Une nouvelle méthode est proposée pour l'estimation de l'index d'une queue de distribution. Elle est basée sur l'étude de statistiques divergentes. Les estimateurs résultants sont simples à construire et peuvent être utilisés pour résoudre d'autres problèmes d'estimation.
A new approach on tail index estimation is proposed based on studying the in-sample evolution of appropriately chosen diverging statistics. The resulting estimators are simple to construct, and they can be generalized to address other rate estimation problems as well.
Accepté le :
Publié le :
@article{CRMATH_2002__335_3_279_0, author = {Politis, Dimitris N.}, title = {A new approach on estimation of the tail index}, journal = {Comptes Rendus. Math\'ematique}, pages = {279--282}, publisher = {Elsevier}, volume = {335}, number = {3}, year = {2002}, doi = {10.1016/S1631-073X(02)02450-0}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02450-0/} }
TY - JOUR AU - Politis, Dimitris N. TI - A new approach on estimation of the tail index JO - Comptes Rendus. Mathématique PY - 2002 SP - 279 EP - 282 VL - 335 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02450-0/ DO - 10.1016/S1631-073X(02)02450-0 LA - en ID - CRMATH_2002__335_3_279_0 ER -
%0 Journal Article %A Politis, Dimitris N. %T A new approach on estimation of the tail index %J Comptes Rendus. Mathématique %D 2002 %P 279-282 %V 335 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02450-0/ %R 10.1016/S1631-073X(02)02450-0 %G en %F CRMATH_2002__335_3_279_0
Politis, Dimitris N. A new approach on estimation of the tail index. Comptes Rendus. Mathématique, Tome 335 (2002) no. 3, pp. 279-282. doi : 10.1016/S1631-073X(02)02450-0. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02450-0/
[1] Kernel estimates of the tail index of a distribution, Ann. Statist., Volume 13 (1985), pp. 1050-1077
[2] Estimating the tail index (Szyszkowicz, B., ed.), Asymptotic Methods in Probability and Statistics, North-Holland, Amsterdam, 1998, pp. 833-881
[3] Modelling Extremal Events, Springer, Berlin, 1997
[4] Necessary conditions for the bootstrap of the mean, Ann. Statist., Volume 17 (1990), pp. 684-691
[5] T. McElroy, D.N. Politis, Robust inference for the mean in the presence of serial correlation and heavy tailed distributions, Econometric Theory, 2002, forthcoming
Cité par Sources :