Conditional probabilities and permutahedron
Annales de l'I.H.P. Probabilités et statistiques, Volume 39 (2003) no. 4, pp. 687-701.
@article{AIHPB_2003__39_4_687_0,
     author = {Mat\'u\v{s}, Franti\v{s}ek},
     title = {Conditional probabilities and permutahedron},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {687--701},
     publisher = {Elsevier},
     volume = {39},
     number = {4},
     year = {2003},
     doi = {10.1016/S0246-0203(03)00020-7},
     mrnumber = {1983175},
     zbl = {1038.60001},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S0246-0203(03)00020-7/}
}
TY  - JOUR
AU  - Matúš, František
TI  - Conditional probabilities and permutahedron
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2003
SP  - 687
EP  - 701
VL  - 39
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S0246-0203(03)00020-7/
DO  - 10.1016/S0246-0203(03)00020-7
LA  - en
ID  - AIHPB_2003__39_4_687_0
ER  - 
%0 Journal Article
%A Matúš, František
%T Conditional probabilities and permutahedron
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2003
%P 687-701
%V 39
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S0246-0203(03)00020-7/
%R 10.1016/S0246-0203(03)00020-7
%G en
%F AIHPB_2003__39_4_687_0
Matúš, František. Conditional probabilities and permutahedron. Annales de l'I.H.P. Probabilités et statistiques, Volume 39 (2003) no. 4, pp. 687-701. doi : 10.1016/S0246-0203(03)00020-7. http://archive.numdam.org/articles/10.1016/S0246-0203(03)00020-7/

[1] A. Von Arnim, R. Schrader, Y. Wang, The permutahedron of N-sparse posets, Math. Programming 75 (1996) 1-18. | MR | Zbl

[2] A. Björner, M. Las Vergnas, B. Sturmfels, W. White, G.M. Ziegler, Oriented Matroids, Cambridge University Press, Cambridge, 1993. | MR | Zbl

[3] W.M. Boothy, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975. | MR | Zbl

[4] G. Coletti, R. Scozzafava, Probabilistic Logic in a Coherent Setting, Kluwer Academic, Dordrecht, 2002. | MR | Zbl

[5] A. Császár, Sur la structure des espaces de probabilité conditionnelle, Acta Math. Acad. Sci. Hung. 6 (1955) 337-361. | MR | Zbl

[6] B. De Finetti, Sull'impostazione assiomatica del calcolo delle probabilità, Annali Univ. Trieste 19 (1949) 3-55. | Zbl

[7] B. De Finetti, Probability, Induction and Statistics, Wiley, London, 1972. | Zbl

[8] R.A. Horn, Ch.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. | MR | Zbl

[9] P.H. Krauss, Representation of conditional probability measures on Boolean algebras, Acta Math. Acad. Sci. Hung. 19 (1968) 229-241. | MR | Zbl

[10] M. Maes, B. Kappen, On the permutahedron and the quadratic placement problem, Philips J. Res. 46 (1992) 267-292. | MR | Zbl

[11] T. Parthasarathy, On Global Univalence Theorems, Springer-Verlag, New York, 1983. | MR | Zbl

[12] M. Pouzet, K. Reuter, I. Rival, N. Zaguia, A generalized permutahedron, Algebra Universalis 34 (1995) 496-509. | MR | Zbl

[13] M. Radulescu, S. Radulescu, Global inversion theorems and applications to differential equations, Nonlinear Anal. 4 (1980) 951-965. | MR | Zbl

[14] S. Radulescu, M. Radulescu, Global univalence and global inversion theorems in Banach spaces, Nonlinear Anal. 13 (1989) 539-553. | MR | Zbl

[15] A. Rényi, On a new axiomatic theory of probability, Acta Math. Acad. Sci. Hung. 6 (1955) 285-335. | MR | Zbl

[16] A. Rényi, On conditional probability spaces generated by a dimensionally ordered set of measures, Theory Probab. Appl. 1 (1956) 55-64. | MR | Zbl

[17] A. Rényi, Sur les espace simples des Probabilités conditionnelles, Ann. Inst. Henri Poincaré, Probabilités et Statistiques 1 (1964) 3-21. | Numdam | MR | Zbl

[18] A. Rényi, Probability Theory, Akadémiai Kiadó, Budapest, 1970.

[19] A.S. Schulz, The permutahedron of series-parallel posets, Discrete Appl. Math. 57 (1995) 85-90. | MR | Zbl

[20] N.N. Vorobjev, D.K. Faddeyev, Continualization of conditinal probabilities, Theory Probab. Appl. 6 (1961) 116-118. | MR

[21] F.F. Wu, Ch.A. Desoer, Global inverse function theorem, IEEE Trans. Circuit Theory 19 (1972) 199-201. | MR

[22] G.M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995. | MR | Zbl

Cited by Sources: