Integration by parts on Bessel Bridges and related stochastic partial differential equations
[Integration par parties sur Ponts de Bessel et EDPS correspondantes]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 3, pp. 209-212.

Nous prouvons des formules d'intégration par parties par rapport à la loi des Ponts de Bessel de dimension δ⩾3. Remarquons que dans le cas δ=3 nous obtenons une mesure de bord infini-dimensionelle, et pour δ>3 une dérivée logarithmique singulière. Nous donnerons aussi des applications à des EDPS avec bruit blanc en espace-temps et termes de dérive singuliers, dont les solutions sont non-négatives.

We prove integration by parts formulae with respect to the law of Bessel Bridges of dimension δ⩾3. For δ=3 we have an infinite-dimensional boundary measure, and for δ>3 a singular logarithmic derivative. We give applications to SPDEs with additive space-time white noise and singular drifts, whose solutions are non-negative.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02254-9
Zambotti, Lorenzo 1

1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
@article{CRMATH_2002__334_3_209_0,
     author = {Zambotti, Lorenzo},
     title = {Integration by parts on {Bessel} {Bridges} and related stochastic partial differential equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {209--212},
     publisher = {Elsevier},
     volume = {334},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02254-9},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02254-9/}
}
TY  - JOUR
AU  - Zambotti, Lorenzo
TI  - Integration by parts on Bessel Bridges and related stochastic partial differential equations
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 209
EP  - 212
VL  - 334
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02254-9/
DO  - 10.1016/S1631-073X(02)02254-9
LA  - en
ID  - CRMATH_2002__334_3_209_0
ER  - 
%0 Journal Article
%A Zambotti, Lorenzo
%T Integration by parts on Bessel Bridges and related stochastic partial differential equations
%J Comptes Rendus. Mathématique
%D 2002
%P 209-212
%V 334
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02254-9/
%R 10.1016/S1631-073X(02)02254-9
%G en
%F CRMATH_2002__334_3_209_0
Zambotti, Lorenzo. Integration by parts on Bessel Bridges and related stochastic partial differential equations. Comptes Rendus. Mathématique, Tome 334 (2002) no. 3, pp. 209-212. doi : 10.1016/S1631-073X(02)02254-9. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02254-9/

[1] Fukushima, M.; Oshima, Y.; Takeda, M. Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin–New York, 1994

[2] Funaki, T.; Olla, S. Fluctuations for ∇φ interface model on a wall, Stoch. Processes Appl., Volume 94 (2001), pp. 1-27

[3] Ma, Z.M.; Röckner, M. Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Springer-Verlag, Berlin, 1992

[4] Malliavin, P. Stochastic Analysis, Springer, Berlin, 1997

[5] Mueller, C. Long-time existence for signed solutions of the heat equation with a noise term, Probab. Theory Related Fields, Volume 110 (1998), pp. 51-68

[6] Mueller, C.; Pardoux, E. The critical exponent for a stochastic PDE to hit zero, Stochastic Analysis, Control, Optimization and Applications, Systems Control Found. Appl., Birkhäuser Boston, 1999, pp. 325-338

[7] Nualart, D.; Pardoux, E. White noise driven quasilinear SPDEs with reflection, Probab. Theory Related Fields, Volume 93 (1992), pp. 77-89

[8] Revuz, D.; Yor, M. Continuous Martingales and Brownian Motion, Springer-Verlag, 1991

[9] Zambotti, L. A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel Bridge, J. Funct. Anal., Volume 180 (2001), pp. 195-209

Cité par Sources :