A sharp Sobolev inequality on Riemannian manifolds
[Une inégalité de Sobolev optimale sur les varietés riemanniennes]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 6, pp. 519-524.

On présente des inégalités de Sobolev optimales sur les variétés riemanniennes. Ces inégalités contiennent un terme de courbure scalaire. Les démonstrations détaillées sont contenues dans [11].

We outline our results in [11] concerning some sharp Sobolev inequalities on Riemannian manifolds. Our inequalities emphasize the role of scalar curvature in this context.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02529-3
Li, Yan Yan 1 ; Ricciardi, Tonia 2

1 Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA
2 Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy
@article{CRMATH_2002__335_6_519_0,
     author = {Li, Yan Yan and Ricciardi, Tonia},
     title = {A sharp {Sobolev} inequality on {Riemannian} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {519--524},
     publisher = {Elsevier},
     volume = {335},
     number = {6},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02529-3},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02529-3/}
}
TY  - JOUR
AU  - Li, Yan Yan
AU  - Ricciardi, Tonia
TI  - A sharp Sobolev inequality on Riemannian manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 519
EP  - 524
VL  - 335
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02529-3/
DO  - 10.1016/S1631-073X(02)02529-3
LA  - en
ID  - CRMATH_2002__335_6_519_0
ER  - 
%0 Journal Article
%A Li, Yan Yan
%A Ricciardi, Tonia
%T A sharp Sobolev inequality on Riemannian manifolds
%J Comptes Rendus. Mathématique
%D 2002
%P 519-524
%V 335
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02529-3/
%R 10.1016/S1631-073X(02)02529-3
%G en
%F CRMATH_2002__335_6_519_0
Li, Yan Yan; Ricciardi, Tonia. A sharp Sobolev inequality on Riemannian manifolds. Comptes Rendus. Mathématique, Tome 335 (2002) no. 6, pp. 519-524. doi : 10.1016/S1631-073X(02)02529-3. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02529-3/

[1] Aubin, T. Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom., Volume 11 (1976), pp. 573-598

[2] Aubin, T. Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., Volume 55 (1976), pp. 269-296

[3] Aubin, T. Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, New York, 1998

[4] Bahri, A.; Coron, J.M. The scalar-curvature problem on standard three-dimensional sphere, J. Funct. Anal., Volume 95 (1991), pp. 106-172

[5] Brezis, H.; Lieb, E. Sobolev inequalities with remainder terms, J. Funct. Anal., Volume 62 (1985), pp. 73-86

[6] Brezis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477

[7] Carlen, E.; Loss, M. On the minimization of symmetric functionals, Rev. Math. Phys. (1994), pp. 1011-1032 (Special Issue)

[8] Druet, O.; Hebey, E.; Vaugon, M. Sharp Sobolev inequalities with lower order remainder terms, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 269-289

[9] Escobar, J. Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J., Volume 37 (1988), pp. 687-698

[10] Hebey, E.; Vaugon, M. Meilleures constantes dans le théorème d'inclusion de Sobolev, Ann. Inst. H. Poincaré, Volume 13 (1996) no. 1, pp. 57-93

[11] Y.Y. Li, T. Ricciardi, A sharp Sobolev inequality on Riemannian manifolds, Preprint No. 3-2002, Dip. Mat. e Appl., Univ. of Naples Federico II

[12] Li, Y.Y.; Zhu, M. Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries, Comm. Pure Appl. Math., Volume 50 (1997), pp. 449-487

[13] Schoen, R. Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495

[14] Struwe, M. Critical points of embeddings of H1,n0 into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 5 (1988), pp. 425-464

[15] Talenti, G. Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372

Cité par Sources :