@article{AIHPB_2003__39_5_891_0, author = {H\"aggstr\"om, Olle}, title = {Is the fuzzy {Potts} model gibbsian?}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {891--917}, publisher = {Elsevier}, volume = {39}, number = {5}, year = {2003}, doi = {10.1016/S0246-0203(03)00026-8}, mrnumber = {1997217}, zbl = {1033.60094}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0246-0203(03)00026-8/} }
TY - JOUR AU - Häggström, Olle TI - Is the fuzzy Potts model gibbsian? JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 891 EP - 917 VL - 39 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0246-0203(03)00026-8/ DO - 10.1016/S0246-0203(03)00026-8 LA - en ID - AIHPB_2003__39_5_891_0 ER -
%0 Journal Article %A Häggström, Olle %T Is the fuzzy Potts model gibbsian? %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 891-917 %V 39 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0246-0203(03)00026-8/ %R 10.1016/S0246-0203(03)00026-8 %G en %F AIHPB_2003__39_5_891_0
Häggström, Olle. Is the fuzzy Potts model gibbsian?. Annales de l'I.H.P. Probabilités et statistiques, Volume 39 (2003) no. 5, pp. 891-917. doi : 10.1016/S0246-0203(03)00026-8. http://archive.numdam.org/articles/10.1016/S0246-0203(03)00026-8/
[1] Discontinuity of the magnetization in one-dimensional 1/|x−y|2 Ising and Potts models, J. Stat. Phys. 50 (1988) 1-40. | Zbl
, , , ,[2] Uniqueness of the infinite cluster and continuity of connectivity functions for short- and long-range percolation, Comm. Math. Phys. 111 (1987) 505-532. | MR | Zbl
, , ,[3] Percolation in half-spaces: equality of critical densities and continuity of the percolation probability, Probab. Theory Related Fields 90 (1991) 111-148. | MR | Zbl
, , ,[4] Disagreement percolation in the study of Markov fields, Ann. Probab. 22 (1994) 749-763. | MR | Zbl
, ,[5] Percolation and ferromagnetism on Z2: the q-state Potts cases, Stochastic Process. Appl. 65 (1996) 209-216. | MR | Zbl
,[6] On the possible failure of the Gibbs property for measures on lattice systems, Markov Proc. Related Fields 2 (1996) 209-224. | MR | Zbl
,[7] Pathological behavior of renormalization-group maps at high fields and above the transition temperature, J. Stat. Phys. 79 (1995) 969-992. | MR | Zbl
, , ,[8] Regularity properties of position-space renormalization group transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys. 72 (1993) 879-1167. | MR | Zbl
, , ,[9] The Griffiths singularity random field, in: , , (Eds.), On Dobrushin's Way. From Probability to Statistical Mechanics, American Mathematical Society, 2000, pp. 59-70. | MR | Zbl
, , , ,[10] Dobrushin's program on Gibbsianity restoration: weakly Gibbs and almost Gibbs random fields, in: , , (Eds.), On Dobrushin's Way. From Probability to Statistical Mechanics, American Mathematical Society, 2000, pp. 51-58. | Zbl
, , ,[11] Global specifications and nonquasilocality of projections of Gibbs measures, Ann. Probab. 25 (1997) 1284-1315. | MR | Zbl
, ,[12] On the random-cluster model. I. Introduction and relation to other models, Physica 57 (1972) 536-564. | MR
, ,[13] Gibbs Measures and Phase Transitions, de Gruyter, New York, 1988. | MR | Zbl
,[14] The random geometry of equilibrium phases, in: , (Eds.), Phase Transitions and Critical Phenomena, Vol. 18, Academic Press, London, 2001, pp. 1-142. | MR
, , ,[15] The stochastic random-cluster process, and the uniqueness of random-cluster measures, Ann. Probab. 23 (1995) 1461-1510. | MR | Zbl
,[16] Percolation, Springer, New York, 1999. | Zbl
,[17] Random-cluster representations in the study of phase transitions, Markov Proc. Related Fields 4 (1998) 275-321. | MR | Zbl
,[18] Positive correlations in the fuzzy Potts model, Ann. Appl. Probab. 9 (1999) 1149-1159. | MR | Zbl
,[19] Coloring percolation clusters at random, Stochastic Process. Appl. 96 (2001) 213-242. | MR | Zbl
,[20] Coupling and Bernoullicity in random-cluster and Potts models, Bernoulli 8 (2002) 275-294. | MR | Zbl
, , ,[21] (Non-)Gibbsianness and phase transitions in random lattic spin models, Markov Proc. Related Fields 5 (1999) 357-383. | MR | Zbl
,[22] Weakly Gibbsian representations for joint measures of quenched lattice spin models, Probab. Theory Related Fields 119 (2001) 1-30. | MR | Zbl
,[23] Hidden Markov random fields, Ann. Appl. Probab. 5 (1995) 577-602. | MR | Zbl
, , ,[24] Phase coexistence and surface tensions for the Potts model, Comm. Math. Phys. 105 (1986) 527-545. | MR
, , ,[25] The fuzzy Potts model, J. Phys. A 28 (1995) 4261-4271. | MR | Zbl
, ,[26] Infinite clusters in percolation models, J. Stat. Phys. 26 (1981) 26-628. | MR | Zbl
, ,[27] Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Related Fields 104 (1996) 427-466. | MR | Zbl
,[28] Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett. 58 (1987) 86-88.
, ,Cited by Sources: