@article{AIHPB_2003__39_6_943_0, author = {Koltchinskii, Vladimir}, title = {Bounds on margin distributions in learning problems}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {943--978}, publisher = {Elsevier}, volume = {39}, number = {6}, year = {2003}, doi = {10.1016/S0246-0203(03)00023-2}, mrnumber = {2010392}, zbl = {1031.60017}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0246-0203(03)00023-2/} }
TY - JOUR AU - Koltchinskii, Vladimir TI - Bounds on margin distributions in learning problems JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 943 EP - 978 VL - 39 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0246-0203(03)00023-2/ DO - 10.1016/S0246-0203(03)00023-2 LA - en ID - AIHPB_2003__39_6_943_0 ER -
%0 Journal Article %A Koltchinskii, Vladimir %T Bounds on margin distributions in learning problems %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 943-978 %V 39 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0246-0203(03)00023-2/ %R 10.1016/S0246-0203(03)00023-2 %G en %F AIHPB_2003__39_6_943_0
Koltchinskii, Vladimir. Bounds on margin distributions in learning problems. Annales de l'I.H.P. Probabilités et statistiques, Volume 39 (2003) no. 6, pp. 943-978. doi : 10.1016/S0246-0203(03)00023-2. http://archive.numdam.org/articles/10.1016/S0246-0203(03)00023-2/
[1] Neural Network Learning: Theoretical Foundations, Cambridge University Press, 1999. | MR | Zbl
, ,[2] The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE Trans. Inform. Theory 44 (1998) 525-536. | MR | Zbl
,[3] Support vector networks, Machine Learning 20 (1995) 273-297. | Zbl
, ,[4] A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1996. | MR | Zbl
, , ,[5] Uniform Central Limit Theorems, Cambridge University Press, 1999. | MR | Zbl
,[6] E. Giné, V. Koltchinskii, J. Wellner, Ratio limit theorems for empirical processes, Preprint, 2003. | MR
[7] Data-dependent margin-based generalization bounds for classification, in: , (Eds.), Proc. of 14th Annual Conference on Computational Learning Theory, COLT2001, Lecture Notes in Artificial Intelligence, Springer, New York, 2001, pp. 368-384. | MR | Zbl
, , ,[8] Rademacher processes and bounding the risk of function learning, in: , , (Eds.), High Dimensional Probability II, Birkhäuser, Boston, 2000, pp. 444-459. | MR | Zbl
, ,[9] Empirical margin distributions and bounding the generalization error of combined classifiers, Ann. Statist. 30 (2002) 1-50. | MR | Zbl
, ,[10] Some new bounds on the generalization error of combined classifiers, in: , , (Eds.), Proc. of NIPS'2000, Advances in Neural Information Processing Systems, 13, MIT Press, 2001, pp. 245-251, URL: , http://www.boosting.org/.
, , ,[11] Further explanation of the effectiveness of voting methods: the game between margins and weights, in: , (Eds.), Proc. of 14th Annual Conference on Computational Learning Theory, COLT2001, Lecture Notes in Artif. Intell., Springer, New York, 2001, pp. 241-255. | MR | Zbl
, , ,[12] Bounding the generalization error of convex combinations of classifiers: balancing the dimensionality and the margins, Ann. Appl. Probab. 13 (1) (2003) 213-252. | MR | Zbl
, , ,[13] Probability in Banach Spaces, Springer-Verlag, New York, 1991. | MR | Zbl
, ,[14] About the constants in Talagrand's concentration inequalities for empirical processes, Ann. Probab. 28 (2000) 863-885. | MR | Zbl
,[15] Some applications of concentration inequalities to statistics, Ann. Fac. Sci. Tolouse (IX) (2000) 245-303. | Numdam | MR | Zbl
,[16] Boosting the margin: a new explanation of effectiveness of voting methods, Ann. Statist. 26 (1998) 1651-1687. | MR | Zbl
, , , ,[17] A new look at independence, Ann. Probab. 24 (1996) 1-34. | MR | Zbl
,[18] New concentration inequalities in product spaces, Invent. Math. 126 (1996) 505-563. | MR | Zbl
,[19] A. Tsybakov, Optimal aggregation of classifiers in statistical learning, Preprint, 2002. | MR
[20] Weak Convergence and Empirical Processes. With Applications to Statistics, Springer-Verlag, New York, 1996. | MR | Zbl
, ,[21] Statistical Learning Theory, Wiley, New York, 1998. | MR | Zbl
,Cited by Sources: