@article{AIHPC_2003__20_6_1043_0, author = {Schn\"urer, Oliver C and Smoczyk, Knut}, title = {Neumann and second boundary value problems for hessian and {Gau{\ss}} curvature flows}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1043--1073}, publisher = {Elsevier}, volume = {20}, number = {6}, year = {2003}, doi = {10.1016/S0294-1449(03)00021-0}, mrnumber = {2008688}, zbl = {1032.53058}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0294-1449(03)00021-0/} }
TY - JOUR AU - Schnürer, Oliver C AU - Smoczyk, Knut TI - Neumann and second boundary value problems for hessian and Gauß curvature flows JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 1043 EP - 1073 VL - 20 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0294-1449(03)00021-0/ DO - 10.1016/S0294-1449(03)00021-0 LA - en ID - AIHPC_2003__20_6_1043_0 ER -
%0 Journal Article %A Schnürer, Oliver C %A Smoczyk, Knut %T Neumann and second boundary value problems for hessian and Gauß curvature flows %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 1043-1073 %V 20 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0294-1449(03)00021-0/ %R 10.1016/S0294-1449(03)00021-0 %G en %F AIHPC_2003__20_6_1043_0
Schnürer, Oliver C; Smoczyk, Knut. Neumann and second boundary value problems for hessian and Gauß curvature flows. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 6, pp. 1043-1073. doi : 10.1016/S0294-1449(03)00021-0. http://archive.numdam.org/articles/10.1016/S0294-1449(03)00021-0/
[1] Gauß curvature flow, The shape of the rolling stones, Invent. Math. 138 (1999) 151-161. | MR | Zbl
,[2] Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math. 41 (1988) 47-70. | MR | Zbl
, , ,[3] A logarithmic Gauß curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré Analyse Non Linéaire 17 (6) (2000) 733-751. | Numdam | MR | Zbl
, ,[4] Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom. 22 (1) (1985) 117-138. | MR | Zbl
,[5] The free boundary in the Gauß curvature flow with flat sides, J. Reine Angew. Math. 510 (1999) 187-227. | MR | Zbl
, ,[6] Shapes of worn stones, Mathematica 21 (1974) 1-11. | MR | Zbl
,[7] C. Gerhardt, Existenz für kleine Zeiten bei Neumann Randbedingungen, Lecture Notes.
[8] Hypersurfaces of prescribed curvature in Lorentzian manifolds, Indiana Univ. Math. J. 49 (2000) 1125-1153. | MR | Zbl
,[9] Hypersurfaces of prescribed Weingarten curvature, Math. Z. 224 (1997) 167-194. | MR | Zbl
,[10] Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983, xiii+513 pp. | MR | Zbl
, ,[11] Estimation of the second derivatives on the boundary for surfaces evolving under the action of their principal curvatures, Algebra i Analiz 9 (1997) 30-50, (in Russian). Translation in , St. Petersburg Math. J. 9 (1998) 199-217. | MR | Zbl
, ,[12] Linear and Quasilinear Equations of Parabolic Type, (in Russian). Translated from the Russian by S. Smith , Transl. Math. Monographs, 23, American Mathematical Society, Providence, RI, 1967, xi+648 pp. | MR | Zbl
, , ,[13] Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ, 1996, xii+439 pp. | MR | Zbl
,[14] The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math. 39 (1986) 539-563. | MR | Zbl
, , ,[15] The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds, Math. Z. 242 (2002) 159-181. | MR | Zbl
,[16] Weingarten hypersurfaces with prescribed gradient image, Math. Z. 240 (2002) 53-82. | MR | Zbl
,[17] The second boundary value problem for a class of Hessian equations, Comm. Partial Differential Equations 26 (2001) 859-882. | MR | Zbl
,[18] Oblique boundary value problems for equations of Monge-Ampère type, Calc. Var. Partial Differential Equations 7 (1998) 19-39. | MR | Zbl
,[19] On the second boundary value problem for equations of Monge-Ampère type, J. Reine Angew. Math. 487 (1997) 115-124. | MR | Zbl
,Cité par Sources :