002) 389-430. | MR | Zbl
, ,[28] Spatial Branching Processes, Random Snakes, and Partial Differential Equations, Birkhäuser, Basel, 1999. | MR | Zbl
,[29] The Self-Avoiding Walk, Birkhäuser, Boston, 1993. | MR | Zbl
, ,[30] Coincidence of critical points in percolation problems, Soviet Math. Dokl. 33 (1986) 856-859. | MR | Zbl
,[31] Triangle condition for oriented percolation in high dimensions, Ann. Probab. 21 (1993) 1809-1844. | MR | Zbl
, ,[32] Gaussian limit for critical oriented percolation in high dimensions, J. Stat. Phys. 78 (1995) 841-876. | MR | Zbl
, ,[33] The problem of directed percolation, Phys. 101A (1980) 145-155. | MR
,[34] Dawson-Watanabe superprocesses and measure-valued diffusions, in: (Ed.), Lectures on Probability Theory and Statistics. Ecole d'Eté de Probabilités de Saint-Flour XXIX-1999, Lecture Notes in Mathematics, 1781, Springer, Berlin, 2002, pp. 125-329. | Zbl
,[35] Mean-field critical behavior for the contact process, J. Stat. Phys. 104 (2001) 111-143. | MR | Zbl
,[36] Hyperscaling inequalities for the contact process and oriented percolation, J. Stat. Phys. 106 (2002) 201-211. | MR | Zbl
,[37] Lattice trees, percolation and super-Brownian motion, in: , (Eds.), Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten, Birkhäuser, Basel, 1999. | MR | Zbl
,[38] Scaling limits and super-Brownian motion, Notices Amer. Math. Soc. 49 (9) (2002) 1056-1067. | MR | Zbl
,Cité par Sources :