Second order Hamilton–Jacobi–Bellman inequalities
[Inéquations de Hamilton–Jacobi–Bellman de deuxième ordre]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 7, pp. 591-596.

Cette note est consacrée à l'étude des inéquations aux dérivées partielles du type Hamilton–Jacobi–Bellman issues d'un problème de contrôle optimal où l'équation d'état est une inéquation variationnelle stochastique. En fait, on démontre que la fonction minimisant la fonctionnelle de coût est une solution de viscosité pour l'équation étudiée. Cette approche est menée par une méthode de perturbation du problème initial. L'unicité de la solution de viscosité est également prouvée.

This work is devoted to the study of a class of Hamilton–Jacobi–Bellman inequalities which come from an optimal control problem where the state equation is a stochastic variational inequality. We show that the value function, which minimizes the cost, is a viscosity solution of the studied equation. This approach is made by perturbing the initial problem. Then we prove the uniqueness of the inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02528-1
Zălinescu, Adrian 1

1 Université de Bretagne Occidentale, 6, avenue Victor le Gorgeu, BP 809, 29285 Brest cedex, France
@article{CRMATH_2002__335_7_591_0,
     author = {Z\u{a}linescu, Adrian},
     title = {Second order {Hamilton{\textendash}Jacobi{\textendash}Bellman} inequalities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {591--596},
     publisher = {Elsevier},
     volume = {335},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02528-1},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02528-1/}
}
TY  - JOUR
AU  - Zălinescu, Adrian
TI  - Second order Hamilton–Jacobi–Bellman inequalities
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 591
EP  - 596
VL  - 335
IS  - 7
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02528-1/
DO  - 10.1016/S1631-073X(02)02528-1
LA  - en
ID  - CRMATH_2002__335_7_591_0
ER  - 
%0 Journal Article
%A Zălinescu, Adrian
%T Second order Hamilton–Jacobi–Bellman inequalities
%J Comptes Rendus. Mathématique
%D 2002
%P 591-596
%V 335
%N 7
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02528-1/
%R 10.1016/S1631-073X(02)02528-1
%G en
%F CRMATH_2002__335_7_591_0
Zălinescu, Adrian. Second order Hamilton–Jacobi–Bellman inequalities. Comptes Rendus. Mathématique, Tome 335 (2002) no. 7, pp. 591-596. doi : 10.1016/S1631-073X(02)02528-1. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02528-1/

[1] Asiminoaiei, I.; Răşcanu, A. Approximation and simulation of stochastic variational inequalities – splitting up method, Numer. Funct. Anal. Optim., Volume 18 (1997), pp. 251-282

[2] Barbu, V. Nonlinear Semigroups and Differential Equations in Banach Spaces, Nordhoff, Leyden, 1976

[3] Crandall, M.G.; Ishii, H.; Lions, P.-L. User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67

[4] Fleming, W.H.; Soner, H.M. Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, 1993

[5] Shimano, K. A Class of Hamilton–Jacobi equations with unbounded coefficients in Hilbert spaces, Appl. Math. Optim., Volume 45 (2002), pp. 75-98

[6] Tătaru, D. Viscosity solutions for Hamilton–Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., Volume 163 (1992), pp. 345-392

Cité par Sources :