Almost continuous solutions of geometric Hamilton-Jacobi equations
Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 2, pp. 237-269.
@article{AIHPC_2003__20_2_237_0,
     author = {Siconolfi, Antonio},
     title = {Almost continuous solutions of geometric {Hamilton-Jacobi} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {237--269},
     publisher = {Elsevier},
     volume = {20},
     number = {2},
     year = {2003},
     doi = {10.1016/S0294-1449(02)00010-0},
     zbl = {1029.35067},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S0294-1449(02)00010-0/}
}
TY  - JOUR
AU  - Siconolfi, Antonio
TI  - Almost continuous solutions of geometric Hamilton-Jacobi equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2003
SP  - 237
EP  - 269
VL  - 20
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S0294-1449(02)00010-0/
DO  - 10.1016/S0294-1449(02)00010-0
LA  - en
ID  - AIHPC_2003__20_2_237_0
ER  - 
%0 Journal Article
%A Siconolfi, Antonio
%T Almost continuous solutions of geometric Hamilton-Jacobi equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2003
%P 237-269
%V 20
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S0294-1449(02)00010-0/
%R 10.1016/S0294-1449(02)00010-0
%G en
%F AIHPC_2003__20_2_237_0
Siconolfi, Antonio. Almost continuous solutions of geometric Hamilton-Jacobi equations. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 2, pp. 237-269. doi : 10.1016/S0294-1449(02)00010-0. http://archive.numdam.org/articles/10.1016/S0294-1449(02)00010-0/

[1] Bardi M., Capuzzo Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi Equations, Birkhäuser, Boston, 1997. | MR | Zbl

[2] Bardi M., Crandall M.G., Evans L.C., Souganidis P.E., Viscosity Solutions and Applications, Springer-Verlag, Berlin, 1997.

[3] Barles G., Perthame B., Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim. 26 (1988) 1133-1148. | MR | Zbl

[4] Barles G., Discontinuous viscosity solutions of first order of Hamilton-Jacobi equations: a guided visit, Nonlinear Anal. 20 (1993) 1123-1134. | MR | Zbl

[5] Barles G., Solutions de Viscosité des Équations de Hamilton-Jacobi, Springer-Verlag, Paris, 1994. | MR | Zbl

[6] Barron E.N., Jensen R., Semicontinuous viscosity solutions of Hamilton-Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations 15 (1990) 1713-1742. | MR | Zbl

[7] Chen Y.G., Giga Y., Goto S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom. 33 (1991) 749-786. | MR | Zbl

[8] Clarke F.H., Optimization and Nonsmooth Analysis, Wiley, New York, 1983. | MR | Zbl

[9] Evans L.C., Ishii H., Differential games and nonlinear first order PDE in bounded domains, Manuscripta Math. 49 (1984) 109-139. | MR | Zbl

[10] Evans L.C., Souganidis P., Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J. 33 (1984) 773-797. | MR | Zbl

[11] Frankowska H., Lower semicontinuous solutions of Hamilton-Jacob-Bellman equations, SIAM J. Control. Optim. 31 (1993) 257-272. | MR | Zbl

[12] Y. Giga, M.H. Sato, A level set approach to semicontinuous viscosity solutions for Cauchy problems, Preprint, 1999. | MR

[13] Ishii H., Perron's method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987) 369-384. | MR | Zbl

[14] Kelley J.L., General Topology, Van Nostrand, Princeton, 1955. | MR | Zbl

[15] Oxtoby J.C., Measure and Category, Springer-Verlag, New York, 1971. | MR | Zbl

[16] Rockafellar R.T., Generalized directional derivatives and subgradients of nonconvex functions, Can. J. Math. 32 (1980) 257-280. | MR | Zbl

[17] S. Samborski, Extension of nonlinear partial differential expressions and viscosity solutions. An useful space, Preprint, 2000.

[18] A. Siconolfi, Metric character of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., to appear. | MR | Zbl

[19] A. Siconolfi, Representation formulae and comparison results for geometric Hamilton-Jacobi equations, Preprint, 2001.

Cité par Sources :