Nous identifionsla gamme optimale des coefficients s, p pour lesquels les formes différentielles à coefficients dans l'espace de Sobolev admettent des décompositions de Hodge naturelles, pour des domaines lipschitziens arbitraires de dimensions deux et trois.
We identify the optimal range of coefficients s, p for which differential forms with coefficients in the Sobolev space admit natural Hodge decompositions in arbitrary two and three dimensional Lipschitz domains .
Accepté le :
Publié le :
@article{CRMATH_2002__334_2_109_0, author = {Mitrea, Dorina and Mitrea, Marius}, title = {Sharp {Hodge} decompositions in two and three dimensional {Lipschitz} domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {109--112}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02232-X}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02232-X/} }
TY - JOUR AU - Mitrea, Dorina AU - Mitrea, Marius TI - Sharp Hodge decompositions in two and three dimensional Lipschitz domains JO - Comptes Rendus. Mathématique PY - 2002 SP - 109 EP - 112 VL - 334 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02232-X/ DO - 10.1016/S1631-073X(02)02232-X LA - en ID - CRMATH_2002__334_2_109_0 ER -
%0 Journal Article %A Mitrea, Dorina %A Mitrea, Marius %T Sharp Hodge decompositions in two and three dimensional Lipschitz domains %J Comptes Rendus. Mathématique %D 2002 %P 109-112 %V 334 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02232-X/ %R 10.1016/S1631-073X(02)02232-X %G en %F CRMATH_2002__334_2_109_0
Mitrea, Dorina; Mitrea, Marius. Sharp Hodge decompositions in two and three dimensional Lipschitz domains. Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 109-112. doi : 10.1016/S1631-073X(02)02232-X. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02232-X/
[1] Arch. Rational Mech. Anal., 65 (1977), pp. 275-288
[2] Ann. Math., 125 (1987), pp. 437-465
[3] Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, 1990
[4] Acta Math., 141 (1978), pp. 165-186
[5] Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, 1986
[6] Grachev N.V., Maz'ya V.G., Linköping Univ. Research Report LiTH-MAT-R-91-50
[7] J. Functional Anal., 130 (1995), pp. 161-219
[8] J. Functional Anal., 176 (2000), pp. 1-79
[9] Hodge Decomposition – A Method for Solving Boundary Value Problems, LMN, 1607, Springer-Verlag, 1995
[10] J. Functional Anal., 59 (1984), pp. 572-611
Cité par Sources :